Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = reinforced high-temperature gel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3844 KiB  
Article
Ambient-Dried Silica Xerogels with Enhanced Strength and Thermal Insulation via Calcium Ion-Glycerol Synergistic Crosslinking
by Xiaoyu Xie, Zilin Zhu, Yu Meng, Lijia Wang, Fuquan Zhao, Lingqing Chen, Lijie Jiang, Ming Yan and Xiaofan Zhou
Gels 2025, 11(6), 462; https://doi.org/10.3390/gels11060462 - 16 Jun 2025
Viewed by 467
Abstract
Despite their high porosity and wide applicability, silica xerogels face mechanical strength limitations for high-performance applications. This study presents an ambient-pressure sol-gel strategy utilizing calcium-glycerol synergy to produce robust xerogels with enhanced properties. Physicochemical analyses reveal that controlled Ca2+ incorporation (optimal at [...] Read more.
Despite their high porosity and wide applicability, silica xerogels face mechanical strength limitations for high-performance applications. This study presents an ambient-pressure sol-gel strategy utilizing calcium-glycerol synergy to produce robust xerogels with enhanced properties. Physicochemical analyses reveal that controlled Ca2+ incorporation (optimal at 6 wt.%) accelerates gelation kinetics while establishing a hybrid network through ionic complexation and hydrogen bonding. The resulting xerogels achieve exceptional compressive strength (30.8 MPa) while maintaining uniform mesoporosity (50–90 nm pore size). Remarkably, the as-prepared silica xerogels demonstrate outstanding thermal insulation, maintaining a 220 °C temperature differential in 300 °C environments. These results prove that the ambient-pressure sol-gel strategy utilizing calcium-glycerol synergy can enhance the mechanical performance and thermal insulation performance of silica xerogels with the dual actions of Ca2+-induced network reinforcement via silanol coordination and glycerol-mediated stress relief during ambient drying. Overall, this work can offer a scalable, energy-efficient approach to produce high-performance silica xerogels with huge potential in building envelopes and aerospace systems. Full article
(This article belongs to the Special Issue Silica Aerogel: Synthesis, Properties and Characterization)
Show Figures

Figure 1

37 pages, 9471 KiB  
Article
Engineering to Improve Mechanical Properties of Nanocellulose Hydrogels from Aloe Vera Bagasse and Banana Pseudostem for Biomedical Applications
by Rocío Hernández-Leal, Ángeles Iveth Licona-Aguilar, Miguel Antonio Domínguez-Crespo, Esther Ramírez-Meneses, Adela Eugenia Rodríguez-Salazar, Carlos Juárez-Balderas, Silvia Beatriz Brachetti-Sibaja and Aidé Minerva Torres-Huerta
Polymers 2025, 17(12), 1642; https://doi.org/10.3390/polym17121642 - 13 Jun 2025
Cited by 1 | Viewed by 685
Abstract
This work explores the synthesis of biomass-waste-derived cellulose nanocrystal hydrogel from aloe vera bagasse (AVB) and banana pseudostem (BPS). A wide variety of synthesis parameters such as acid concentration (45 wt.% and 55 wt.%), temperatures in the process of 25, 40, 45 and [...] Read more.
This work explores the synthesis of biomass-waste-derived cellulose nanocrystal hydrogel from aloe vera bagasse (AVB) and banana pseudostem (BPS). A wide variety of synthesis parameters such as acid concentration (45 wt.% and 55 wt.%), temperatures in the process of 25, 40, 45 and 50 °C, and reaction times of 30 and 60 min were analyzed during the acid hydrolysis to evaluate changes in the morphology, crystallinity, swelling, degradation temperature, and mechanical properties. The parameters that most influenced the crystallinity were the temperature and reaction time, showing good characteristics such as percentage crystallinity (89.66% for nanocellulose from C45t30T50 up to 97.58% for CNC-BPS C55t30T50), and crystal size (from 23.40 to 68.31 nm), which was worth considering for hydrogel synthesis. Cellulose nanocrystalline hydrogels from both biomass wastes can modify the crystallinity for tailored high-end engineering and biomedical applications, although using BPS obtained the best overall performance; also, properties such as swelling capability at pH = 4 of 225.39% for hydrogel C55t30T25 (H7), porosity (60.77 ± 2.60%) for C45t60T40 (H6), and gel % (86.60 ± 2.62%) for C55t60T50 (H8) were found. The mechanical test revealed a tensile strength at maximum load of 707.67 kPa (hydrogel H6) and 644.17 kPa (hydrogel H8), which are properties conferred by the CNC from BPS. Overall, CNC from BPS is recommended as a reinforcement for hydrogel synthesis due to its good mechanical properties and functionals, making it a promising material for biomedical applications. Full article
(This article belongs to the Special Issue Advanced Study on Polymer-Based Hydrogels)
Show Figures

