Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,456)

Search Parameters:
Keywords = relative total variation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6140 KB  
Article
Dynamic Changes in Dew Amount in Southern Slope of Boluohuoluo Mountain, Middle Tianshan Mountains
by Chenwei Tu, Wanrui Wang, Feng Wang and Peiyao Gong
Sustainability 2025, 17(19), 8931; https://doi.org/10.3390/su17198931 (registering DOI) - 8 Oct 2025
Abstract
Dew is an important water source for natural organisms in arid and semi-arid areas, playing a crucial role in maintaining the stability and sustainability of desert ecosystems. Effectively estimating dew quantity and its long-term changes remains a challenge. Based on conventional meteorological observation [...] Read more.
Dew is an important water source for natural organisms in arid and semi-arid areas, playing a crucial role in maintaining the stability and sustainability of desert ecosystems. Effectively estimating dew quantity and its long-term changes remains a challenge. Based on conventional meteorological observation data, this study used a Random Forest model to estimate the dew quantity in Nilka, the Southern slope of Boluohuoluo Mountain in middle Tianshan Mountains from June to October in 1970–2022 and analyzed its long-term variations using a statistical method. The results revealed that (1) monthly dewfall varied from 0.74 to 3.88 mm. The 53-year average of the total dew amount in October was significantly higher than in other months (2.81 mm), while the lowest was in August (2.02 mm). In addition, the total dew amount in June, July, and September were 2.27 mm, 2.19 mm, and 2.16 mm, respectively. (2) From 1970 to the beginning of the 21st century, there was a slight decrease in dew from June to October and in every month individually, followed by an increase for about 18 years, after which the dew amount decreased again. During 1970 to 2022, the dew amount exhibited a declining trend when considering the June–October period as a whole or for August and October individually. (3) The change in dew amount was primarily affected by the relative humidity. The findings have implications for assessing the effect of climate change on the dew formation, and could be conducive to further maintaining ecological stability and sustainability in dryland regions amidst global warming. Full article
Show Figures

