Regional Divergence in Long-Term Trends of the Marine Heatwave over the East China Sea
Abstract
1. Introduction
2. Materials and Methods
2.1. SST Dataset
2.2. Sea Surface Geostrophic Velocity Dataset
2.3. Atmospheric Reanalysis Data
2.4. Definition of MHWs
2.5. Intensity Classification
3. Results
3.1. Annual Average Distribution of MHWs in the ECS
3.2. Seasonal Variation in Mhws in the ECS
3.3. EOF Analysis of Total Days and Intensity
3.4. Long-Term Trend of MHWs in the ECS
3.5. Intensity Classification of MHWs
3.6. Main Contributing Factors of MHWs
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MHWs | Marine heatwaves |
ECS | East China Sea |
SST | Sea surface temperature |
Appendix A
References
- Chiswell, S.M. Global trends in marine heatwaves and cold spells: The impacts of fixed versus changing baselines. J. Geophys. Res. Ocean. 2022, 127, e2022JC018757. [Google Scholar] [CrossRef]
- Waliser, D.E. Formation and Limiting Mechanisms for Very High Sea Surface Temperature: Linking the Dynamics and the Thermodynamics. J. Clim. 1996, 9, 161–188. [Google Scholar] [CrossRef]
- Qin, H.; Kawamura, H.; Kawai, Y. Detection of hot event in the equatorial Indo-Pacific warm pool using advanced satellite sea surface temperature, solar radiation, and wind speed. J. Geophys. Res. Ocean. 2007, 112, C07015. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Scannell, H.A.; Pershing, A.J.; Alexander, M.A.; Thomas, A.C.; Mills, K.E. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett. 2016, 5, 2069–2076. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.J.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G.; et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 2019, 9, 306–312. [Google Scholar] [CrossRef]
- Zhan, W.; Zhang, Y.; He, Q.; Zhan, H. Shifting responses of phytoplankton to atmospheric and oceanic forcing in a prolonged marine heatwave. Limnol. Oceanogr. 2023, 8, 1821–1834. [Google Scholar] [CrossRef]
- Howarth, N.; Scanes, E.; Byrne, M.; Ross, P.M. Ocean warming and Marine Heatwaves unequally impact juvenile introduced and native oysters with implications for their coexistence and future distribution. Sci. Rep. 2024, 1, 20688. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- Pearce, A.F.; Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 2013, 111–112, 139–156. [Google Scholar] [CrossRef]
- Olita, A.; Sorgente, R.; Natale, S.; Gaberšek, S.; Ribotti, A.; Bonanno, A.; Patti, B. Effects of the 2003 European heatwave on the Central Mediterranean Sea: Surface fluxes and the dynamical response. Ocean Sci. 2007, 8, 273–289. [Google Scholar] [CrossRef]
- Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Chevaldonné, P.; Cigliano, M.; Diaz, D.; Harmelin, J.G.; Gambi, M.C.; Kersting, D.K.; et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 2009, 5, 1090–1103. [Google Scholar] [CrossRef]
- Galli, G.; Solidoro, C.; Lovato, T. Marine Heat Waves Hazard 3D Maps and the Risk for Low Motility Organisms in a Warming Mediterranean Sea. Front. Mar. Sci. 2017, 4, 136. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, C.; Hu, J.; Shang, S. Unusual Fish Assemblages Associated with Environmental Changes in the East China Sea in February and March 2017. Remote Sens. 2021, 9, 1768. [Google Scholar] [CrossRef]
- Brown, K.T.; Lenz, E.A.; Glass, B.H.; Kruse, E.; McClintock, R.; Drury, C.; Nelson, C.E.; Putnam, H.M.; Barott, K.L. Divergent bleaching and recovery trajectories in reef-building corals following a decade of successive marine heatwaves. Proc. Natl. Acad. Sci. USA 2023, 52, e2312104120. [Google Scholar] [CrossRef]
- Cetina-Heredia, P.; Allende-Arandía, M.E. Caribbean Marine Heatwaves, Marine Cold Spells, and Co-Occurrence of Bleaching Events. J. Geophys. Res. Ocean. 2023, 128, e2023JC020147. [Google Scholar] [CrossRef]