Figure 1

16 pages, 5706 KiB  
Article
In Situ-Prepared Nanocomposite for Water Management in High-Temperature Reservoirs
by Hui Yang, Jian Zhang, Zhiwei Wang, Shichao Li, Qiang Wei, Yunteng He, Luyao Li, Jiachang Zhao, Caihong Xu and Zongbo Zhang
Gels 2025, 11(6), 405; https://doi.org/10.3390/gels11060405 - 29 May 2025
Viewed by 435
Abstract
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their [...] Read more.
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their short gelation time under high-temperature reservoir conditions (e.g., >120 °C) limits effective in-depth water shutoff and conformance control. To address this, we developed a hydrogel system via the in situ cross-linking of polyacrylamide (PAM) with phenolic resin (PR), reinforced by silica sol (SS) nanoparticles. We employed a variety of research methods, including bottle tests, viscosity and rheology measurements, scanning electron microscopy (SEM) scanning, density functional theory (DFT) calculations, differential scanning calorimetry (DSC) measurements, quartz crystal microbalance with dissipation (QCM-D) measurement, contact angle (CA) measurement, injectivity and temporary plugging performance evaluations, etc. The composite gel exhibits an exceptional gelation period of 72 h at 130 °C, surpassing conventional systems by more than 4.5 times in terms of duration. The gelation rate remains almost unchanged with the introduction of SS, due to the highly pre-dispersed silica nanoparticles that provide exceptional colloidal stability and the system’s pH changing slightly throughout the gelation process. DFT and SEM results reveal that synergistic interactions between organic (PAM-PR networks) and inorganic (SS) components create a stacked hybrid network, enhancing both mechanical strength and thermal stability. A core flooding experiment demonstrates that the gel system achieves 92.4% plugging efficiency. The tailored nanocomposite allows for the precise management of gelation kinetics and microstructure formation, effectively addressing water control and enhancing the plugging effect in high-temperature reservoirs. These findings advance the mechanistic understanding of organic–inorganic hybrid gel systems and provide a framework for developing next-generation EOR technologies under extreme reservoir conditions. Full article
Show Figures

