Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,081)

Search Parameters:
Keywords = regulated cell death

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
57 pages, 958 KB  
Review
Oxidative Stress and SIRT1-Nrf2 Anti-Ferroptotic Pathways in Granulosa Cells: A Molecular Key to Follicular Atresia and Ovarian Aging
by Charalampos Voros, Fotios Chatzinikolaou, Georgios Papadimas, Spyridon Polykalas, Despoina Mavrogianni, Aristotelis-Marios Koulakmanidis, Diamantis Athanasiou, Vasiliki Kanaka, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Ioannis Papapanagiotou, Charalampos Tsimpoukelis, Athanasios Karpouzos, Maria Anastasia Daskalaki, Nikolaos Kanakas, Marianna Theodora, Nikolaos Thomakos, Panagiotis Antsaklis, Dimitrios Loutradis and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2026, 27(2), 950; https://doi.org/10.3390/ijms27020950 (registering DOI) - 18 Jan 2026
Abstract
The functional deterioration of granulosa cells (GCs), essential for follicular growth, steroidogenesis, and oocyte competence, indicates ovarian aging and reduced fertility. An expanding corpus of research indicates that oxidative stress is a primary molecular contributor to granulosa cell dysfunction, culminating in mitochondrial impairment, [...] Read more.
The functional deterioration of granulosa cells (GCs), essential for follicular growth, steroidogenesis, and oocyte competence, indicates ovarian aging and reduced fertility. An expanding corpus of research indicates that oxidative stress is a primary molecular contributor to granulosa cell dysfunction, culminating in mitochondrial impairment, reduced metabolic support for oocytes, and the activation of regulated apoptotic pathways that end in follicular atresia. Ferroptosis, an emergent type of iron-dependent lipid peroxidation, has been identified as a crucial mechanism contributing to chemotherapy-induced ovarian insufficiency, polycystic ovary syndrome (PCOS), and granulosa cell death in aging ovaries, in addition to conventional apoptosis. The SIRT1-Nrf2 axis acts as a crucial anti-oxidative and anti-ferroptotic system that protects GC viability, maintains mitochondrial homeostasis, and upholds redox equilibrium. SIRT1 promotes mitochondrial biogenesis and metabolic resilience by deacetylating downstream proteins, including FOXO3 and PGC-1α. Nrf2 simultaneously controls the transcriptional activation of detoxifying and antioxidant enzymes, including HO-1, SOD2, NQO1, and GPX4, which are critical inhibitors of ferroptosis. Disruption of SIRT1-Nrf2 signalling accelerates GC senescence, follicular depletion, and reproductive aging. In contrast, pharmaceutical and nutraceutical therapies, including metformin, melatonin, resveratrol, and agents that increase NAD+ levels, may reverse ovarian deterioration and reactivate SIRT1-Nrf2 activity. This narrative review highlights innovative treatment prospects for ovarian aging, fertility preservation, and assisted reproduction by synthesising current evidence on ferroptotic pathways, SIRT1-Nrf2 interactions, and oxidative stress in granulosa cells. An understanding of these interrelated biological networks enables the development of tailored therapies that postpone ovarian ageing and enhance reproductive outcomes for women receiving fertility therapy. Full article
(This article belongs to the Special Issue Molecular Studies in Endocrinology and Reproductive Biology)
14 pages, 4964 KB  
Article
FOXO1 Inhibition and FADD Knockdown Have Opposing Effects on Anticancer Drug-Induced Cytotoxicity and p21 Expression in Osteosarcoma Cells
by Danielle Walker, Antanay Hall, Alexis Bonwell, Nancy Gordon, Danielle Robinson and Mario G. Hollomon
Int. J. Mol. Sci. 2026, 27(2), 935; https://doi.org/10.3390/ijms27020935 (registering DOI) - 17 Jan 2026
Abstract
Forkhead box class O1 (FOXO1) and fas-associated death domain (FADD) regulate cell death pathways and homeostatic processes such as cell cycle progression and apoptosis. FADD phosphorylation promotes nuclear localization of FOXO1, and FOXO1 regulates FADD expression. Therefore, it is plausible that FOXO1 and [...] Read more.
Forkhead box class O1 (FOXO1) and fas-associated death domain (FADD) regulate cell death pathways and homeostatic processes such as cell cycle progression and apoptosis. FADD phosphorylation promotes nuclear localization of FOXO1, and FOXO1 regulates FADD expression. Therefore, it is plausible that FOXO1 and FADD have synergistic or antagonistic effects on cell cycle regulation and the response to anticancer drug treatment in cancer cells. In the present study, we report that AS1842856-mediated inhibition of FOXO1 reverses anticancer drug-induced cytotoxicity, while FADD knockdown increases anticancer drug-induced cytotoxicity in osteosarcoma (OS). Reversed anticancer drug-induced cytotoxicity was accompanied by G2/M cell cycle arrest and increased expression of p21. The anticancer function of FOXO1 was further supported by the observation that OS cells that express higher basal levels of FOXO1 had increased sensitivity to camptothecin-induced cytotoxicity. FADD knockdown reversed the FOXO1 inhibition-induced increase in p21 expression. The results presented in this study indicate that FOXO1 has a tumor suppressor function, while FADD has a tumor-promoting function in OS following anticancer drug treatment. The experimental approach used in this investigation also indicates that FADD antagonizes the effect of FOXO1 on p21 expression in OS. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