- Roberts, S.D.; Van Ruth, P.D.; Wilkinson, C.; Bastianello, S.S.; Bansemer, M.S. Marine Heatwave, Harmful Algae Blooms and an Extensive Fish Kill Event During 2013 in South Australia. Front. Mar. Sci. 2019, 6, 610. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 2018, 1, 650. [Google Scholar] [CrossRef]
- Saranya, J.S.; Dasgupta, P.; Nam, S. Interaction Between Typhoon, Marine Heatwaves, and Internal Tides: Observational Insights from Ieodo Ocean Research Station in the Northern East China Sea. Geophys. Res. Lett. 2024, 51, e2024GL109497. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Z.; Jiang, Z.; Li, T.; Ding, X.; Wei, X.; Liu, D. Marine Heatwave and Terrestrial Drought Reduced CO2 Uptake in the East China Sea in 2022. Remote Sens. 2024, 16, 849. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, J.; Yin, J.; Zou, X. Marine heatwaves in China’s marginal seas and adjacent offshore waters: Past, present, and future. J. Geophys. Res. Ocean. 2020, 125, e2019JC015801. [Google Scholar] [CrossRef]
- Lee, S.; Park, M.S.; Kwon, M.; Park, Y.G.; Kim, Y.H.; Choi, N. Rapidly changing East Asian marine heatwaves under a warming Climate. J. Geophys. Res. Ocean. 2023, 128, e2023JC019761. [Google Scholar] [CrossRef]
- Xu, J.; Yan, Y.; Zhang, L.; Xing, W.; Meng, L.; Yu, Y.; Chen, C. Long-term trends and extreme events of marine heatwaves in the Eastern China Marginal Seas during summer. Front. Mar. Sci. 2024, 11, 1380963. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Sen Gupta, A.; Oliver, E.C.J.; Hobday, A.J. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 2020, 1, 482–493. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Gupta, A.S.; Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef] [PubMed]
- Marin, M.; Feng, M.; Phillips, H.E.; Bindoff, N.L. A Global, Multiproduct Analysis of Coastal Marine Heatwaves: Distribution, Characteristics, and Long-Term Trends. J. Geophys. Res. Ocean. 2021, 26, e2020JC016708. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C.; Fu, Y. Global Marine Heatwaves and Cold-Spells in Present Climate to Future Projections. Earth’s Future 2022, 10, e2022EF002787. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C. Variations in Summer Marine Heatwaves in the South China Sea. J. Geophys. Res. Ocean. 2021, 126, e2021JC017792. [Google Scholar] [CrossRef]
- Gao, Z.; Jia, W.; Zhang, W.; Wang, P. Study on Seasonal Characteristics and Causes of Marine Heatwaves in the South China Sea over Nearly 30 Years. Atmosphere 2023, 12, 1822. [Google Scholar] [CrossRef]
- Tan, H.; Cai, R.; Wu, R. Summer marine heatwaves in the South China Sea: Trend, variability and possible causes. Adv. Clim. Change Res. 2022, 3, 323–332. [Google Scholar] [CrossRef]
- Li, Y.; Ren, G.; Wang, Q.; Mu, L. Changes in marine hot and cold extremes in the China Seas during 1982–2020. Weather. Clim. Extrem. 2023, 39, 100553. [Google Scholar] [CrossRef]
- Choi, W.; Bang, M.; Joh, Y.; Ham, Y.-G.; Kang, N.; Jang, C.J. Characteristics and mechanisms of marine heatwaves in the East Asian marginal seas: Regional and seasonal differences. Remote Sens. 2022, 14, 3522. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W.Q. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.-M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 8, 2923–2939. [Google Scholar] [CrossRef]
- Lyu, Y.; Xiao, F.; Lu, M.; Wang, D.; Wu, Q.; Wang, P.; Zeng, Y. Increased Frequency but Decreased Intensity of Marine Heatwaves Around Coral Reef Regions in the Southern South China Sea. J. Geophys. Res. Ocean. 2024, 9, e2024JC021235. [Google Scholar] [CrossRef]
- Ducet, N.; Traon, P.Y.L.; Reverdin, G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. 2000, 105, 19477–19498. [Google Scholar] [CrossRef]
- Zhao, Z.; Marin, M. A MATLAB toolbox to detect and analyze marine heatwaves. J. Open Source Softw. 2019, 4, 1124. [Google Scholar] [CrossRef]