Figure 1

14 pages, 6289 KiB  
Article
Construction and Mechanism of Janus Nano-Graphite Reinforced Foam Gel System for Plugging Steam in Heavy Oil Reservoirs
by Zhongzheng Xu, Yuxin Xie, Xiaolong Wang, Ning Sun, Ziteng Yang, Xin Li, Jia Chen, Yunbo Dong, Herui Fan and Mingwei Zhao
Gels 2024, 10(11), 721; https://doi.org/10.3390/gels10110721 - 7 Nov 2024
Cited by 2 | Viewed by 1061
Abstract
High-temperature steam injection is a primary method for viscosity reduction and recovery in heavy oil reservoirs. However, due to the high mobility of steam, channeling often occurs within the reservoir, leading to reduced thermal efficiency and challenges in enhancing oil production. Foam fluids, [...] Read more.
High-temperature steam injection is a primary method for viscosity reduction and recovery in heavy oil reservoirs. However, due to the high mobility of steam, channeling often occurs within the reservoir, leading to reduced thermal efficiency and challenges in enhancing oil production. Foam fluids, with their dual advantages of selective plugging and efficient oil displacement, are widely used in steam-injection heavy oil recovery. Nonetheless, conventional foams tend to destabilize under high-temperature conditions, resulting in poor stability and suboptimal plugging performance, which hampers the efficient development of heavy oil resources. To address these technical challenges, this study introduces a foam system reinforced with Janus nano-graphite, a high-temperature stabilizer characterized by its small particle size and thermal resistance. The foaming agents used in the system are sodium α-olefin sulfonate (AOS), an anionic surfactant, and octadecyl hydroxylpropyl sulfobetaine (OHSB), a zwitterionic surfactant. Under conditions of 250 °C and 5 MPa, the foam system achieved a half-life of 47.8 min, 3.4 times longer than conventional foams. Janus nano-graphite forms a multidimensional network structure in the liquid phase, increasing internal friction and enhancing shear viscosity by 1.2 to 1.8 times that of conventional foams. Furthermore, the foam gel system demonstrated effective steam-channeling control in heterogeneous heavy oil reservoirs, particularly in reservoirs with permeability differentials ranging from 3 to 9. These findings suggest that the Janus nano-graphite reinforced foam system holds significant potential for steam-channeling mitigation in heavy oil reservoirs. Full article
Show Figures

Graphical abstract

14 pages, 9321 KiB  
Article
One-Pot Synthesis of Cellulose-Based Carbon Aerogel Loaded with TiO2 and g-C3N4 and Its Photocatalytic Degradation of Rhodamine B
by Fangqin Liu, Mingjie Fan, Xia Liu and Jinyang Chen
Nanomaterials 2024, 14(13), 1141; https://doi.org/10.3390/nano14131141 - 2 Jul 2024
Cited by 3 | Viewed by 2023
Abstract
A cellulose-based carbon aerogel (CTN) loaded with titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) was prepared using sol–gel, freeze-drying, and high-temperature carbonization methods. The formation of the sol–gel was carried out through a one-pot method using [...] Read more.
A cellulose-based carbon aerogel (CTN) loaded with titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) was prepared using sol–gel, freeze-drying, and high-temperature carbonization methods. The formation of the sol–gel was carried out through a one-pot method using refining papermaking pulp, tetrabutyl titanate, and urea as raw materials and hectorite as a cross-linking and reinforcing agent. Due to the cross-linking ability of hectorite, the carbonized aerogel maintained a porous structure and had a large specific surface area with low density (0.0209 g/cm3). The analysis of XRD, XPS, and Raman spectra revealed that the titanium dioxide (TiO2) and graphitic carbon nitride (g-C3N4) were uniformly distributed in the CTN, while TEM and SEM observations demonstrated the uniformly distributed three-dimensional porous structure of CTN. The photocatalytic activity of the CTN was determined according to its ability to degrade rhodamine B. The removal rate reached 89% under visible light after 120 min. In addition, the CTN was still stable after five reuse cycles. The proposed catalyst exhibits excellent photocatalytic performance under visible light conditions. Full article
(This article belongs to the Special Issue Nanoscale Material Catalysis for Environmental Protection)
Show Figures