42 pages, 3871 KB  
Article
Pharmacologic Modulation of the PAR-2–ERK Axis by Statins Converts Inflammatory Survival Signalling into Apoptosis in Colorectal Cancer Cells
by Layla Amiri, Rajashree Patnaik, Riah Lee Varghese, Bintul Huda and Yajnavalka Banerjee
Int. J. Mol. Sci. 2026, 27(2), 916; https://doi.org/10.3390/ijms27020916 - 16 Jan 2026
Viewed by 43
Abstract
Chronic inflammation constitutes a well-established driver of colorectal carcinogenesis, yet the molecular circuitry linking inflammatory receptor signalling to tumour cell survival remains incompletely delineated. Here we demonstrate that the HMG-CoA reductase inhibitors atorvastatin and rosuvastatin modulate inflammatory survival pathways in colorectal cancer cells [...] Read more.
Chronic inflammation constitutes a well-established driver of colorectal carcinogenesis, yet the molecular circuitry linking inflammatory receptor signalling to tumour cell survival remains incompletely delineated. Here we demonstrate that the HMG-CoA reductase inhibitors atorvastatin and rosuvastatin modulate inflammatory survival pathways in colorectal cancer cells in a manner consistent with targeted interference with the protease-activated receptor 2 (PAR-2)–extracellular signal-regulated kinase (ERK)–tumour necrosis factor-α (TNF-α) signalling axis. Using lipopolysaccharide-stimulated HT-29 and Caco-2 cells as complementary models of inflammatory colorectal malignancy, we show that both statins selectively attenuate PAR-2 expression at the protein and transcript levels while leaving structurally related PAR-1 unaffected. This pattern of receptor modulation is accompanied by suppression of total ERK1/2 expression, ERK1/2 phosphorylation, and the transcriptional target DUSP6, together with attenuation of TNF-α secretion. Importantly, these signaling shifts are associated with dual apoptotic programs; the extrinsic pathway, reflected by transcriptional upregulation and proteolytic activation of caspase-8; and the intrinsic mitochondrial pathway, evidenced by reciprocal modulation of Bcl-2 family proteins favoring Bax over Bcl-2. Both pathways converge upon activation of executioner caspase-3 and an increase in Annexin V-defined apoptotic fractions, indicating re-engagement of programmed cell death under inflammatory stress. Notably, rosuvastatin consistently demonstrates superior potency across signaling endpoints, achieving comparable biological effects at lower concentrations than atorvastatin. Collectively, these data indicate that clinically deployed statins target the PAR-2–ERK axis and are associated with re-activation of apoptotic pathways in inflammatory colorectal cancer models, while leaving open the possibility that additional statin-responsive networks contribute to their pro-apoptotic effects. This mechanistic framework provides biological plausibility for epidemiologic observations linking statin use with reduced colorectal cancer risk and improved outcomes, and supports further translational evaluation of PAR-2-directed statin strategies in colorectal malignancy. Full article
(This article belongs to the Special Issue Colorectal Cancer—Emerging Trends and Treatment Strategies)
23 pages, 1234 KB  
Review
Prostate Cancer, JAK/STAT3 Dysregulation, and Flavonoids: Is There a Possible Link?
by Valentina Uivarosi, Daniela Miricescu, Ileana Adela Vacaroiu, Dan Arsenie Spinu, Constantin Stefani, Silviu Stanciu, Remus Iulian Nica, Iulia-Ioana Stanescu-Spinu, Silviu Constantin Badoiu, Silvia Nica and Viorel Jinga
Int. J. Mol. Sci. 2026, 27(2), 885; https://doi.org/10.3390/ijms27020885 - 15 Jan 2026
Viewed by 117
Abstract
Worldwide, prostate cancer (PC) has a rising incidence and is the sixth leading cause of death globally, especially with increasing cases in developing countries. Risk factors for PC include genetic predisposition, family history, race/ethnicity, and various occupational factors like diet, obesity, smoking, and [...] Read more.
Worldwide, prostate cancer (PC) has a rising incidence and is the sixth leading cause of death globally, especially with increasing cases in developing countries. Risk factors for PC include genetic predisposition, family history, race/ethnicity, and various occupational factors like diet, obesity, smoking, and transmitted diseases. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway can be activated by hormones, cytokines, and growth factors, and it plays a role in many vital biological processes such as cell growth, differentiation, immune regulation, and apoptosis. Dysregulation of JAK/STAT3 can lead to cancer, inflammation, diabetes, and neurodegenerative disorders. In cancers, including PC, STAT3 promotes cell survival, progression, angiogenesis, and metastasis. Inhibitors targeting JAK and STAT3 tested in vivo have shown potential to inhibit malignant cell growth. Additionally, flavonoids are bioactive plant compounds that are important in preventing inflammation, oxidative stress, and cancer. Research indicates that natural flavonoids can be developed into cancer-preventive and therapeutic agents. Experimental studies have demonstrated that some flavonoids can inhibit PC development. The main goal of this review is to present the incidence and risk factors of PC, the JAK/STAT3 pathway and its inhibitors, and how flavonoids may influence this pathology. Full article
Show Figures

