Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (469)

Search Parameters:
Keywords = remote guidance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 8280 KiB  
Article
Constructing an Ecological Spatial Network Optimization Framework from the Pattern–Process–Function Perspective: A Case Study in Wuhan
by An Tong, Yan Zhou, Tao Chen and Zihan Qu
Remote Sens. 2025, 17(15), 2548; https://doi.org/10.3390/rs17152548 - 22 Jul 2025
Abstract
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services [...] Read more.
Under the continuous disturbance of ecosystems driven by urbanization, landscape fragmentation and the disruption of ecological processes and functions are key challenges in optimizing ecological networks (EN). This study aims to examine the spatiotemporal evolution of topological patterns, ecological processes, and ecosystem services (ES) in Wuhan from the “pattern–process–function” perspective. To overcome the lag in research concerning the coupling of ecological processes, functions, and spatial patterns, we explore the long-term dynamic evolution of ecosystem structure, process, and function by integrating multi-source data, including remote sensing, enabling comprehensive spatiotemporal analysis from 2000 to 2020. Addressing limitations in current EN optimization approaches, we integrate morphological spatial pattern analysis (MSPA), use circuit theory to identify EN components, and conduct spatial optimization accurately. We further assess the effectiveness of two scenario types: “pattern–function” and “pattern–process”. The results reveal a distinct “increase-then-decrease” trend in EN structural attributes: from 2000 to 2020, source areas declined from 39 (900 km2) to 37 (725 km2), while corridor numbers fluctuated before stabilizing at 89. Ecological processes and functions exhibited phased fluctuations. Among water-related indicators, water conservation (as a core function), and modified normalized difference water index (MNDWI, as a key process) predominantly drive positive correlations under the “pattern–function” and “pattern–process” scenarios, respectively. The “pattern–function” scenario strengthens core area connectivity (24% and 4% slower degradation under targeted/random attacks, respectively), enhancing resistance to general disturbances, whereas the “pattern–process” scenario increases redundancy in edge transition zones (21% slower degradation under targeted attacks), improving resilience to targeted disruptions. This complementary design results in a gradient EN structure characterized by core stability and peripheral resilience. This study pioneers an EN optimization framework that systematically integrates identification, assessment, optimization, and validation into a closed-loop workflow. Notably, it establishes a quantifiable, multi-objective decision basis for EN optimization, offering transferable guidance for green infrastructure planning and ecological restoration from a pattern–process–function perspective. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Landscape Ecology)
Show Figures