Figure 1

15 pages, 6085 KiB  
Article
A Supramolecular Reinforced Gel Fracturing Fluid with Low Permeability Damage Applied in Deep Reservoir Hydraulic Fracturing
by Yongping Huang, Xinlong Yao, Caili Dai, Yining Wu, Lin Li and Bin Yuan
Gels 2024, 10(1), 2; https://doi.org/10.3390/gels10010002 - 20 Dec 2023
Cited by 3 | Viewed by 2166
Abstract
Gel fracturing fluid is the optimum fracturing fluid for proppant suspension, which is commonly applied in deep reservoir hydraulic fracturing. The content of polymers and crosslinkers in gel fracturing fluid is usually high to meet the needs of high-temperature resistance, leading to high [...] Read more.
Gel fracturing fluid is the optimum fracturing fluid for proppant suspension, which is commonly applied in deep reservoir hydraulic fracturing. The content of polymers and crosslinkers in gel fracturing fluid is usually high to meet the needs of high-temperature resistance, leading to high costs and reservoir permeability damage caused by incomplete gel-breaking. In this paper, a supramolecular reinforced gel (SRG) fracturing fluid was constructed by strengthening the supramolecular force between polymers. Compared with single network gel (SNG) fracturing fluid, SRG fracturing fluid could possess high elasticity modulus (G′ = 12.20 Pa) at lower polymer (0.4 wt%) and crosslinker (0.1 wt%) concentrations. The final viscosity of SRG fracturing fluid was 72.35 mPa·s, meeting the temperature resistance requirement of gel fracturing fluid at 200 °C. The gel-breaking time could be extended to 90–120 min using an encapsulated gel breaker. Gel particles are formed after the gel fracturing fluid is broken. The median particle size of gel particles in the SRG-breaking solution was 126 nm, which was much smaller than that in the industrial gel (IDG) breaking fluid (587 nm). The damage of the SRG-breaking solution to the core permeability was much less than the IDG-breaking solution. The permeability damage of cores caused by the SRG-breaking solutions was only about half that of IDG-breaking solutions at 1 mD. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (2nd Edition))
Show Figures

Graphical abstract

19 pages, 5261 KiB  
Article
An Amphiphilic Multiblock Polymer as a High-Temperature Gelling Agent for Oil-Based Drilling Fluids and Its Mechanism of Action
by Yinbo He, Mingliang Du, Jing He, Haiyang Liu, Yanhua Lv, Lei Guo, Peng Zhang and Yunhai Bai
Gels 2023, 9(12), 966; https://doi.org/10.3390/gels9120966 - 9 Dec 2023
Cited by 3 | Viewed by 2159
Abstract
Oil-based drilling fluids are widely used in challenging wells such as those with large displacements, deepwater and ultra-deepwater wells, deep wells, and ultra-deep wells due to their excellent temperature resistance, inhibition properties, and lubrication. However, there is a challenging issue of rheological deterioration [...] Read more.
Oil-based drilling fluids are widely used in challenging wells such as those with large displacements, deepwater and ultra-deepwater wells, deep wells, and ultra-deep wells due to their excellent temperature resistance, inhibition properties, and lubrication. However, there is a challenging issue of rheological deterioration of drilling fluids under high-temperature conditions. In this study, a dual-amphiphilic segmented high-temperature-resistant gelling agent (HTR-GA) was synthesized using poly fatty acids and polyether amines as raw materials. Experimental results showed that the initial decomposition temperature of HTR-GA was 374 °C, indicating good thermal stability. After adding HTR-GA, the emulsion coalescence voltage increased for emulsions with different oil-to-water ratios. HTR-GA could construct a weak gel structure in oil-based drilling fluids, significantly enhancing the shear-thinning and thixotropic properties of oil-based drilling fluids under high-temperature conditions. Using HTR-GA as the core, a set of oil-based drilling fluid systems with good rheological properties, a density of 2.2 g/cm3, and temperature resistance up to 220 °C were constructed. After aging for 24 h at 220 °C, the dynamic shear force exceeded 10 Pa, and G′ exceeded 7 Pa, while after aging for 96 h at 220 °C, the dynamic shear force exceeded 4 Pa, and G″ reached 7 Pa. The synthesized compound HTR-GA has been empirically validated to significantly augment the rheological properties of oil-based drilling fluids, particularly under high-temperature conditions, showcasing impressive thermal stability with a resistance threshold of up to 220 °C. This notable enhancement provides critical technical reinforcement for progressive exploration endeavors in deep and ultra-deep well formations, specifically employing oil-based drilling fluids. Full article
(This article belongs to the Special Issue Gel for Oil-Based Drilling Fluid)
Show Figures