Figure 1

17 pages, 1470 KB  
Article
Stem-Centered Drought Tolerance in Mikania micrantha During the Dry Season
by Minling Cai, Minghao Chen, Junjie Zhang and Changlian Peng
Int. J. Mol. Sci. 2025, 26(19), 9722; https://doi.org/10.3390/ijms26199722 - 6 Oct 2025
Viewed by 24
Abstract
Mikania micrantha, commonly known as mile-a-minute weed, is listed among the world’s top 10 worst weeds. Although native to humid regions of South America, it has recently been found to colonize arid habitats as well. Despite pronounced seasonal hydroclimatic variations in South [...] Read more.
Mikania micrantha, commonly known as mile-a-minute weed, is listed among the world’s top 10 worst weeds. Although native to humid regions of South America, it has recently been found to colonize arid habitats as well. Despite pronounced seasonal hydroclimatic variations in South China and increasing drought due to global climate change, the mechanisms underlying M. micrantha’s drought tolerance remain poorly understood. In this study, we compared the photosynthetic responses of M. micrantha leaves and stems between the dry (June) and wet (December) seasons through field experiments. We measured changes in phenotype, photosynthetic characteristics, and the content of antioxidant and osmotic adjustment substances, using the co-occurring native vine Paederia scandens as a control. The results revealed that during the dry season, M. micrantha leaves exhibited wilting, along with significant reductions in relative water content (RWC), chlorophyll (Chl), soluble sugar (SS), and soluble protein (SP). In contrast, the stems of M. micrantha maintained relatively stable phenotypes and chlorophyll levels compared to those of P. scandens. Notably, M. micrantha stems exhibited significant increases in vessel wall thickness, vessel density, total phenol content, and the activities of peroxidase (POD) and ascorbate peroxidase (APX). Furthermore, compared to P. scandens, M. micrantha stems displayed a greater increase in cortex proportion, flavonoid content, and soluble protein content. Expression analysis of bZIP transcription factors further revealed drought-responsive upregulation of specific genes (bZIP60, ZIP42-1), suggesting their potential involvement in drought response. These results indicate that although the leaves of M. micrantha are susceptible to prolonged drought, the stems exhibit considerable resilience, which may be attributed to a combination of traits including structural modifications in stem anatomy, enhanced antioxidant capacity, and osmotic adjustment. These insights suggest that stem-specific adaptations are key to its drought tolerance, providing a theoretical foundation for understanding the habitat distribution of M. micrantha and informing effective management strategies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 2699 KB  
Article
Rhizosphere Microbiota and Soil Nutrients Shape Fruit Lignan Composition of Schisandra chinensis Across Temperate Cultivation Sites in Northeast and Northwest China
by Yanli Wang, Wenpeng Lu, Jiaqi Li, Yiming Yang, Shutian Fan, Yue Wang, Hongyan Qin, Nan Shu, Baoxiang Zhang, Changyu Li, Jingmeng Zhu, Jinshuo Wang, Sisi Yang and Peilei Xu
Life 2025, 15(10), 1555; https://doi.org/10.3390/life15101555 - 3 Oct 2025
Viewed by 220
Abstract
Schisandra chinensis (Turcz.) Baill. (S. chinensis) is a widely used medicinal plant whose therapeutic efficacy is closely linked to its lignan content. While previous studies have focused on soil fertility and cultivar variation, the interplay among soil nutrients, rhizosphere microbiota, and lignan [...] Read more.
Schisandra chinensis (Turcz.) Baill. (S. chinensis) is a widely used medicinal plant whose therapeutic efficacy is closely linked to its lignan content. While previous studies have focused on soil fertility and cultivar variation, the interplay among soil nutrients, rhizosphere microbiota, and lignan accumulation remains poorly understood. This study investigated S. chinensis grown across 20 cultivation sites to elucidate the relationships among soil nutrient profiles, fruit lignan composition, and rhizosphere microbial communities. Six major lignans were quantified using HPLC, soil nutrients were analyzed via standard chemical assays, and rhizosphere bacterial communities were profiled using 16S rRNA sequencing. Multivariate analyses revealed significant variation in soil properties and lignan content across sites. Notably, available phosphorus, organic matter, and total nitrogen showed strong correlations with specific lignan compounds. From the top 50 taxa ranked by relative abundance at the genus level, 18 bacterial genera associated with lignan components were identified. Among them, Mycobacterium, Arthrobacter, Haliangium, Bacillus, Sphingomonas, Rhodanobacter, Ellin6067, Bradyrhizobium, Pseudolabrys, Chujaibacter, Gemmatimonas, Bryobacter, MND1, Candidatus Sollbacter, Gaiella, Paenibacillus, RB41, and Candidatus_Udaeobacter were significantly associated with lignan levels, suggesting potential microbial involvement in lignan biosynthesis. These findings provide insights into the ecological factors shaping the medicinal quality of S. chinensis and offer a foundation for targeted cultivation and breeding strategies. Full article
(This article belongs to the Section Diversity and Ecology)
Show Figures