Figure 1

43 pages, 2779 KB  
Review
Molecular and Immune Mechanisms Governing Cancer Metastasis, Including Dormancy, Microenvironmental Niches, and Tumor-Specific Programs
by Dae Joong Kim
Int. J. Mol. Sci. 2026, 27(2), 875; https://doi.org/10.3390/ijms27020875 - 15 Jan 2026
Viewed by 104
Abstract
Metastasis is still the leading cause of cancer-related death. It happens when disseminated tumor cells (DTCs) successfully navigate a series of steps and adapt to the unique conditions of distant organs. In this review, key molecular and immune mechanisms that shape metastatic spread, [...] Read more.
Metastasis is still the leading cause of cancer-related death. It happens when disseminated tumor cells (DTCs) successfully navigate a series of steps and adapt to the unique conditions of distant organs. In this review, key molecular and immune mechanisms that shape metastatic spread, long-term survival, and eventual outgrowth are examined, with a focus on how tumor-intrinsic programs interact with extracellular matrix (ECM) remodeling, angiogenesis, and immune regulation. Gene networks that sustain tumor-cell plasticity and invasion are described, including EMT-linked transcription factors such as SNAIL and TWIST, as well as broader transcriptional regulators like SP1. Also, how epigenetic mechanisms, such as EZH2 activity, DNA methylation, chromatin remodeling, and noncoding RNAs, lock in pro-metastatic states and support adaptation under therapeutic pressure. Finally, proteases and matrix-modifying enzymes that physically and biochemically reshape tissues, including MMPs, uPA, cathepsins, LOX/LOXL2, and heparinase, are discussed for their roles in releasing stored growth signals and building permissive niches that enable seeding and colonization. In parallel, immune-evasion strategies that protect circulating and newly seeded tumor cells are discussed, including platelet-mediated shielding, suppressive myeloid populations, checkpoint signaling, and stromal barriers that exclude effector lymphocytes. A major focus is metastatic dormancy, cellular, angiogenic, and immune-mediated, framed as a reversible survival state regulated by stress signaling, adhesion cues, metabolic rewiring, and niche constraints, and as a key determinant of late relapse. Tumor-specific metastatic programs across mesenchymal malignancies (osteosarcoma, chondrosarcoma, and liposarcoma) and selected high-burden cancers (melanoma, hepatocellular carcinoma, glioblastoma, and breast cancer) are highlighted, emphasizing shared principles and divergent organotropisms. Emerging therapeutic strategies that target both the “seed” and the “soil” are also discussed, including immunotherapy combinations, stromal/ECM normalization, chemokine-axis inhibition, epigenetic reprogramming, and liquid-biopsy-enabled minimal residual disease monitoring, to prevent reactivation and improve durable control of metastatic disease. Full article
(This article belongs to the Special Issue Molecular Mechanism Involved in Cancer Metastasis)
Show Figures