Figure 1

40 pages, 33689 KiB  
Article
Thermal Behaviour and Microstructure of Self-Cured High-Strength Plain and Fibrous Geopolymer Concrete Exposed to Various Fire Scenarios
by Hayder Khalid Ali, Sallal R. Abid and Nildem Tayşi
Buildings 2023, 13(10), 2444; https://doi.org/10.3390/buildings13102444 - 26 Sep 2023
Cited by 6 | Viewed by 1793
Abstract
The fire resistance of construction materials is an essential part of safety requirements in the construction industry. In this work, experimental investigations were conducted to understand the thermal behaviour, spalling, transfer characteristics, strength, and microstructures of self-cured high-strength plain (HSGC) and steel-fibre-reinforced geopolymer [...] Read more.
The fire resistance of construction materials is an essential part of safety requirements in the construction industry. In this work, experimental investigations were conducted to understand the thermal behaviour, spalling, transfer characteristics, strength, and microstructures of self-cured high-strength plain (HSGC) and steel-fibre-reinforced geopolymer concrete (S–HSGC) under severe fire scenarios with peak temperatures of 275, 560, and 825 °C; the peak was maintained for a period of 120 min after reaching it. Forty-eight standard cylindrical specimens for each mixture were prepared to test and analyse their time–heat response, gradients, visual appearance, spalling, density change, water absorption, and compressive strength before and after fire exposure. Additionally, Scanning Electron Microscopy (SEM) along with Energy Dispersive X-ray Analysis (EDX) were utilised to analyse the internal structures and phase transformations. The thermal analysis showed that no cases of explosive spalling were recorded during sample exposure to various fires, while the used hook-end steel fibres had an influence on the considered test variables. The sample cores almost reached the target heat, and the thermal saturation degree at the peak ranged from 55 to 97%. The experimental findings also revealed slight surface cracking after exposure to 560 °C fires, while the surface cracking was more obvious for specimens exposed to 825 °C. Moreover, the residual compressive strength of the S–HSGC at various fires was noticeably 10.20% higher than that of the HSGC. Also, state-of-the-art research data were used to discuss the prediction model’s performance. The SEM and EDX results showed that the self-cured geopolymerization process was effective and successful in producing gels, in addition to the significant phase transformations in microstructures at different fires. This study presented sophisticated data on the behaviour of HSGC and S–HSGC exposed to fires up to 825 °C. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 6518 KiB  
Article
Aging Behavior and Mechanism Evolution of Nano-Al2O3/Styrene-Butadiene-Styrene-Modified Asphalt under Thermal-Oxidative Aging
by Zhiyuan Ji, Xing Wu, Yao Zhang and Gabriele Milani
Materials 2023, 16(17), 5866; https://doi.org/10.3390/ma16175866 - 27 Aug 2023
Cited by 5 | Viewed by 1450
Abstract
The goal of this paper is to analyze the aging behavior and the mechanism evolution of nano-Al2O3 (NA)-reinforced styrene-butadiene-styrene (SBS) asphalt under different thermal-oxidative aging conditions. First, NA/SBS-modified asphalt and SBS-modified asphalt with different aging levels were prepared. Second, the [...] Read more.
The goal of this paper is to analyze the aging behavior and the mechanism evolution of nano-Al2O3 (NA)-reinforced styrene-butadiene-styrene (SBS) asphalt under different thermal-oxidative aging conditions. First, NA/SBS-modified asphalt and SBS-modified asphalt with different aging levels were prepared. Second, the viscosity and high temperature rheological performance of the specimens were tested and the property-related aging indexes were calculated and compared. Third, a Fourier transform infrared (FTIR) test of the specimen was conducted and the chemical group-related aging indexes were calculated and analyzed. Fourth, gel permeation chromatography (GPC) was used to analyze the molecular weight of the specimens under different aging levels. Then, an atomic force microscope (AFM) was adopted to analyze the microsurface morphology of different specimens. Finally, correlation analysis between property-related indexes and chemical group indexes was conducted. The results show that NA can enhance the thermal-oxidative aging resistance of SBS asphalt. NA can inhibit the increase in sulfoxide groups and the degradation of the SBS polymer with the increase in aging. NA can slow down the formation of large molecule during the aging process. The degree of change in both the bee structures and micromorphological roughness of NA/SBS asphalt is lower than that of SBS asphalt under different aging levels. Full article
Show Figures