Figure 1

21 pages, 879 KB  
Article
Marine Mammals’ Fauna Detection via eDNA Methodology in Pagasitikos Gulf (Greece)
by Elena Akritopoulou, Athanasios Exadactylos, Anastasia Komnenou, Joanne Sarantopoulou, Christos Domenikiotis and Georgios A. Gkafas
Diversity 2025, 17(10), 692; https://doi.org/10.3390/d17100692 - 3 Oct 2025
Viewed by 221
Abstract
Marine mammals are important ecological bio-indicators of marine ecosystems impacted by a plethora of anthropogenic and environmental threats. Genomics detects genetic variation, adaptation to environmental shifts, and susceptibility to diseases in marine mammal species. In this study, eDNA was utilized for the first [...] Read more.
Marine mammals are important ecological bio-indicators of marine ecosystems impacted by a plethora of anthropogenic and environmental threats. Genomics detects genetic variation, adaptation to environmental shifts, and susceptibility to diseases in marine mammal species. In this study, eDNA was utilized for the first time in the Pagasitikos Gulf over three consecutive years (2022–2024) in order to detect marine mammal species. Additionally, visual monitoring and eDNA results were compared to reveal the pros and cons of the two methodologies. The gulf was zoned into five different areas with respect to oceanographic features for sampling. DNA extraction was assessed by using a standard protocol of phenol–chloroform followed by PCR amplification using the 16S rRNA gene. A total of 5,209,613 highly filtered sequence reads were attributed to 108 species. Among these, Monachus monachus, Tursiops truncatus, and Ziphius cavirostris species were detected. This novel detection of Z. cavirostris in the relatively shallow waters of the Gulf of Pagasitikos raised the question of whether it was a random event or a new ecological trend. Z. cavirostris and M. monachus appeared to share the same marine areas within the gulf. In the era of the climate crisis, eDNA provides essential information on marine mammals’ ecological status, yields novel detections, and predicts behavioral changes essential to deep-diving species. Full article
15 pages, 861 KB  
Article
Multiplexed Digital PCR Reference Gene Measurement for Genomic and Cell-Free DNA Analysis
by Dilek Yener, Eloise J. Busby, Jo Vandesompele, Gertjan Wils, Susan D. Richman, Henry M. Wood, Jim F. Huggett, Carole A. Foy and Alison S. Devonshire
Cells 2025, 14(19), 1544; https://doi.org/10.3390/cells14191544 - 3 Oct 2025
Viewed by 351
Abstract
Precision medicine approaches rely on accurate somatic variant detection, where the DNA input into genomic workflows is a key variable. However, there are no gold standard methods for total DNA quantification. In this study, a pentaplex reference gene panel using digital PCR (dPCR) [...] Read more.
Precision medicine approaches rely on accurate somatic variant detection, where the DNA input into genomic workflows is a key variable. However, there are no gold standard methods for total DNA quantification. In this study, a pentaplex reference gene panel using digital PCR (dPCR) was developed as a candidate reference method. The multiplex approach was compared between two assay chemistries, applied to healthy donor genomic DNA and plasma cell-free DNA (cfDNA) to measure the ERBB2 (HER2) copy number variation in cancer cell line DNA. The multiplex approach demonstrated robust performance with the two assay chemistries, demonstrating comparable results and a wide dynamic range. Ratios of reference genes were close to the expected 1:1 in healthy samples; however, some small but significant differences (<1.2-fold) were observed in one of the five targets. Expanded relative measurement uncertainty was 12.1–19.8% for healthy gDNA and 9.2–25.2% for cfDNA. The multiplex approach afforded lower measurement uncertainty compared to the use of a single reference for total DNA quantification, which is an advantage for its potential use as a calibration method. It avoided potential biases in the application to CNV quantification of cancer samples, where cancer genome instability may be prominent. Full article
Show Figures

Figure 1

20 pages, 25657 KB  
Article
Regional Divergence in Long-Term Trends of the Marine Heatwave over the East China Sea
by Qun Ma, Zhao-Jun Liu, Wenbin Yin, Ming-Xuan Lu and Jun-Bo Ma
Atmosphere 2025, 16(10), 1150; https://doi.org/10.3390/atmos16101150 - 1 Oct 2025
Viewed by 215
Abstract
Marine heatwaves (MHWs) pose a serious threat to the marine ecosystems and fishery resources in the East China Sea (ECS). Based on National Oceanic and Atmospheric Administration Optimum Interpolation Sea Surface Temperature High Resolution version 2 data, this study investigated the regional divergence [...] Read more.
Marine heatwaves (MHWs) pose a serious threat to the marine ecosystems and fishery resources in the East China Sea (ECS). Based on National Oceanic and Atmospheric Administration Optimum Interpolation Sea Surface Temperature High Resolution version 2 data, this study investigated the regional divergence in long-term trends of MHWs in the ECS from 1982 to 2023. The principal findings were as follows. Concerning MHWs, the coastal waters of China from northern Jiangsu coast to northeast of Taiwan Island experienced a relatively high annual average frequency, the longest duration, largest number of total days, strongest intensity, and the most pronounced seasonal signals. Additionally, the areas along the Kuroshio path showed significant levels of frequency, duration, and total days, but with comparatively weak intensity. In the empirical orthogonal function (EOF) analysis, EOF1 of the total days and cumulative intensity exhibited notable variation along the path of the Kuroshio and its offshoots, and in Chinese coastal areas. EOF2 showed significantly more conspicuous variation in areas extending from the Yangtze River Estuary to the northern Jiangsu coast. Furthermore, the MHW indices generally showed a positive trend in the ECS from 1982 to 2023. Importantly, the regions with high annual average MHW indices were also characterized by a significantly positive increasing trend. Moderate (79.10%) and strong (19.94%) events were most prevalent, whereas severe (0.82%) and extreme (0.14%) events occurred infrequently. The enhanced solar radiation and the reduced latent heat loss were the main contributing factors of MHWs in the ECS. These findings provide valuable insights into the ecological environment and resources of the ECS as a marine pastoral area. Full article
Show Figures