- Hobday, A.J.; Oliver, E.C.J.; Gupta, A.S.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Holbrook, N.J.; Moore, P.J.; Thomsen, M.S.; Wernberg, T.; et al. Categorizing and naming marine heatwaves. Oceanography 2018, 31, 162–173. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, L.; Yan, L.; Zhang, H.; Zhang, Y.; Xu, M.; Jin, Y.; Cheng, J. Alteration of alpha and beta diversity in nekton community by extreme marine heatwave events: An example from the East China Sea. Front. Mar. Sci. 2022, 9, 1036047. [Google Scholar] [CrossRef]
- Oliver, E.C. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 2019, 53, 1653–1659. [Google Scholar] [CrossRef]
- Wei, Y.; Ding, R.; Huang, D.; Xuan, J.; Li, H.; Zhang, J.; Ma, X.; Zhou, F.; Chen, J. The Weakened Upwelling at the Upstream Kuroshio in the East China Sea Induced Extensive Sea Surface Warming. Geophys. Res. Lett. 2022, 50, e2022GL101835. [Google Scholar] [CrossRef]
- Hu, D.; Wu, L.; Cai, W.; Gupta, A.S.; Ganachaud, A.; Qiu, B.; Gordon, A.L.; Lin, X.; Chen, Z.; Hu, S.; et al. Pacific western boundary currents and their roles in climate. Nature 2015, 522, 299–308. [Google Scholar] [CrossRef]
- Kelly, K.A.; Small, R.J.; Samelson, R.M.; Qiu, B.; Joyce, T.M.; Kwon, Y.-O.; Cronin, M.F. Western boundary currents and frontal air-sea interaction: Gulf Stream and Kuroshio Extension. J. Clim. 2010, 23, 5644–5667. [Google Scholar] [CrossRef]
- Kwon, Y.-O.; Alexander, M.A.; Bond, N.A.; Frankignoul, C.; Nakamura, H.; Qiu, B.; Thompson, L.A. Role of the Gulf Stream and Kuroshio-Oyashio systems in large-scale atmosphere-Ocean interaction: A review. J. Clim. 2010, 23, 5206–5221. [Google Scholar] [CrossRef]
- Wang, Y.L.; Wu, C.R.; Chao, S.Y. Warming and weakening trends of the Kuroshio during 1993–2013. Geophys. Res. Lett. 2016, 43, 9200–9207. [Google Scholar] [CrossRef]
Indices | Definition | Formulas | Unit |
---|---|---|---|
Frequency | The number of marine heatwaves per year | counts | |
Maximum intensity | The maximum sea surface temperature anomaly during a marine heatwave | °C | |
Mean intensity | Mean sea surface temperature anomalies during a marine heatwave | °C | |
Cumulative intensity | The sum of daily sea surface temperature anomalies throughout a heatwave | °C days | |
Duration | A consecutive period during which the temperature exceeds the threshold | days | |
Total days | Total number of days of marine heatwaves per year | days |
Coastal Waters of the ECS | Kuroshio Path | Western Pacific | |
---|---|---|---|
Frequency (counts) | + + (3.14) | + + (3.14) | + (2.60) |
Mean intensity (°C) | + + (2.03) | + (1.53) | + (1.62) |
Maximum intensity (°C) | + + (5.36) | + (3.87) | + (3.37) |
Cumulative intensity (°C days) | + + (25.14) | + (18.77) | + + (24.28) |
Duration (days) | + (12.40) | + (12.33) | + + (14.95) |
Total days (days) | + + (38.87) | + + (38.69) | + + (38.85) |
Surface net solar radiation (w/m2) | + + (9.81) | + (6.30) | + (7.55) |
Surface latent heat flux (w/m2) | (0.84) | (−2.62) | (−2.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Liu, Z.-J.; Yin, W.; Lu, M.-X.; Ma, J.-B. Regional Divergence in Long-Term Trends of the Marine Heatwave over the East China Sea. Atmosphere 2025, 16, 1150. https://doi.org/10.3390/atmos16101150
Ma Q, Liu Z-J, Yin W, Lu M-X, Ma J-B. Regional Divergence in Long-Term Trends of the Marine Heatwave over the East China Sea. Atmosphere. 2025; 16(10):1150. https://doi.org/10.3390/atmos16101150
Chicago/Turabian StyleMa, Qun, Zhao-Jun Liu, Wenbin Yin, Ming-Xuan Lu, and Jun-Bo Ma. 2025. "Regional Divergence in Long-Term Trends of the Marine Heatwave over the East China Sea" Atmosphere 16, no. 10: 1150. https://doi.org/10.3390/atmos16101150
APA StyleMa, Q., Liu, Z.-J., Yin, W., Lu, M.-X., & Ma, J.-B. (2025). Regional Divergence in Long-Term Trends of the Marine Heatwave over the East China Sea. Atmosphere, 16(10), 1150. https://doi.org/10.3390/atmos16101150