Figure 1

15 pages, 2703 KiB  
Article
Incorporation of Lignin in Bio-Based Resins for Potential Application in Fiber–Polymer Composites
by Marina Machado, Mateus Hofmann, Mário Garrido, João R. Correia, João C. Bordado and Inês C. Rosa
Appl. Sci. 2023, 13(14), 8342; https://doi.org/10.3390/app13148342 - 19 Jul 2023
Cited by 5 | Viewed by 2365
Abstract
Bio-based resins, obtained from renewable raw materials, are a more sustainable alternative to oil-based resins for fiber-reinforced polymer (FRP) composites. The incorporation of lignin in those resins has the potential to enhance their performance. This paper presents results of an experimental study about [...] Read more.
Bio-based resins, obtained from renewable raw materials, are a more sustainable alternative to oil-based resins for fiber-reinforced polymer (FRP) composites. The incorporation of lignin in those resins has the potential to enhance their performance. This paper presents results of an experimental study about the effects of Lignoboost lignin incorporation on a partially bio-based vinyl ester (VE) resin. Two resins were prepared—without (reference) and with lignin addition (4% by weight) to its main chain—and their chemical, thermophysical, and mechanical properties were compared using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and tensile and shear tests. Results suggest that the addition of lignin to the base resin resulted in a copolymer of increased heterogeneity and higher molecular weight, incorporating stiff and complex aromatic structures in the polymer chain. While requiring high-temperature curing, the VE–lignin copolymer presented improvements of 27% in tensile strength, 4% in shear strength, and increased glass transition temperature by about 8 °C, thus confirming the potential of this natural biopolymer for FRP composite applications. Full article
Show Figures

Figure 1

13 pages, 5603 KiB  
Article
Glass Fiber Reinforced Epoxy-Amine Thermosets and Solvate IL: Towards New Composite Polymer Electrolytes for Lithium Battery Applications
by Natália Magalhães, Beatriz Arouca Maia, Maria Helena Braga, Raquel M. Santos, Nuno Correia and Eunice Cunha
Int. J. Mol. Sci. 2023, 24(13), 10703; https://doi.org/10.3390/ijms241310703 - 27 Jun 2023
Cited by 3 | Viewed by 2332
Abstract
To effectively use (Li) lithium metal anodes, it is becoming increasingly necessary to create membranes with high lithium conductivity, electrochemical and thermal stabilities, as well as adequate mechanical properties. Composite gel polymer electrolytes (CGPE) have emerged as a promising strategy, offering improved ionic [...] Read more.
To effectively use (Li) lithium metal anodes, it is becoming increasingly necessary to create membranes with high lithium conductivity, electrochemical and thermal stabilities, as well as adequate mechanical properties. Composite gel polymer electrolytes (CGPE) have emerged as a promising strategy, offering improved ionic conductivity and structural performance compared to polymer electrolytes. In this study, a simple and scalable approach was developed to fabricate a crosslinked polyethylene oxide (PEO)-based membrane, comprising two different glass fiber reinforcements, in terms of morphology and thickness. The incorporation of a solvated ionic liquid into the developed membrane enhances the ionic conductivity and reduces flammability in the resulting CGPE. Galvanostatic cycling experiments demonstrate favorable performance of the composite membrane in symmetric Li cells. Furthermore, the CGPE demonstrated electrochemical stability, enabling the cell to cycle continuously for more than 700 h at a temperature of 40 °C without short circuits. When applied in a half-cell configuration with lithium iron phosphate (LFP) cathodes, the composite membrane enabled cycling at different current densities, achieving a discharge capacity of 144 mAh·g−1. Overall, the findings obtained in this work highlight the potential of crosslinked PEO-based composite membranes for high-performance Li metal anodes, with enhanced near room temperature conductivity, electrochemical stability, and cycling capability. Full article
Show Figures