Figure 1

21 pages, 2749 KB  
Article
Performance Analysis of an Optical System for FSO Communications Utilizing Combined Stochastic Gradient Descent Optimization Algorithm
by Ilya Galaktionov and Vladimir Toporovsky
Appl. Syst. Innov. 2025, 8(5), 143; https://doi.org/10.3390/asi8050143 - 30 Sep 2025
Viewed by 258
Abstract
Wavefront aberrations caused by thermal flows or arising from the quality of optical components can significantly impair wireless communication links. Such aberrations may result in an increased error rate in the received signal, leading to data loss in laser communication applications. In this [...] Read more.
Wavefront aberrations caused by thermal flows or arising from the quality of optical components can significantly impair wireless communication links. Such aberrations may result in an increased error rate in the received signal, leading to data loss in laser communication applications. In this study, we explored a newly developed combined stochastic gradient descent optimization algorithm aimed at compensating for optical distortions. The algorithm we developed exhibits linear time and space complexity and demonstrates low sensitivity to variations in input parameters. Furthermore, its implementation is relatively straightforward and does not necessitate an in-depth understanding of the underlying system, in contrast to the Stochastic Parallel Gradient Descent (SPGD) method. In addition, a developed switch-mode approach allows us to use a stochastic component of the algorithm as a rapid, rough-tuning mechanism, while the gradient descent component is used as a slower, more precise fine-tuning method. This dual-mode operation proves particularly advantageous in scenarios where there are no rapid dynamic wavefront distortions. The results demonstrated that the proposed algorithm significantly enhanced the total collected power of the beam passing through the 10 μm diaphragm that simulated a 10 μm fiber core, increasing it from 0.33 mW to 2.3 mW. Furthermore, the residual root mean square (RMS) aberration was reduced from 0.63 μm to 0.12 μm, which suggests a potential improvement in coupling efficiency from 0.1 to 0.6. Full article
(This article belongs to the Section Information Systems)
Show Figures

Figure 1

22 pages, 1497 KB  
Article
Barriers for Smart Manufacturing Implementation in SMEs: A Comprehensive Exploration and Practical Insights
by Vladimir Modrak and Zuzana Soltysova
Appl. Sci. 2025, 15(19), 10552; https://doi.org/10.3390/app151910552 - 29 Sep 2025
Viewed by 166
Abstract
The aim of this study was to identify and explore the most significant barriers in implementing smart manufacturing (SM) in terms of small and medium enterprises (SMEs). A two-round Delphi method was used to uncover them in this regard. To assess the reliability [...] Read more.
The aim of this study was to identify and explore the most significant barriers in implementing smart manufacturing (SM) in terms of small and medium enterprises (SMEs). A two-round Delphi method was used to uncover them in this regard. To assess the reliability of the obtained results, Cronbach’s alpha, Intraclass correlation coefficient, and a statistical F-test were performed for both rounds. Cronbach’s alpha for round 1 was 0.729, and 0.816 for round 2. On this basis, good inter-rater reliability was demonstrated in round 2. At the same time, the Intraclass correlation coefficient from round 1 was 0.54, and from round 2, it was 0.74, indicating a significant improvement in panel consensus. The comparison of the equality of variances within the two rounds using the F-test confirmed that a third round of the survey was not necessary. Moreover, the coefficient of variation and relative interquartile range were applied to assess internal consistency among the involved experts to come to a more comprehensive and cohesive understanding of the issue at hand. A total of 30 barriers/limitations or shortages were identified in the preparatory phase of the research, which, in some sense, do not allow or slow down the implementation of the SM. The Delphi survey found that financial problems, lack of government support, and technological constraints can be considered as the most serious barriers to the implementation of SM in an SME environment. Finally, the obstacles/constraints or shortcomings that proved to be the most critical were analyzed in terms of their impact on the ability of small and medium-sized enterprises to embrace the challenges of smart manufacturing. Full article
(This article belongs to the Special Issue Smart Manufacturing and Industry 4.0: 3rd Edition)
Show Figures