Figure 1

27 pages, 2034 KB  
Review
The Multilayered Landscape of Ferroptosis: Plasticity, Propagation, and Evolutionary Perspectives
by Hong Chen, Hongfa Yan, Hong Bu and Feng Ye
Antioxidants 2026, 15(1), 111; https://doi.org/10.3390/antiox15010111 - 15 Jan 2026
Viewed by 306
Abstract
Ferroptosis is a distinct form of regulated necrotic cell death driven by iron-dependent phospholipid peroxidation, characterized by flexible and context-dependent mechanisms rather than a single fixed linear pathway. This study elucidates the critical lipid peroxidation networks and antioxidant defense systems used in determining [...] Read more.
Ferroptosis is a distinct form of regulated necrotic cell death driven by iron-dependent phospholipid peroxidation, characterized by flexible and context-dependent mechanisms rather than a single fixed linear pathway. This study elucidates the critical lipid peroxidation networks and antioxidant defense systems used in determining ferroptosis, specifically emphasizing how these mechanisms underpin the plasticity of this cell death mode and its correlation with therapeutic resistance. We examine the catastrophic propagation of ferroptosis, detailing the multi-layered amplification mechanisms—ranging from intracellular organelle crosstalk to intercellular trigger waves—that may facilitate massive tissue damage in degenerative diseases and ischemic injuries. Furthermore, the evolutionary conservation of ferroptosis-like phenomena across diverse species is summarized, underscoring its fundamental role in development and host–pathogen interactions. To conclude, we explore pivotal knowledge gaps that remain in our understanding of ferroptosis. By integrating these complex regulatory networks, this review provides a comprehensive framework for understanding ferroptosis as an adaptable, self-amplifying process, informing future efforts to modulate ferroptosis in disease contexts. Notably, this review focuses on the amplification, execution, and propagation phases of ferroptosis rather than on its initial triggering mechanisms, which remain an area of active investigation. Full article
Show Figures

Figure 1

19 pages, 4384 KB  
Article
Study on the Mechanism of Ganoderma lucidum Polysaccharides for Ameliorating Dyslipidemia via Regulating Gut Microbiota and Fecal Metabolites
by Wenshuai Wang, Rui Sun, Jianjun Zhang, Le Jia and Yuanjun Dong
Biomolecules 2026, 16(1), 153; https://doi.org/10.3390/biom16010153 - 14 Jan 2026
Viewed by 131
Abstract
In today’s world, unhealthy living habits have contributed to the rise in metabolic disorders like hyperlipidemia. Recognized as a popular edible and medicinal mushroom in China and various eastern nations, Ganoderma lucidum is a promising high-value functional and medicinal food with multiple biological [...] Read more.
In today’s world, unhealthy living habits have contributed to the rise in metabolic disorders like hyperlipidemia. Recognized as a popular edible and medicinal mushroom in China and various eastern nations, Ganoderma lucidum is a promising high-value functional and medicinal food with multiple biological activities. Our earlier research has demonstrated that G. lucidum polysaccharides (GLP) showed distinct lipid-lowering abilities by enhancing the response to oxidative stress and inflammation, adjusting bile acid production and lipid regulation factors, and facilitating reverse cholesterol transport through Nrf2-Keap1, NF-κB, LXRα-ABCA1/ABCG1, CYP7A1-CYP27A1, and FXR-FGF15 pathways, hence we delved deeper into the effects of GLP on hyperlipidemia, focusing on its structural characterization, gut microbiota, and fecal metabolites. Our findings showed that GLP changed the composition and structure of gut microbiota, and 10 key biomarker strains screened by LEfSe analysis markedly increased the abundance of energy metabolism, and cell growth and death pathways which were found by PICRUSt2. In addition, GLP intervention significantly altered the fecal metabolites, which enriched in amino acid metabolism and lipid metabolism pathways. The results of structural characterization showed that GLP, with the molecular weight of 12.53 kDa, consisted of pyranose rings and was linked by α-type and β-type glycosidic bonds, and its overall morphology appeared as an irregular flaky structure with some flecks and holes in the surface. Collectively, our study highlighted that the protective effects of GLP were closely associated with the modification of gut microbiota and the regulation of metabolites profiles, thus ameliorating dyslipidemia. Full article
Show Figures

