Recent Progress in Cathode Materials for Sodium-Metal Halide Batteries
Abstract
:1. Introduction
2. Ni-Based Cathode Materials for Na-MH Battery Systems
2.1. Basic Working Principle
2.2. Electrochemical Mechanism and Additives
2.3. Effects of Operating Temperature and Electrode Morphology
2.4. Cathode Reaction Kinetics with Respect to Halides
3. Fe-Based Cathode Materials
3.1. Basic Working Principle and Mechanism
3.2. Fast-Charging Capability
3.3. Effect of Electrode Morphology and Fe/Ni-Mixed Cathodes
4. Other Transition Metal Halide Cathode Materials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Braff, W.A.; Mueller, J.M.; Trancik, J.E. Value of storage technologies for wind and solar energy. Nat. Clim. Change 2016, 6, 964–969. [Google Scholar] [CrossRef]
- Ziegler, M.S.; Mueller, J.M.; Pereira, G.D.; Song, J.; Ferrara, M.; Chiang, Y.-M.; Trancik, J.E. Storage Requirements and Costs of Shaping Renewable Energy Toward Grid Decarbonization. Joule 2019, 3, 2134–2153. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, O.; Melchior, S.; Hawkes, A.; Staffell, I. Projecting the Future Levelized Cost of Electricity Storage Technologies. Joule 2019, 3, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Liu, K.; Jin, Y.; Sun, B.; Zhang, Z.; Chen, Y.; Su, D.; Wang, G.; Wu, H.; Cui, Y. A Garnet-Type Solid-Electrolyte-Based Molten Lithium-Molybdenum-Iron(II) Chloride Battery with Advanced Reaction Mechanism. Adv. Mater. 2020, 32, 2000960. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, K.; Lang, J.L.; Jiang, X.; Zheng, Z.K.; Su, Q.H.; Huang, Z.Y.; Long, Y.Z.; Wang, C.A.; Wu, H.; et al. High-Energy-Density Solid-Electrolyte-Based Liquid Li-S and Li-Se Batteries. Joule 2020, 4, 262–274. [Google Scholar] [CrossRef]
- Lang, J.L.; Liu, K.; Jin, Y.; Long, Y.Z.; Qi, L.H.; Wu, H.; Cui, Y. A molten battery consisting of Li metal anode, AlCl3-LiCl cathode and solid electrolyte. Energy Storage Mater. 2020, 24, 412–416. [Google Scholar] [CrossRef]
- Liu, K.; Lang, J.L.; Yang, M.Z.; Xu, J.; Sun, B.; Wu, Y.L.; Wang, K.Y.; Zheng, Z.K.; Huang, Z.Y.; Wang, C.A.; et al. Molten Lithium-Brass/Zinc Chloride System as High-Performance and Low-Cost Battery. Matter 2020, 3, 1714–1724. [Google Scholar] [CrossRef]
- Sudworth, J.L. Zebra Batteries. J. Power Sour. 1994, 51, 105–114. [Google Scholar] [CrossRef]
- Sudworth, J.L. Sodium/nickel chloride (ZEBRA) battery. J. Power Sour. 2001, 100, 149–163. [Google Scholar] [CrossRef]
- Yang, Z.G.; Zhang, J.L.; Kintner-Meyer, M.C.W.; Lu, X.C.; Choi, D.W.; Lemmon, J.P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Kim, J.K.; Choi, A.; Kim, Y.; Lee, K.T. Sodium-Metal Halide and Sodium-Air Batteries. ChemPhysChem 2014, 15, 1971–1982. [Google Scholar] [CrossRef]
- Hueso, K.B.; Armand, M.; Rojo, T. High temperature sodium batteries: Status, challenges and future trends. Energy Environ. Sci. 2013, 6, 734–749. [Google Scholar] [CrossRef]
- Lu, X.C.; Lemmon, J.P.; Sprenkle, V.; Yang, Z.G. Sodium-beta Alumina Batteries: Status and Challenges. JOM 2010, 62, 31–36. [Google Scholar] [CrossRef]
- Lu, X.C.; Xia, G.G.; Lemmon, J.P.; Yang, Z.G. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives. J. Power Sour. 2010, 195, 2431–2442. [Google Scholar] [CrossRef]