Figure 1

19 pages, 2933 KB  
Article
Experimental Study on Wettability Characteristics of Falling Film Flow Outside Multi-Row Horizontal Tubes
by Zhenchuan Wang and Meijun Li
Processes 2025, 13(10), 3119; https://doi.org/10.3390/pr13103119 - 29 Sep 2025
Viewed by 248
Abstract
The wettability of falling film flow outside multi-row horizontal tubes is a core factor determining the heat and mass transfer performance of falling film heat exchangers, which is critical for their optimized design and stable operation. A visualization experimental platform for falling film [...] Read more.
The wettability of falling film flow outside multi-row horizontal tubes is a core factor determining the heat and mass transfer performance of falling film heat exchangers, which is critical for their optimized design and stable operation. A visualization experimental platform for falling film flow over ten rows of horizontal tubes was constructed, with water as the working fluid. High-definition imaging technology and image processing methods were employed to systematically investigate the liquid film distribution and wettability under three tube diameters (d = 0.016, 0.019, 0.025 m), four tube spacings (s = 0.75d, 1d, 1.25d, 1.5d), and four inter-tube flow patterns (droplet, columnar, column-sheet, and sheet flow). Two parameters, namely the “total wetting length” and the “total wetting area”, were proposed and defined. The distribution characteristics of the wetting ratio for each row of tubes were analyzed, along with the variation laws of the total wetting area of the ten rows of tubes with respect to tube diameter, tube spacing, and liquid film Reynolds number (Rel). The following results were indicated: (1) Increasing the fluid flow rate and the tube spacing both promote the growth of the wetting length. When Rel ≤ 505, with the increase of tube diameter, the percentage of the wetting length of the tenth tube row relative to that of the first tube row decreases under the same fluid flow rate; when Rel > 505, this percentage first decreases and then increases. (2) The total wetting area exhibits a trend of “first increasing then decreasing” or “continuous increasing” with the tube spacing, and the optimal tube spacing varies by flow pattern: s/d = 1 for droplet flow (d ≤ 0.016 m), s/d = 1.25 for columnar flow, and s/d = 1.25 (0.016 m), 1 (0.019 m), 1.5 (0.025 m) for sheet flow. (3) The effect of tube diameter on the total wetting area is a balance between the inhibitory effect (reduced inter-tube fluid dynamic potential energy) and promotional effect (thinner liquid film spreading). The optimal tube diameter is 0.016 m for droplet flow and 0.025 m for columnar/sheet flow (at s/d = 1.25). (4) The wetting performance follows the order 0.016 m > 0.025 m > 0.019 m when Rel > 505, and 0.025 m > 0.019 m > 0.016 m when Rel ≤ 505. Finally, an experimental correlation formula for the wetting ratio considering the Rel, the tube diameter, and tube spacing was fitted. Comparisons with the present experimental data, the literature simulation results, and the literature experimental data showed average errors of ≤10%, ≤8%, and ≤14%, respectively, indicating high prediction accuracy. This study provides quantitative data and theoretical support for the structural optimization and operation control of multi-row horizontal tube falling film heat exchangers. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 947 KB  
Article
Fixation Methods in Primary Hip Arthroplasty: A Nationwide, Registry-Based Observational Study in Romania (2001–2024)
by Flaviu Moldovan and Liviu Moldovan
Healthcare 2025, 13(19), 2452; https://doi.org/10.3390/healthcare13192452 - 27 Sep 2025
Viewed by 293
Abstract
Background/Objectives: Arthroplasty registries provide a broad database that constitutes evidence for discussions about cemented versus uncemented fixations. The objective of this study is to determine the current trend in fixation of total hip arthroplasties. Methods: From the Romanian Arthroplasty Register we extracted data [...] Read more.
Background/Objectives: Arthroplasty registries provide a broad database that constitutes evidence for discussions about cemented versus uncemented fixations. The objective of this study is to determine the current trend in fixation of total hip arthroplasties. Methods: From the Romanian Arthroplasty Register we extracted data regarding primary hip replacement surgery and revisions. We established evaluation variables and methodologies that contain volumes, variation trends, and gradients for surgical procedures, fixations and revision burdens. Results: In the period 2001–2024, the share of uncemented fixations was 56.8%, and that of cemented ones was 43.13%. The uncemented fixation gradient showed an increase from 0.32 in 2001 to 3.43 in 2024. We found an annual increase in the share of uncemented fixations (2.08%), to the detriment of cemented fixations, which decreased (−6.97%). We found that there is an obvious trend towards uncemented fixation, which is also evident in the elderly age group of 80+ years. The results regarding revision burdens remain within a relatively narrow range of 5.09–7.23%. The revision burdens of uncemented fixations are lower, ranging between 4.82% and 5.36%, compared to cemented fixations. Also, the revision burdens of cemented fixations have a decreasing trend of 0.54%. Conclusions: The variation trend of total uncemented implants is almost double compared to the variation trend of all primary hip joint surgeries. This indicates a trend towards uncemented fixation, and its share is increasing in all age groups. The increase in the proportion of uncemented fixations was associated with a small, non-significant decrease in revision burden. Full article
(This article belongs to the Special Issue Advances in Public Health and Healthcare Management for Chronic Care)
Show Figures