Figure 1

28 pages, 16554 KiB  
Article
Reverse-Engineering of the Japanese Defense Tactics During 1941–1945 Occupation Period in Hong Kong Through 21st-Century Geospatial Technologies
by Chun-Hei Lam, Chun-Ho Pun, Wallace-Wai-Lok Lai, Chi-Man Kwong and Craig Mitchell
Heritage 2025, 8(8), 294; https://doi.org/10.3390/heritage8080294 - 22 Jul 2025
Abstract
Hundreds of Japanese features of war (field positions, tunnels, and fortifications) were constructed in Hong Kong during World War II. However, most of them were poorly documented and were left unknown but still in relatively good condition because of their durable design, workmanship, [...] Read more.
Hundreds of Japanese features of war (field positions, tunnels, and fortifications) were constructed in Hong Kong during World War II. However, most of them were poorly documented and were left unknown but still in relatively good condition because of their durable design, workmanship, and remoteness. These features of war form parts of Hong Kong’s brutal history. Conservation, at least in digital form, is worth considering. With the authors coming from multidisciplinary and varied backgrounds, this paper aims to explore these features using a scientific workflow. First, we reviewed the surviving archival sources of the Imperial Japanese Army and Navy. Second, airborne LiDAR data were used to form territory digital terrain models (DTM) based on the Red Relief Image Map (RRIM) for identifying suspected locations. Third, field expeditions of searching for features of war were conducted through guidance of Global Navigation Satellite System—Real-Time Kinetics (GNSS-RTK). Fourth, the found features were 3D-laser scanned to generate mesh models as a digital archive and validate the findings of DTM-RRIM. This study represents a reverse-engineering effort to reconstruct the planned Japanese defense tactics of guerilla fight and Kamikaze grottos that were never used in Hong Kong. Full article
26 pages, 54898 KiB  
Article
MSWF: A Multi-Modal Remote Sensing Image Matching Method Based on a Side Window Filter with Global Position, Orientation, and Scale Guidance
by Jiaqing Ye, Guorong Yu and Haizhou Bao
Sensors 2025, 25(14), 4472; https://doi.org/10.3390/s25144472 - 18 Jul 2025
Viewed by 207
Abstract
Multi-modal remote sensing image (MRSI) matching suffers from severe nonlinear radiometric distortions and geometric deformations, and conventional feature-based techniques are generally ineffective. This study proposes a novel and robust MRSI matching method using the side window filter (MSWF). First, a novel side window [...] Read more.
Multi-modal remote sensing image (MRSI) matching suffers from severe nonlinear radiometric distortions and geometric deformations, and conventional feature-based techniques are generally ineffective. This study proposes a novel and robust MRSI matching method using the side window filter (MSWF). First, a novel side window scale space is constructed based on the side window filter (SWF), which can preserve shared image contours and facilitate the extraction of feature points within this newly defined scale space. Second, noise thresholds in phase congruency (PC) computation are adaptively refined with the Weibull distribution; weighted phase features are then exploited to determine the principal orientation of each point, from which a maximum index map (MIM) descriptor is constructed. Third, coarse position, orientation, and scale information obtained through global matching are employed to estimate image-pair geometry, after which descriptors are recalculated for precise correspondence search. MSWF is benchmarked against eight state-of-the-art multi-modal methods—six hand-crafted (PSO-SIFT, LGHD, RIFT, RIFT2, HAPCG, COFSM) and two learning-based (CMM-Net, RedFeat) methods—on three public datasets. Experiments demonstrate that MSWF consistently achieves the highest number of correct matches (NCM) and the highest rate of correct matches (RCM) while delivering the lowest root mean square error (RMSE), confirming its superiority for challenging MRSI registration tasks. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 6173 KiB  
Article
Research on an Energy-Harvesting System Based on the Energy Field of the Environment Surrounding a Photovoltaic Power Plant
by Bin Zhang, Binbin Wang, Hongxi Zhang, Abdelkader Outzourhit, Fouad Belhora, Zoubir El Felsoufi, Jia-Wei Zhang and Jun Gao
Energies 2025, 18(14), 3786; https://doi.org/10.3390/en18143786 - 17 Jul 2025
Viewed by 198
Abstract
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation [...] Read more.
With the large-scale global deployment of photovoltaics (PV), traditional monitoring technologies face challenges such as wiring difficulties, high energy consumption, and high maintenance costs in remote or complex terrains, which limit long-term environmental sensing. Therefore, energy-harvesting systems are crucial for the intelligent operation of photovoltaic systems; however, their deployment depends on the accurate mapping of wind energy fields and solar irradiance fields. This study proposes a multi-scale simulation method based on computational fluid dynamics (CFD) to optimize the placement of energy-harvesting systems in photovoltaic power plants. By integrating wind and irradiance distribution analysis, the spatial characteristics of airflow and solar radiation are mapped to identify high-efficiency zones for energy harvesting. The results indicate that the top of the photovoltaic panel exhibits a higher wind speed and reflected irradiance, providing the optimal location for an energy-harvesting system. The proposed layout strategy improves overall energy capture efficiency, enhances sensor deployment effectiveness, and supports intelligent, maintenance-free monitoring systems. This research not only provides theoretical guidance for the design of energy-harvesting systems in PV stations but also offers a scalable method applicable to various geographic scenarios, contributing to the advancement of smart and self-powered energy systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