- Chang, H.J.; Canfield, N.L.; Jung, K.; Sprenkle, V.L.; Li, G.S. Advanced Na-NiCl2 Battery Using Nickel-Coated Graphite with Core Shell Microarchitecture. ACS Appl. Mater. Interfaces 2017, 9, 11609–11614. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.J.; Lu, X.C.; Bonnett, J.F.; Canfield, N.L.; Son, S.; Park, Y.C.; Jung, K.; Sprenkle, V.L.; Li, G.S. “Ni-Less” Cathodes for High Energy Density, Intermediate Temperature Na-NiCl2 Batteries. Adv. Mater. Interfaces 2018, 5, 1701592. [Google Scholar] [CrossRef]
- Gao, X.; Hu, Y.; Li, Y.; Wang, J.; Wu, X.; Yang, J.; Wen, Z. High-Rate and Long-Life Intermediate-Temperature Na-NiCl2 Battery with Dual-Functional Ni-Carbon Composite Nanofiber Network. ACS. Appl. Mater. Interfaces 2020, 12, 24767–24776. [Google Scholar] [CrossRef] [PubMed]
- Li, G.S.; Lu, X.C.; Kim, J.Y.; Meinhardt, K.D.; Chang, H.J.; Canfield, N.L.; Sprenkle, V.L. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density. Nat. Commun. 2016, 7, 10683. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, S.P.; Ao, X.; Wu, X.W.; Yang, J.H.; Wen, Z.Y. Enhanced stability performance of nickel nanowire with 3D conducting network for planar sodium-nickel chloride batteries. J. Power Sour. 2017, 360, 345–352. [Google Scholar] [CrossRef]
- Li, G.S.; Lu, X.C.; Kim, J.Y.; Lemmon, J.P.; Sprenkle, V.L. Cell degradation of a Na-NiCl2 (ZEBRA) battery. J. Mater. Chem. A 2013, 1, 14935–14942. [Google Scholar] [CrossRef]
- Chang, H.J.; Lu, X.C.; Bonnett, J.F.; Canfield, N.L.; Son, S.; Park, Y.C.; Jung, K.; Sprenkle, V.L.; Li, G.S. Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies. J. Power Sour. 2017, 348, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Chang, H.J.; Bonnett, J.F.; Canfield, N.L.; Jung, K.; Sprenkle, V.L.; Li, G. An Intermediate-Temperature High-Performance Na-ZnCl2 Battery. ACS Omega 2018, 3, 15702–15708. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.C.; Li, G.S.; Kim, J.Y.; Lemmon, J.P.; Sprenkle, V.L.; Yang, Z.G. A novel low-cost sodium-zinc chloride battery. Energ Environ. Sci. 2013, 6, 1837–1843. [Google Scholar] [CrossRef]
- Li, G.S.; Lu, X.C.; Kim, J.Y.; Viswanathan, V.V.; Meinhardt, K.D.; Engelhard, M.H.; Sprenkle, V.L. An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application. Adv. Energy Mater. 2015, 5, 1500357. [Google Scholar] [CrossRef]
- Zhan, X.; Bowden, M.E.; Lu, X.; Bonnett, J.F.; Lemmon, T.; Reed, D.M.; Sprenkle, V.L.; Li, G. A Low-Cost Durable Na-FeCl2 Battery with Ultrahigh Rate Capability. Adv. Energy Mater. 2020, 10, 1903472. [Google Scholar] [CrossRef]
- Chang, H.-J.; Lu, X.; Bonnett, J.F.; Canfield, N.L.; Han, K.; Engelhard, M.H.; Jung, K.; Sprenkle, V.L.; Li, G. Decorating β"-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures. J. Mater. Chem. A 2018, 6, 19703–19711. [Google Scholar] [CrossRef]
- Mamantov, G.; Marassi, R.; Matsunaga, M.; Ogata, Y.; Wiaux, J.P.; Frazer, E.J. The Use of Tetravalent Sulfur in Molten Chloroaluminate Secondary Batteries. J. Electrochem. Soc. 1980, 127, 2319–2325. [Google Scholar] [CrossRef]
- Coetzer, J. A New High-Energy Density Battery System. J. Power Sour. 1986, 18, 377–380. [Google Scholar] [CrossRef]