Graphical abstract

23 pages, 2955 KB  
Review
Molecular Mechanisms and Therapeutic Potential of Baicalein in Acute Pancreatitis: A Comprehensive Review
by Linbo Yao, Shiyu Liu, Wei Huang and Xinmin Yang
Biomolecules 2026, 16(1), 151; https://doi.org/10.3390/biom16010151 - 14 Jan 2026
Viewed by 175
Abstract
Acute pancreatitis (AP) is a severe inflammatory disorder characterized by a complex molecular pathophysiology involving premature zymogen activation, organelle dysfunction, and systemic immune dysregulation. Current therapeutic strategies remain largely supportive, underscoring the critical need for specific molecular-targeted interventions. Baicalein, a bioactive flavonoid derived [...] Read more.
Acute pancreatitis (AP) is a severe inflammatory disorder characterized by a complex molecular pathophysiology involving premature zymogen activation, organelle dysfunction, and systemic immune dysregulation. Current therapeutic strategies remain largely supportive, underscoring the critical need for specific molecular-targeted interventions. Baicalein, a bioactive flavonoid derived from Scutellaria baicalensis Georgi, has emerged as a potent pleiotropic agent. This review comprehensively synthesizes the molecular mechanisms underlying baicalein’s therapeutic efficacy in AP. Its capacity to intercept the pathological cascade at multiple checkpoints is elucidated, from mitigating the initiating cytosolic calcium overload and preserving mitochondrial integrity to suppressing the cytokine storm via the TLR4/NF-κB/MAPK signaling axis. Crucially, baicalein modulates the pancreatic immune microenvironment by driving the phenotypic polarization of macrophages from pro-inflammatory M1 to reparative M2 states and regulating neutrophil dynamics, specifically by inhibiting infiltration and neutrophil extracellular trap formation. Furthermore, its role in orchestrating regulated cell death pathways is highlighted, specifically by blocking pyroptosis and ferroptosis while modulating apoptosis, and its function as a biophysical scavenger of circulating histones and pancreatic lipase to neutralize systemic toxins. Consequently, this review emphasizes the multi-target biological activities of baicalein, providing a mechanistic rationale for its development as a precision therapeutic candidate for AP. Full article
Show Figures

Figure 1

22 pages, 125254 KB  
Article
ENOX2 (tNOX)–Associated Stemness in Oral Cancer Cells and Its Clinical Correlation in Head and Neck Tumors
by Che-Wei Wang, Atikul Islam, Yu-Tung Shih, Chin-Fang Chang, Mu Kuan Chen and Pin Ju Chueh
Antioxidants 2026, 15(1), 98; https://doi.org/10.3390/antiox15010098 - 13 Jan 2026
Viewed by 301
Abstract
Cancer remains one of the most common causes of death worldwide and imposes enormous social and economic burdens. Human tumor-associated NADH oxidase (ENOX2, also known as tNOX) is a cancer cell-specialized NADH oxidase that is expressed on the membranes of cancer cells. In [...] Read more.
Cancer remains one of the most common causes of death worldwide and imposes enormous social and economic burdens. Human tumor-associated NADH oxidase (ENOX2, also known as tNOX) is a cancer cell-specialized NADH oxidase that is expressed on the membranes of cancer cells. In this study, we investigated the potential role of ENOX2 in regulating stemness properties in oral cancer through a combination of in vitro, in vivo, and bioinformatics approaches. We found that ENOX2 physically interacted with the stem cell transcription factor, SOX2, in co-immunoprecipitation experiments. The expression and activity of ENOX2 were elevated in p53-functional SAS and p53-mutated HSC-3 oral cancer cell spheroids compared with their monolayer counterparts. Consistently, SIRT1, a downstream effector modulated by ENOX2 through NAD+ generation, was also upregulated in spheroid cultures. Functional studies further established that ENOX2 overexpression significantly enhanced spheroid formation, self-renewal properties, stem cell marker expression, and PKCδ expression, whereas ENOX2 knockdown produced the opposite effects. In xenograft models, ENOX2-overexpressing oral cancer cell spheroids exhibited enhanced tumorigenicity, while ENOX2-silenced spheroids formed significantly smaller tumors. Complementary analyses of public transcriptomic and proteomic datasets revealed elevated ENOX2 expression in human head and neck tumor tissues compared with adjacent normal tissues. Based on these findings and literature-supported correlations, we propose a putative ENOX2-SIRT1-SOX2 regulatory framework that may contribute to the acquisition and maintenance of stem-like properties of oral cancer cells. While the ENOX2–SOX2 interaction was experimentally validated, the roles of SIRT1 and other downstream components are inferred from bioinformatic analyses and prior studies; thus, this axis represents a hypothetical model that warrants further mechanistic investigation. Collectively, our results identify ENOX2 as a potential regulator of oral cancer stemness and provide a conceptual foundation for future studies aimed at elucidating its downstream pathways and clinical relevance in head and neck tumors. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