21 pages, 320 KiB  
Article
Technological Innovation in Engineering Education: A Psychopedagogical Approach for Sustainable Development
by Abílio Lourenço, Jhonatan S. Navarro-Loli and Sergio Domínguez-Lara
Sustainability 2025, 17(14), 6429; https://doi.org/10.3390/su17146429 - 14 Jul 2025
Viewed by 484
Abstract
Digital transformation has profoundly impacted engineering education, demanding new pedagogical approaches that ensure effective and sustainable learning. Educational psychology plays a fundamental role in strategically integrating educational technologies, fostering more inclusive, interactive, and efficient learning environments. This article explores the intersection of technological [...] Read more.
Digital transformation has profoundly impacted engineering education, demanding new pedagogical approaches that ensure effective and sustainable learning. Educational psychology plays a fundamental role in strategically integrating educational technologies, fostering more inclusive, interactive, and efficient learning environments. This article explores the intersection of technological innovation, engineering education, and educational psychology, analyzing how digital tools such as Artificial Intelligence, virtual reality, gamification, and remote laboratories can optimize the teaching–learning process. It also examines the psychopedagogical impact of these technologies, addressing challenges like cognitive load, student motivation, digital accessibility, and emotional well-being. Finally, the article presents guidelines for sustainable implementation aligned with the Sustainable Development Goals (SDGs), promoting efficient, equitable, and student-centered education. As a theoretical and exploratory study, it also points to directions for future empirical investigations and practical applications. The insights provided offer strategic guidance for academic managers and educational policymakers seeking to implement sustainable, inclusive, and pedagogically effective digital innovation in engineering education. Full article
28 pages, 1706 KiB  
Article
Adaptive Grazing and Land Use Coupling in Arid Pastoral China: Insights from Sunan County
by Bo Lan, Yue Zhang, Zhaofan Wu and Haifei Wang
Land 2025, 14(7), 1451; https://doi.org/10.3390/land14071451 - 11 Jul 2025
Viewed by 328
Abstract
Driven by climate change and stringent ecological conservation policies, arid and semi-arid pastoral areas face acute grassland degradation and forage–livestock imbalances. In Sunan County (Gansu Province, China), herders have increasingly turned to off-site grazing—leasing crop fields in adjacent oases during autumn and winter—to [...] Read more.
Driven by climate change and stringent ecological conservation policies, arid and semi-arid pastoral areas face acute grassland degradation and forage–livestock imbalances. In Sunan County (Gansu Province, China), herders have increasingly turned to off-site grazing—leasing crop fields in adjacent oases during autumn and winter—to alleviate local grassland pressure and adapt their livelihoods. However, the interplay between the evolving land use system (L) and this emergent borrowed pasture system (B) remains under-explored. This study introduces a coupled analytical framework linking L and B. We employ multi-temporal remote sensing imagery (2018–2023) and official statistical data to derive land use dynamic degree (LUDD) metrics and 14 indicators for the borrowed pasture system. Through entropy weighting and a coupling coordination degree model (CCDM), we quantify subsystem performance, interaction intensity, and coordination over time. The results show that 2017 was a turning point in grassland–bare land dynamics: grassland trends shifted from positive to negative, whereas bare land trends turned from negative to positive; strong coupling but low early coordination (C > 0.95; D < 0.54) were present due to institutional lags, infrastructural gaps, and rising rental costs; resilient grassroots networks bolstered coordination during COVID-19 (D ≈ 0.78 in 2023); and institutional voids limited scalability, highlighting the need for integrated subsidy, insurance, and management frameworks. In addition, among those interviewed, 75% (15/20) observed significant grassland degradation before adopting off-site grazing, and 40% (8/20) perceived improvements afterward, indicating its potential role in ecological regulation under climate stress. By fusing remote sensing quantification with local stakeholder insights, this study advances social–ecological coupling theory and offers actionable guidance for optimizing cross-regional forage allocation and adaptive governance in arid pastoral zones. Full article
Show Figures