Figure 1

20 pages, 4717 KiB  
Article
Mechanical Properties of Ballastless Track Considering Freeze–Thaw Deterioration Damage
by Haoran Xie, Lingyan Xu and Bin Yan
Mathematics 2023, 11(10), 2289; https://doi.org/10.3390/math11102289 - 14 May 2023
Cited by 5 | Viewed by 2156
Abstract
In order to investigate the stress characteristics of ballastless track under high latitude, and multi-source and multi-field extreme temperature conditions. Based on the finite element theory and the elastic foundation beam–plate principle, a finite element model of the ballastless track considering the limit [...] Read more.
In order to investigate the stress characteristics of ballastless track under high latitude, and multi-source and multi-field extreme temperature conditions. Based on the finite element theory and the elastic foundation beam–plate principle, a finite element model of the ballastless track considering the limit convex abutment, gel resin, and interlayer bonding is established. The mechanical characteristics of the ballastless track under the slab–CAM layer bonding state, mortar separation, freeze–thaw degradation and forced deformation of the foundation are studied. Considering the deterioration of materials, the bending moment and reinforcement of track structures in cold regions are checked and calculated. The studies show that under the action of negative temperature gradient load, the edge of the track slab is subjected to tension, and structural separation occurs at the edge of the slab. When the interface between the track slab–CAM layer is poorly bonded, the bearing capacity can be improved, and the amount of separation can be reduced by increasing the structural stiffness of the CAM layer. Under the action of freeze–thaw cycles, the material performance deteriorates seriously, the separation between the track structures intensifies, the baseplate is seriously powdered and cracked, and the maximum tensile stress exceeds 6 MPa. The CAM layer and the baseplate are weak structures, and the foundation frost heave occurs at the expansion joint of the baseplate, which is the frost heave condition. Under freeze–thaw deterioration, the original reinforcement design of the substructure structure does not meet the requirements of structural cracks and reinforcement yield stress. In severely cold areas, the structural reinforcement scheme should be reasonably determined. Full article
(This article belongs to the Special Issue Model and Simulation in Structural Engineering)
Show Figures

Figure 1

22 pages, 3922 KiB  
Review
Alkaline Degradation of Plant Fiber Reinforcements in Geopolymer: A Review
by Chun Lv and Jie Liu
Molecules 2023, 28(4), 1868; https://doi.org/10.3390/molecules28041868 - 16 Feb 2023
Cited by 28 | Viewed by 3293
Abstract
Plant fibers (PFs), such as hemp, Coir, and straw, are abundant in resources, low in price, light weight, biodegradable, have good adhesion to the matrix, and have a broad prospect as reinforcements. However, the degradation of PFs in the alkaline matrix is one [...] Read more.
Plant fibers (PFs), such as hemp, Coir, and straw, are abundant in resources, low in price, light weight, biodegradable, have good adhesion to the matrix, and have a broad prospect as reinforcements. However, the degradation of PFs in the alkaline matrix is one of the main factors that affects the durability of these composites. PFs have good compatibility with cement and the geopolymer matrix. They can induce gel growth of cement-based materials and have a good toughening effect. The water absorption of the hollow structure of the PF can accelerate the degradation of the fiber on the one hand and serve as the inner curing fiber for the continuous hydration of the base material on the other. PF is easily deteriorated in the alkaline matrix, which has a negative effect on composites. The classification and properties of PFs, the bonding mechanism of the interface between PF reinforcements and the matrix, the water absorption of PF, and its compatibility with the matrix were summarized. The degradation of PFs in the alkaline matrix and solution, drying and wetting cycle conditions, and high-temperature conditions were reviewed. Finally, some paths to improve the alkaline degradation of PF reinforcement in the alkaline matrix were proposed. Full article
(This article belongs to the Special Issue Recent Advances in Cementitious Materials)
Show Figures