- Galloway, R.C. A Sodium/Beta-Alumina/Nickel Chloride Secondary Cell. J. Electrochem. Soc. 1987, 134, 256–257. [Google Scholar] [CrossRef]
- Prakash, J.; Redey, L.; Vissers, D.R. Electrochemical behavior of nonporous Ni/NiCl2 electrodes in chloroaluminate melts. J. Electrochem. Soc. 2000, 147, 502–507. [Google Scholar] [CrossRef]
- Bones, R.J.; Teagle, D.A.; Brooker, S.D.; Cullen, F.L. Development of a Ni, NiCl2 Positive Electrode for a Liquid-Sodium (Zebra) Battery Cell. J. Electrochem. Soc. 1989, 136, 1274–1277. [Google Scholar] [CrossRef]
- Ratnakumar, B.V.; Surampudi, S.; Halpert, G. Effects of Sulfur Additive on the Performance of Na/NiCl2 Cells. J. Power Sour. 1994, 48, 349–360. [Google Scholar] [CrossRef]
- Prakash, J.; Redey, L. Corrosion studies of nickel-200 in high-temperature ZEBRA batteries at 300 degrees C. Corros. Sci. 1999, 41, 2075–2082. [Google Scholar]
- Li, G.S.; Lu, X.C.; Kim, J.Y.; Engelhard, M.H.; Lemmon, J.P.; Sprenkle, V.L. The role of FeS in initial activation and performance degradation of Na-NiCl2 batteries. J. Power Sour. 2014, 272, 398–403. [Google Scholar] [CrossRef] [Green Version]
- Ao, X.; Wen, Z.Y.; Hu, Y.Y.; Wu, T.; Wu, X.W.; He, Q.M. Enhanced cycle performance of a Na/NiCl2 battery based on Ni particles encapsulated with Ni3S2 layer. J. Power Sour. 2017, 340, 411–418. [Google Scholar] [CrossRef]
- Ao, X.; Wen, Z.Y.; Wu, X.W.; Wu, T.; Wu, M.F. Self-Repairing Function of Ni3S2 Layer on Ni Particles in the Na/NiCl2 Cells with the Addition of Sulfur in the Catholyte. ACS Appl. Mater. Interfaces 2017, 9, 21234–21242. [Google Scholar] [CrossRef]
- Hosseinifar, M.; Petric, A. High temperature versus low temperature Zebra (Na/NiCl2) cell performance. J. Power Sour. 2012, 206, 402–408. [Google Scholar] [CrossRef]
- Lu, X.C.; Li, G.S.; Kim, J.Y.; Lemmon, J.P.; Sprenkle, V.L.; Yang, Z.G. The effects of temperature on the electrochemical performance of sodium-nickel chloride batteries. J. Power Sour. 2012, 215, 288–295. [Google Scholar] [CrossRef]
- Li, G.S.; Lu, X.C.; Coyle, C.A.; Kim, J.Y.; Lemmon, J.P.; Sprenkle, V.L.; Yang, Z.G. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries. J. Power Sour. 2012, 220, 193–198. [Google Scholar] [CrossRef]
- Prakash, J.; Redey, L.; Vissers, D.R. Morphological considerations of the nickel chloride electrodes for zebra batteries. J. Power Sour. 1999, 84, 63–69. [Google Scholar] [CrossRef]
- Kim, M.; Ahn, C.W.; Hahn, B.D.; Jung, K.; Park, Y.C.; Cho, N.U.; Lee, H.; Choi, J.H. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery. Met. Mater. Int. 2017, 23, 1234–1240. [Google Scholar] [CrossRef]
- Li, Y.P.; Wu, X.W.; Wang, J.Y.; Gao, X.P.; Hu, Y.Y.; Wen, Z.Y. Ni-less cathode with 3D free-standing conductive network for planar Na-NiCl2 batteries. Chem. Eng. J. 2020, 387, 124059. [Google Scholar] [CrossRef]
- Zhan, X.W.; Sepulveda, J.P.; Lu, X.C.; Bonnett, J.F.; Canfield, N.L.; Lemmon, T.; Jung, K.; Sprenkle, V.L.; Li, G.S. Elucidating the role of anionic chemistry towards high-rate intermediate-temperature Na-metal halide batteries. Energy Stor. Mater. 2020, 24, 177–187. [Google Scholar] [CrossRef]