Figure 1

35 pages, 4572 KiB  
Review
Land Use and Land Cover Products for Agricultural Mapping Applications in Brazil: Challenges and Limitations
by Priscilla Azevedo dos Santos, Marcos Adami, Michelle Cristina Araujo Picoli, Victor Hugo Rohden Prudente, Júlio César Dalla Mora Esquerdo, Gilberto Ribeiro de Queiroz, Cleverton Tiago Carneiro de Santana and Michel Eustáquio Dantas Chaves
Remote Sens. 2025, 17(13), 2324; https://doi.org/10.3390/rs17132324 - 7 Jul 2025
Viewed by 1013
Abstract
Reliable remote sensing-based Land Use and Land Cover (LULC) information is crucial for assessing Earth’s surface activities. Brazil’s agricultural dynamics, including year-round cropping, multiple cropping, and regional climate variability, make LULC monitoring a highly challenging task. The country has thirteen remote sensing-based LULC [...] Read more.
Reliable remote sensing-based Land Use and Land Cover (LULC) information is crucial for assessing Earth’s surface activities. Brazil’s agricultural dynamics, including year-round cropping, multiple cropping, and regional climate variability, make LULC monitoring a highly challenging task. The country has thirteen remote sensing-based LULC products specifically tailored for this purpose. However, the differences and the results of these products have not yet been synthesized to provide coherent guidance in assessing their spatio-temporal agricultural dynamics and identifying promising approaches and issues that affect LULC analysis. This review represents the first comprehensive assessment of the advantages, challenges, and limitations, highlighting the main issues when dealing with contrasting LULC maps. These challenges include incompatibility, a lack of updates, non-systematic classification ontologies, and insufficient data to monitor Brazilian LULC information. The consequences include impacts on intercropping estimation, diminished representation or misrepresentation of croplands; temporal discontinuity; an insufficient number of classes for subannual cropping evaluation; and reduced compatibility, comparability, and spectral separability. The study provides insights into the use of these products as primary input data for remote sensing-based applications. Moreover, it provides prospects for enhancing existing mapping efforts or developing new national-level initiatives to represent the spatio-temporal variation of Brazilian agriculture. Full article
Show Figures

Figure 1

24 pages, 5293 KiB  
Article
Stress-Deformation Mechanisms of Tunnel Support in Neogene Red-Bed Soft Rock: Insights from Wireless Remote Monitoring and Spatiotemporal Analysis
by Jin Wu, Zhize Han, Yunxing Wang, Feng Peng, Geng Cheng and Jiaxin Jia
Buildings 2025, 15(13), 2366; https://doi.org/10.3390/buildings15132366 - 5 Jul 2025
Viewed by 252
Abstract
Red-layer soft rock has characteristics such as softening when encountering water, loose structure, and significant rheological properties. In tunnel engineering, it is necessary to sort out and analyze the stress characteristics of its support structure. This paper focuses on the mechanical behavior and [...] Read more.
Red-layer soft rock has characteristics such as softening when encountering water, loose structure, and significant rheological properties. In tunnel engineering, it is necessary to sort out and analyze the stress characteristics of its support structure. This paper focuses on the mechanical behavior and support effect during the construction of Neogene red-layer soft rock tunnels. Through field monitoring, it explores the mechanical characteristics of Huizhou Tunnel under complex geological conditions in depth. This study adopted a remote wireless monitoring system to conduct real-time monitoring of key indicators including tunnel surrounding rock pressure, support structure stress, and deformation, obtaining a large amount of detailed data. An analysis revealed that the stress experienced by rock bolts is complex and varies widely, with stress values between 105 and 330.5 MPa. The peak axial force at a depth of 2.5 m reflects that the thickness of the loosened zone in the surrounding rock is approximately 2.5 m. The compressive stress in the steel arches of the primary support does not exceed 305.3 MPa. Shotcrete effectively controls the surrounding rock deformation, but the timing of support installation needs careful selection. The stress in the secondary lining is closely related to the primary support. The research findings provide an important theoretical basis and practical guidance for optimizing the support design of red-bed soft rock tunnels and enhancing construction safety and reliability. Full article
Show Figures