Figure 1

23 pages, 7205 KB  
Article
Response of Residence Time to Coastline Change in Xiamen Bay, China
by Cui Wang, Jianwei Wu, Haiyan Wu and Shang Jiang
J. Mar. Sci. Eng. 2025, 13(10), 1868; https://doi.org/10.3390/jmse13101868 - 26 Sep 2025
Viewed by 193
Abstract
Xiamen Bay (XMB), a representative semi-enclosed bay, demonstrates hydrodynamic conditions and water exchange characteristics that are significantly influenced by alterations in the coastline. The three-dimensional hydrodynamic model and remote sensing interpretation techniques were utilized to examine coastline changes and evaluated the spatio-temporal variations [...] Read more.
Xiamen Bay (XMB), a representative semi-enclosed bay, demonstrates hydrodynamic conditions and water exchange characteristics that are significantly influenced by alterations in the coastline. The three-dimensional hydrodynamic model and remote sensing interpretation techniques were utilized to examine coastline changes and evaluated the spatio-temporal variations in water residence time in XMB from 1955 to 2021. The results indicate that the coastline of the XMB has been considerably modified by extensive reclamation activities. The total reclaimed area reached up to 188.08 km2 during the period of 1955–2021, resulting in a 17.8% reduction in the total bay area. The average residence time increased from 13.28 days in 1955 to 16.94 days in 2003 and then decreased to 16.12 days because of ecological restoration initiatives. Spatially, water residence time increased from the outer sea towards the inner bay, with the high value observed in the northwest part of XMB while the low value was observed in the southeastern region. Among the various sub-regions, Tong’an Bay experienced the most significant change in residence time, followed by the West Sea. Conversely, the Dadeng Waters and Jiulong River Estuary showed relatively minor increases in residence time. The primary factors influencing variations in water residence time are large-scale reclamation projects and ecological restoration measures. These findings provide a significant scientific foundation and technical support for the integrated management of the coastal zone and ecological restoration construction in XMB. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