- Moseley, P.T.; Bones, R.J.; Teagle, D.A.; Bellamy, B.A.; Hawes, R.W.M. Stability of Beta-Alumina Electrolyte in Sodium FeCl2 (Zebra) Cells. J. Electrochem. Soc. 1989, 136, 1361–1368. [Google Scholar] [CrossRef]
- Bones, R.J.; Coetzer, J.; Galloway, R.C.; Teagle, D.A. A Sodium/Iron(II) Chloride Cell with a Beta Alumina Electrolyte. J. Electrochem. Soc. 1987, 134, 2379–2382. [Google Scholar] [CrossRef]
- Adendorff, K.T.; Thackeray, M.M. The Crystal-Chemistry of the Na/FeCl2 Battery. J. Electrochem. Soc. 1988, 135, 2121–2123. [Google Scholar] [CrossRef]
- Ratnakumar, B.V.; Distefano, S.; Halpert, G. Electrochemistry of Metal Chloride Cathodes in Sodium Batteries. J. Electrochem. Soc. 1990, 137, 2991–2997. [Google Scholar] [CrossRef]
- Coetzer, J.; Wald, G.D.; Orchard, S.W. Mechanism of the Cathode Reaction in Sodium Ferrous Chloride Secondary Cells. J. Appl. Electrochem. 1993, 23, 790–800. [Google Scholar] [CrossRef]
- Orchard, S.W.; Weaving, J.S. Modeling of the Sodium-Ferrous Chloride Electrochemical-Cell. J. Appl. Electrochem. 1993, 23, 1214–1222. [Google Scholar] [CrossRef]
- Ahn, C.W.; Kim, M.; Hahn, B.D.; Hong, I.; Kim, W.; Moon, G.; Lee, H.; Jung, K.; Park, Y.C.; Choi, J.H. Microstructure design of metal composite for active material in sodium nickel-iron chloride battery. J. Power Sour. 2016, 329, 50–56. [Google Scholar] [CrossRef]
- Ratnakumar, B.V.; Attia, A.I.; Halpert, G. Alternate Cathodes for Sodium-Metal Chloride Batteries. J. Electrochem. Soc. 1991, 138, 883–884. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, H.J.; Byun, D.J.; Cho, K.K.; Ahn, J.H.; Kim, C.S. Electrochemically activated Na-ZnCl2 battery using a carbon matrix in the cathode compartment. J. Power Sour. 2019, 440, 227110. [Google Scholar] [CrossRef]
- Kim, B.-R.; Jeong, G.; Kim, A.; Kim, Y.; Kim, M.G.; Kim, H.; Kim, Y.-J. High Performance Na-CuCl2 Rechargeable Battery toward Room Temperature ZEBRA-Type Battery. Adv. Energy Mater. 2016, 6, 1600862. [Google Scholar] [CrossRef]
- Niu, C.S.; Zhang, Y.W.; Ma, S.; Wan, Y.H.; Yang, H.; Liu, X.M. An intermediate temperature sodium copper chloride battery using ionic liquid electrolyte and its degradation mechanism. Ionics 2019, 25, 4189–4196. [Google Scholar] [CrossRef]
- Yang, L.P.; Liu, X.M.; Zhang, Y.W.; Yang, H.; Shen, X.D. Advanced intermediate temperature sodium copper chloride battery. J. Power Sour. 2014, 272, 987–990. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, X.; Li, M.M.; Weller, J.M.; Sprenkle, V.L.; Li, G. Recent Progress in Cathode Materials for Sodium-Metal Halide Batteries. Materials 2021, 14, 3260. https://doi.org/10.3390/ma14123260
Zhan X, Li MM, Weller JM, Sprenkle VL, Li G. Recent Progress in Cathode Materials for Sodium-Metal Halide Batteries. Materials. 2021; 14(12):3260. https://doi.org/10.3390/ma14123260
Chicago/Turabian StyleZhan, Xiaowen, Minyuan M. Li, J. Mark Weller, Vincent L. Sprenkle, and Guosheng Li. 2021. "Recent Progress in Cathode Materials for Sodium-Metal Halide Batteries" Materials 14, no. 12: 3260. https://doi.org/10.3390/ma14123260
APA StyleZhan, X., Li, M. M., Weller, J. M., Sprenkle, V. L., & Li, G. (2021). Recent Progress in Cathode Materials for Sodium-Metal Halide Batteries. Materials, 14(12), 3260. https://doi.org/10.3390/ma14123260