Figure 1

37 pages, 13906 KiB  
Review
Accelerated Adoption of Google Earth Engine for Mangrove Monitoring: A Global Review
by K. M. Ashraful Islam, Paulo Murillo-Sandoval, Eric Bullock and Robert Kennedy
Remote Sens. 2025, 17(13), 2290; https://doi.org/10.3390/rs17132290 - 3 Jul 2025
Viewed by 659
Abstract
Mangrove forests support coastal resilience, biodiversity, and significant carbon sequestration, yet they face escalating threats from climate change, urban expansion, and land-use change. Traditional remote sensing workflows often struggle with large data volumes, complex preprocessing, and limited computational resources. Google Earth Engine (GEE) [...] Read more.
Mangrove forests support coastal resilience, biodiversity, and significant carbon sequestration, yet they face escalating threats from climate change, urban expansion, and land-use change. Traditional remote sensing workflows often struggle with large data volumes, complex preprocessing, and limited computational resources. Google Earth Engine (GEE) addresses these challenges through scalable, cloud-based computation, extensive, preprocessed imagery catalogs, built-in algorithms for rapid feature engineering, and collaborative script sharing that improves reproducibility. To evaluate how the potential of GEE has been harnessed for mangrove research, we systematically reviewed peer-reviewed articles published between 2017 and 2022. We examined the spectrum of GEE-based tasks, the extent to which studies incorporated mangrove-specific preprocessing, and the challenges encountered. Our analysis reveals a noteworthy yearly increase in GEE-driven mangrove studies but also identifies geographic imbalances, with several high-mangrove-density countries remaining underrepresented. Although most studies leveraged streamlined preprocessing and basic classification workflows, relatively few employed advanced automated methods. Persistent barriers include limited coding expertise, platform quotas, and sparse high-resolution data in certain regions. We outline a generalized workflow that includes automated tidal filtering, dynamic image composite generation, and advanced classification pipelines to address these gaps. By synthesizing achievements and ongoing limitations, this review offers guidance for future GEE-based mangrove studies and conservation efforts and aims to improve methodological rigor and maximize the potential of GEE. Full article
(This article belongs to the Special Issue Remote Sensing in Mangroves III)
Show Figures

Graphical abstract

20 pages, 1741 KiB  
Article
SAR-DeCR: Latent Diffusion for SAR-Fused Thick Cloud Removal
by Meilin Wang, Shihao Hu, Yexing Song and Yukai Shi
Remote Sens. 2025, 17(13), 2241; https://doi.org/10.3390/rs17132241 - 30 Jun 2025
Viewed by 313
Abstract
The current methods for removing thick clouds from remote-sensing images face significant limitations, including the integration of thick cloud images with synthetic aperture radar (SAR) ground information, the provision of meaningful guidance for SAR ground data, and the accurate reconstruction of textures in [...] Read more.
The current methods for removing thick clouds from remote-sensing images face significant limitations, including the integration of thick cloud images with synthetic aperture radar (SAR) ground information, the provision of meaningful guidance for SAR ground data, and the accurate reconstruction of textures in cloud-covered regions. To overcome these challenges, we introduce SAR-DeCR, a novel method for thick cloud removal in satellite remote-sensing images. SAR-DeCR utilizes a diffusion model combined with the transformer architecture to synthesize accurate texture details guided by SAR ground information. The method is structured into three distinct phases: coarse cloud removal (CCR), SAR-Fusion (SAR-F) and cloud-free diffusion (CF-D), aimed at enhancing the effectiveness of the thick cloud removal. In CCR, we significantly employ the transformer’s capability for long-range information interaction, which significantly strengthens the cloud removal process. In order to overcome the problem of missing ground information after cloud removal and ensure that the ground information produced is consistent with SAR data, we introduced SAR-F, a module designed to incorporate the rich ground information in synthetic aperture radar (SAR) into the output of CCR. Additionally, to achieve superior texture reconstruction, we introduce prior supervision based on the output of the coarse cloud removal, using a pre-trained visual-text diffusion model named cloud-free diffusion (CF-D). This diffusion model is encouraged to follow the visual prompts, thus producing a visually appealing, high-quality result. The effectiveness and superiority of SAR-DeCR are demonstrated through qualitative and quantitative experiments, comparing it with other state-of-the-art (SOTA) thick cloud removal methods on the large-scale SEN12MS-CR dataset. Full article
Show Figures