15 pages, 2928 KB  
Article
Genome-Wide Genetic Diversity and Population Structure of Sillago sinica (Perciformes, Sillaginidae) from the Coastal Waters of China: Implications for Phylogeographic Pattern and Fishery Management
by Tianyan Yang, Yan Sun and Peiyi Xiao
Biology 2025, 14(10), 1329; https://doi.org/10.3390/biology14101329 - 26 Sep 2025
Viewed by 302
Abstract
The ability to detect population structure and determine the extent of genetic variation among populations is critical for understanding genetic background and effective fishery management. Fifty-eight individuals of S. sinica were resequenced with an average depth of 24× based on the Illumina sequencing [...] Read more.
The ability to detect population structure and determine the extent of genetic variation among populations is critical for understanding genetic background and effective fishery management. Fifty-eight individuals of S. sinica were resequenced with an average depth of 24× based on the Illumina sequencing platform. A total of 7,409,691 high-quality single nucleotide polymorphisms (SNPs) and 327,698 linkage disequilibrium-pruned SNPs were detected by comparing with the reference genome, and the average nucleotide diversity (π) and polymorphism information content (PIC) for all SNPs were 0.0036 ± 0.0023 and 0.2358 ± 0.1013, respectively, indicating the relatively low level of genetic diversity caused by limited gene flow and small effective population size (Ne). Integrated analyses of principal component analysis (PCA), ADMIXTURE, fixation index (Fst), and cladogram showed a significant genetic divergence between the north group (Dongying and Rushan populations) and the south group (Wenzhou and Zhoushan populations), which might be related to the differences in natural and geographical environments. The comprehensive results confirmed the genetic heterogeneity of S. sinica populations from the northern and southern sea areas of China, and suggested that regionalization fishery management should be adopted for further resource protection and utilization of S. sinica. Full article
(This article belongs to the Special Issue Genetic Variability within and between Populations)
Show Figures

Figure 1

19 pages, 3835 KB  
Article
Drainage Recycling Ratio Influences Yield, Fruit Quality, and Antioxidant Properties of Korean Strawberry ‘Seolhyang’
by Minkyung Kim, M. G. Rabbani, Youngae Jeong, Mewuleddeg Zebro, Jeonghyeon Baek and Ki-Young Choi
Plants 2025, 14(19), 2984; https://doi.org/10.3390/plants14192984 - 26 Sep 2025
Viewed by 314
Abstract
Closed hydroponic systems for strawberries (Fragaria × ananassa Duch.) are infrequently used because the crop is highly sensitive to salt accumulation and prone to root diseases, resulting in yield reduction. This study investigated semi-closed hydroponic systems using various drainage recycling ratios (30%, [...] Read more.
Closed hydroponic systems for strawberries (Fragaria × ananassa Duch.) are infrequently used because the crop is highly sensitive to salt accumulation and prone to root diseases, resulting in yield reduction. This study investigated semi-closed hydroponic systems using various drainage recycling ratios (30%, 50%, and 70% of drainage EC) to determine their impact on yield, fruit quality, and antioxidant properties. Recycling at moderate levels (30–50%) effectively maintained ionic balance, particularly with respect to K/N and K/Ca ratios, which enabled stable yields and increased fruit weight similar to the control (open hydroponic system) group. Conversely, a high recycling ratio (70%) led to ionic imbalances—characterized by increased K/N ratios and higher concentrations of Na+, Cl, and SO42−—that were associated with decreased fruit size. Measures of antioxidant capacity, such as total phenol and flavonoid content, ferric reducing antioxidant power, and DPPH activity, were not significantly influenced by the recycling ratio alone. Nevertheless, the relatively elevated antioxidant activity observed at the 70% recycling level indicates a mild ionic and osmotic stress response likely caused by increased salt concentration. Changes related to the cropping system season, rather than ion variations from recycling, exerted a stronger influence on antioxidant accumulation. In summary, moderate drainage recycling facilitates optimal fruit production without negatively affecting quality, while excessive recycling may increase antioxidant activity but leads to reduced yields. The results provide practical recommendations for optimizing nutrient reuse in semi-closed strawberry hydroponic systems. Full article
Show Figures