Figure 1

20 pages, 8839 KiB  
Article
Vapor Phase Ammonia Curing to Improve the Mechanical Properties of Antireflection Optical Coatings Designed for Power Laser Optics
by Jérémy Avice, Guillaume Brotons, Pascal Ruello, Gwenaëlle Vaudel, Amira Guediche and Hervé Piombini
Gels 2023, 9(2), 140; https://doi.org/10.3390/gels9020140 - 7 Feb 2023
Cited by 6 | Viewed by 2092
Abstract
Projects of inertial confinement fusion using lasers need numerous optical components whose coatings allow the increase in their transmission and their resistance to high laser fluence. A coating process based on the self-assembly of sol–gel silica nanoparticles and a post-treatment with ammonia vapor [...] Read more.
Projects of inertial confinement fusion using lasers need numerous optical components whose coatings allow the increase in their transmission and their resistance to high laser fluence. A coating process based on the self-assembly of sol–gel silica nanoparticles and a post-treatment with ammonia vapor over the surfaces of the optical components (“ammonia curing process”) was developed and successfully optimized for industrial production. Manufacturing such antireflective coatings has clear advantages: (i) it is much cheaper than conventional top-down processes; (ii) it is well adapted to large-sized optical components and large-scale production; and (iii) it gives low optical losses in transmission and high resistances to laser fluence. The post-treatment was achieved by a simple exposition of optical components to room-temperature ammonia vapors. The resulting curing process induced strong optical and mechanical changes at the interface and was revealed to be of paramount importance since it reinforced the adhesion and abrasion resistance of the components so that the optical components could be handled easily. Here, we discuss how such coatings were characterized and how the initial thin nanoparticle film was transformed from a brittle film to a resistant coating from the ammonia curing process. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

12 pages, 3159 KiB  
Article
Auto-Continuous Synthesis of Robust and Hydrophobic Silica Aerogel Microspheres from Low-Cost Aqueous Sodium Silicate for Fast Dynamic Organics Removal
by Ziqian Sun, Zhiyang Zhao, Yong Kong, Jian Ren, Xing Jiang and Xiaodong Shen
Gels 2022, 8(12), 778; https://doi.org/10.3390/gels8120778 - 28 Nov 2022
Cited by 18 | Viewed by 3242
Abstract
An efficient auto-continuous globing process was developed with a self-built apparatus to synthesize pure silica aerogel microspheres (PSAMs) using sodium silicate as a precursor and water as a solvent. A hydrophobic silica aerogel microsphere (HSAM) was obtained by methyl grafting. A reinforced silica [...] Read more.
An efficient auto-continuous globing process was developed with a self-built apparatus to synthesize pure silica aerogel microspheres (PSAMs) using sodium silicate as a precursor and water as a solvent. A hydrophobic silica aerogel microsphere (HSAM) was obtained by methyl grafting. A reinforced silica aerogel microsphere (RSAM) was prepared by polymer cross-linking on the framework of the silica gel. The pH value of the reaction system and the temperature of the coagulating bath were critical to form perfect SAMs with a diameter of 3.0 ± 0.2 mm. The grafted methyl groups are thermally stable up to 400 °C. Polymer cross-linking increased the strength significantly, owing to the polymer coating on the framework of silica aerogel. The pore volumes of HSAM (6.44 cm3/g) and RSAM (3.17 cm3/g) were much higher than their state-of-the-art counterparts. Their specific surface areas were also at a high level. The HSAM and RSAM showed high organic sorption capacities, i.e., 17.9 g/g of pump oil, 11.8 g/g of hexane, and 22.2 mg/g of 10 mg/L methyl orange. The novel preparation method was facile, cost-effective, safe, and eco-friendly, and the resulting SAM sorbents were exceptional in capacity, dynamics, regenerability, and stability. Full article
(This article belongs to the Special Issue Advanced Hydrogel for Water Treatment)
Show Figures

Figure 1

Back to TopTop