Figure 1

22 pages, 21858 KiB  
Article
High-Order Temporal Context-Aware Aerial Tracking with Heterogeneous Visual Experts
by Shichao Zhou, Xiangpan Fan, Zhuowei Wang, Wenzheng Wang and Yunpu Zhang
Remote Sens. 2025, 17(13), 2237; https://doi.org/10.3390/rs17132237 - 29 Jun 2025
Viewed by 276
Abstract
Visual tracking from the unmanned aerial vehicle (UAV) perspective has been at the core of many low-altitude remote sensing applications. Most of the aerial trackers follow “tracking-by-detection” paradigms or their temporal-context-embedded variants, where the only visual appearance cue is encompassed for representation learning [...] Read more.
Visual tracking from the unmanned aerial vehicle (UAV) perspective has been at the core of many low-altitude remote sensing applications. Most of the aerial trackers follow “tracking-by-detection” paradigms or their temporal-context-embedded variants, where the only visual appearance cue is encompassed for representation learning and estimating the spatial likelihood of the target. However, the variation of the target appearance among consecutive frames is inherently unpredictable, which degrades the robustness of the temporal context-aware representation. To address this concern, we advocate extra visual motion exhibiting predictable temporal continuity for complete temporal context-aware representation and introduce a dual-stream tracker involving explicit heterogeneous visual tracking experts. Our technical contributions involve three-folds: (1) high-order temporal context-aware representation integrates motion and appearance cues over a temporal context queue, (2) bidirectional cross-domain refinement enhances feature representation through cross-attention based mutual guidance, and (3) consistent decision-making allows for anti-drifting localization via dynamic gating and failure-aware recovery. Extensive experiments on four UAV benchmarks (UAV123, UAV123@10fps, UAV20L, and DTB70) illustrate that our method outperforms existing aerial trackers in terms of success rate and precision, particularly in occlusion and fast motion scenarios. Such superior tracking stability highlights its potential for real-world UAV applications. Full article
Show Figures

Graphical abstract

21 pages, 2861 KiB  
Article
Optimizing Urban Thermal Environments Through 2D/3D Landscape Pattern Analysis: A Machine Learning-Driven Approach for the Yangtze River Delta Urban Agglomeration
by Haoshan Zhou, Ruci Wang, Hao Hou, Bin Xie and Tangao Hu
Buildings 2025, 15(13), 2261; https://doi.org/10.3390/buildings15132261 - 27 Jun 2025
Viewed by 325
Abstract
To address the escalating urban heat stress driven by global warming and rapid urbanization, this study integrates multi-source remote sensing data to assess the spatiotemporal dynamics of summer thermal comfort across the Yangtze River Delta Urban Agglomeration (YRDUA) from 2000 to 2020. By [...] Read more.
To address the escalating urban heat stress driven by global warming and rapid urbanization, this study integrates multi-source remote sensing data to assess the spatiotemporal dynamics of summer thermal comfort across the Yangtze River Delta Urban Agglomeration (YRDUA) from 2000 to 2020. By combining 2D landscape pattern metrics with 3D building morphological features, this study employs an XGBoost model enhanced with SHAP and PDP techniques to reveal the nonlinear and threshold effects of landscape configurations on the Universal Thermal Climate Index (UTCI). The results show the following: (1) during the study period, over 90% of the region experienced strong or extreme heat stress, and 76.8% of the area exhibited a rising UTCI trend, with an average increase of 0.09 °C per year; (2) forest coverage exceeding 50% reduced the UTCI by approximately 2.5 °C, and an increased water area lowered the UTCI by around 1.5 °C, while highly clustered cropland intensified the UTCI by about 1.5 °C; and (3) a moderate increase in building height and shape complexity improved ventilation and shading, reducing the UTCI by roughly 0.5 °C. These findings highlight that optimizing the blue–green infrastructure and 3D urban form are effective strategies to mitigate urban heat stress, offering scientific guidance for sustainable urban planning. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