Figure 1

40 pages, 9892 KB  
Article
Influence of Web-Perforated Cold-Formed Steel Studs on the Heat Transfer Properties of LSF External Walls
by Saranya Ilango, Anthony Ariyanayagam and Mahen Mahendran
Energies 2025, 18(19), 5103; https://doi.org/10.3390/en18195103 - 25 Sep 2025
Viewed by 352
Abstract
Thermal bridging through cold-formed steel (CFS) studs significantly reduces the thermal performance of light gauge steel frame (LSF) wall systems, particularly in climates demanding higher thermal resistance (R-value). While thermal breaks are commonly used, they increase material costs and construction complexity. According to [...] Read more.
Thermal bridging through cold-formed steel (CFS) studs significantly reduces the thermal performance of light gauge steel frame (LSF) wall systems, particularly in climates demanding higher thermal resistance (R-value). While thermal breaks are commonly used, they increase material costs and construction complexity. According to NCC 2022, the minimum total R-value requirement for external walls ranges between 2.8 and 3.8 m2·K/W depending on the climate zone and building class. This study therefore evaluated web-perforated steel studs as a passive strategy to enhance thermal resistance of LSF walls, analysing 120 configurations with validated 3D finite element models in Abaqus and benchmarking in THERM. The results showed that web perforations consistently improved R-values by 14 to 20%, as isotherm contours and heat flux vectors demonstrated disruption of direct heat flow through the stud, thereby mitigating thermal bridging. Although the axial compression capacity of web-perforated CFS studs decreased by 29.5%, the use of 4 mm hole-edge stiffeners restored 96.8% of the original capacity. The modified NZS 4214:2006 and ASHRAE Modified Zone methods, incorporating steel area reduction and heat flux redistribution, closely matched Abaqus predictions, with coefficients of variation (COV) below 0.009, corresponding to less than 1% relative deviation between analytical and numerical R-values. Furthermore, application of web-perforated CFS studs in five external wall systems demonstrated improved thermal resistance, ensuring compliance with NCC 2022 R-value requirements across all Australian climate zones. Overall, the findings establish web-perforated studs as an effective solution for improving the energy performance of LSF building envelopes. Full article
Show Figures

Figure 1

18 pages, 3328 KB  
Article
Hydrochemical Controlling Factors and Spatial Distribution Characteristics of Shallow Groundwater in Agricultural Regions of Central-Eastern Henan Province, China
by Peng Guo, Shaoqing Chen, Xiaosheng Luo, Kelin Hu and Baoguo Li
Water 2025, 17(19), 2815; https://doi.org/10.3390/w17192815 - 25 Sep 2025
Viewed by 251
Abstract
Groundwater serves as a vital water resource for agricultural irrigation and domestic use in farmland areas. Its chemical composition is jointly influenced by agricultural fertilization, land use practices, and natural geological processes. However, research on the controlling factors and spatial distribution characteristics of [...] Read more.
Groundwater serves as a vital water resource for agricultural irrigation and domestic use in farmland areas. Its chemical composition is jointly influenced by agricultural fertilization, land use practices, and natural geological processes. However, research on the controlling factors and spatial distribution characteristics of groundwater hydrochemistry in agricultural regions remains insufficient. In this study, 56 groundwater samples were collected from the central-eastern plain of Henan Province, China. A combination of hierarchical cluster analysis, ionic ratio methods, principal component analysis, and kriging interpolation was employed to investigate the hydrochemical characteristics, spatial patterns, and primary controlling factors of regional groundwater. The results indicate that the first group of samples is characterized by high total dissolved solids (TDS), elevated Na+ and Cl concentrations, predominantly controlled by evaporation and concentration processes. The second group exhibits high pH and low Ca2+ concentrations, mainly influenced by silicate weathering, with reverse cation exchange acting as a secondary controlling process. The third group is characterized by elevated concentrations of Ca2+ and NO3, primarily controlled by carbonate weathering and agricultural activities. The western part of the study area serves as the main groundwater recharge zone and has the highest NO3 and Ca2+ concentrations. In the central area, most ion concentrations are relatively high, forming a distinct gradient with surrounding regions. Meanwhile, the eastern area displays elevated concentrations of HCO3, TDS, Na+, and Cl, highlighting pronounced spatial heterogeneity. Overall, the hydrochemical composition of groundwater in the study area is shaped by both natural processes and anthropogenic activities, exhibiting significant spatial heterogeneity. Notably, the spatial variation of NO3 concentrations is substantial, indicating that certain localities have already been affected by agricultural non-point source pollution. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

Back to TopTop