12 pages, 272 KiB  
Review
Tools for Diagnosing and Managing Sport-Related Concussion in UK Primary Care: A Scoping Review
by Sachin Bhandari, Soo Yit Gustin Mak, Neil Heron and John Rogers
Sports 2025, 13(7), 201; https://doi.org/10.3390/sports13070201 - 23 Jun 2025
Viewed by 330
Abstract
Background: The UK Department for Digital, Culture, Media, and Sport (DCMS) grassroots concussion guidance, May 2023, advised that all community-based sport-related concussions (SRCs) be diagnosed by a healthcare practitioner. This may require that general practitioners (GPs) diagnose and manage SRCs. Diagnosing SRCs in [...] Read more.
Background: The UK Department for Digital, Culture, Media, and Sport (DCMS) grassroots concussion guidance, May 2023, advised that all community-based sport-related concussions (SRCs) be diagnosed by a healthcare practitioner. This may require that general practitioners (GPs) diagnose and manage SRCs. Diagnosing SRCs in primary care settings in the United Kingdom (UK) presents significant challenges, primarily due to the lack of validated tools specifically designed for general practitioners (GPs). This scoping review aims to identify diagnostic and management tools for SRCs in grassroots sports and primary care settings. Aims: To identify tools that can be used by GPs to diagnose and manage concussions in primary care, both adult and paediatric populations. Design and Methods: A scoping review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScRs). Five databases (MEDLINE, EMBASE, CINAHL, Cochrane Library, Google Scholar) were searched from 1946 to April 2025. Search terms included “concussion”, “primary care”, and “diagnosis”. Studies that discussed SRCs in community or primary care settings were included. Those that exclusively discussed secondary care and elite sports were excluded, as well as non-English studies. Two reviewers independently screened titles, abstracts, and full texts, with a third resolving any disagreements. Data were extracted into Microsoft Excel. Studies were assessed for quality using the Joanna Briggs critical appraisal tools and AGREE II checklist. Results: Of 727 studies, 12 met the inclusion criteria. Identified tools included Sport Concussion Assessment Tool 6 (SCAT6, 10–15 min, adolescent/adults), Sport Concussion Office Assessment Tool 6 (SCOAT6, 45–60 min, multidisciplinary), the Buffalo Concussion Physical Examination (BCPE, 5–6 min, adolescent-focused), and the Brain Injury Screening Tool (BIST, 6 min, ages 8+). As part of BCPE, a separate Telehealth version was developed for remote consultations. SCAT6 and SCOAT6 are designed for healthcare professionals, including GPs, but require additional training and time beyond typical UK consultation lengths (9.2 min). BIST and BCPE show promise but require UK validation. Conclusions: SCAT6, SCOAT6, BIST, and BCPE could enhance SRC care, but their feasibility in UK primary care requires adaptation (e.g., integration with GP IT systems and alignment with NICE guidelines). Further research is required to validate these tools and assess additional training needs. Full article
(This article belongs to the Special Issue Sport-Related Concussion and Head Impact in Athletes)
Show Figures

Figure 1

22 pages, 6402 KiB  
Article
A Study on Airborne Hyperspectral Tree Species Classification Based on the Synergistic Integration of Machine Learning and Deep Learning
by Dabing Yang, Jinxiu Song, Chaohua Huang, Fengxin Yang, Yiming Han and Ruirui Wang
Forests 2025, 16(6), 1032; https://doi.org/10.3390/f16061032 - 19 Jun 2025
Viewed by 380
Abstract
Against the backdrop of global climate change and increasing ecological pressure, the refined monitoring of forest resources and accurate tree species identification have become essential tasks for sustainable forest management. Hyperspectral remote sensing, with its high spectral resolution, shows great promise in tree [...] Read more.
Against the backdrop of global climate change and increasing ecological pressure, the refined monitoring of forest resources and accurate tree species identification have become essential tasks for sustainable forest management. Hyperspectral remote sensing, with its high spectral resolution, shows great promise in tree species classification. However, traditional methods face limitations in extracting joint spatial–spectral features, particularly in complex forest environments, due to the “curse of dimensionality” and the scarcity of labeled samples. To address these challenges, this study proposes a synergistic classification approach that combines the spatial feature extraction capabilities of deep learning with the generalization advantages of machine learning. Specifically, a 2D convolutional neural network (2DCNN) is integrated with a support vector machine (SVM) classifier to enhance classification accuracy and model robustness under limited sample conditions. Using UAV-based hyperspectral imagery collected from a typical plantation area in Fuzhou City, Jiangxi Province, and ground-truth data for labeling, a highly imbalanced sample split strategy (1:99) is adopted. The 2DCNN is further evaluated in conjunction with six classifiers—CatBoost, decision tree (DT), k-nearest neighbors (KNN), LightGBM, random forest (RF), and SVM—for comparison. The 2DCNN-SVM combination is identified as the optimal model. In the classification of Masson pine, Chinese fir, and eucalyptus, this method achieves an overall accuracy (OA) of 97.56%, average accuracy (AA) of 97.47%, and a Kappa coefficient of 0.9665, significantly outperforming traditional approaches. The results demonstrate that the 2DCNN-SVM model offers superior feature representation and generalization capabilities in high-dimensional, small-sample scenarios, markedly improving tree species classification accuracy in complex forest settings. This study validates the model’s potential for application in small-sample forest remote sensing and provides theoretical support and technical guidance for high-precision tree species identification and dynamic forest monitoring. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

9 pages, 275 KiB  
Review
Augmented Reality Integration in Surgery for Craniosynostoses: Advancing Precision in the Management of Craniofacial Deformities
by Divya Sharma, Adam Matthew Holden and Soudeh Nezamivand-Chegini
J. Clin. Med. 2025, 14(12), 4359; https://doi.org/10.3390/jcm14124359 - 19 Jun 2025
Viewed by 399
Abstract
Craniofacial deformities, particularly craniosynostosis, present significant surgical challenges due to complex anatomy and the need for individualised, high-precision interventions. Augmented reality (AR) has emerged as a promising tool in craniofacial surgery, offering enhanced spatial visualisation, real-time anatomical referencing, and improved surgical accuracy. This [...] Read more.
Craniofacial deformities, particularly craniosynostosis, present significant surgical challenges due to complex anatomy and the need for individualised, high-precision interventions. Augmented reality (AR) has emerged as a promising tool in craniofacial surgery, offering enhanced spatial visualisation, real-time anatomical referencing, and improved surgical accuracy. This review explores the current and emerging applications of AR in preoperative planning, intraoperative navigation, and surgical education within paediatric craniofacial surgery. Through a literature review of peer-reviewed studies, we examine how AR platforms, such as the VOSTARS system and Microsoft HoloLens, facilitate virtual simulations, precise osteotomies, and collaborative remote guidance. Despite demonstrated benefits in feasibility and accuracy, widespread clinical adoption is limited by technical, ergonomic, financial, and training-related challenges. Future directions include the integration of artificial intelligence, haptic feedback, and robotic assistance to further augment surgical precision and training efficacy. AR holds transformative potential for improving outcomes and efficiency in craniofacial deformity correction, warranting continued research and clinical validation. Full article
(This article belongs to the Special Issue Craniofacial Surgery: State of the Art and the Perspectives)
Show Figures

Figure 1

Back to TopTop