25 pages, 4161 KB  
Article
p53 Interacts with VDAC1, Modulating Its Expression Level and Oligomeric State to Activate Apoptosis
by Elinor Gigi, Aditya Karunanithi Nivedita, Danya Ben-Hail, Manikandan Santhanam, Anna Shteinfer-Kuzmine and Varda Shoshan-Barmatz
Biomolecules 2026, 16(1), 141; https://doi.org/10.3390/biom16010141 - 13 Jan 2026
Viewed by 198
Abstract
The p53 tumor suppressor, a key transcription factor, acts as a cellular stress sensor that regulates hundreds of genes involved in responses to DNA damage, oxidative stress, and ischemia. Through these actions, p53 can arrest cell cycle, initiate DNA repair, or trigger cell [...] Read more.
The p53 tumor suppressor, a key transcription factor, acts as a cellular stress sensor that regulates hundreds of genes involved in responses to DNA damage, oxidative stress, and ischemia. Through these actions, p53 can arrest cell cycle, initiate DNA repair, or trigger cell death. In addition to its nuclear functions, p53 can translocate to mitochondria to promote apoptosis. Studies using isolated mitochondria have suggested that p53 drives the voltage-dependent anion channel (VDAC1) into high molecular mass complexes to mediate apoptosis. VDAC1 is a central regulator of cellular energy production and metabolism and also an essential player in apoptosis, induced by various apoptotic stimuli and stress conditions. We previously demonstrated that VDAC1 oligomerization, induced by various apoptosis stimuli and stress conditions, forms a large pore that enables cytochrome c release from mitochondria, thereby promoting apoptotic cell death. In this study, we show that p53 interacts with VDAC1, modulates its expression levels, and promotes VDAC1 oligomerization-dependent apoptosis. Using purified proteins, we found that p53 directly binds VDAC1, as revealed by microscale thermophoresis and by experiments using bilayer-reconstituted VDAC1, in which p53 reduced VDAC1 channel conductance. Furthermore, overexpression of p53 in p53-null cells or in cells expressing wild-type p53 increased VDAC1 expression and induced VDAC1 oligomerization even in the absence of apoptotic stimuli. Together, these findings identify VDAC1 as a direct p53 target whose expression, oligomerization, and pro-apoptotic activity are regulated by p53. They also reinforce the central role of VDAC1 oligomerization in apoptosis. Full article
Show Figures

Figure 1

16 pages, 2657 KB  
Review
Ambiguous Role of p53 in Transcription-Dependent Tumor Cell Death
by Angelina A. Romanova, Tatyana A. Grigoreva, Anastasia D. Zenina, Anna D. Smirnaya, Kira Y. Margolina, Aleksandra Sagaidak and Vyacheslav G. Tribulovich
Int. J. Mol. Sci. 2026, 27(2), 769; https://doi.org/10.3390/ijms27020769 - 12 Jan 2026
Viewed by 189
Abstract
Currently, research in anti-cancer therapy remains a priority. This is driven by two main challenges: the difficulty of modeling and developing targeted or precision drugs and the multiple, often unpredictable, body responses to treatment. The primary objective of modern anti-cancer drugs is the [...] Read more.
Currently, research in anti-cancer therapy remains a priority. This is driven by two main challenges: the difficulty of modeling and developing targeted or precision drugs and the multiple, often unpredictable, body responses to treatment. The primary objective of modern anti-cancer drugs is the induction of cancer cell death. One of the key regulators of cell death is the tumor suppressor protein p53. This protein is a well-known transcription factor encoded by TP53. Despite the fact that p53 is generally considered a pro-apoptotic inducer, it also regulates cell death pathways such as necrosis and autophagy. Given the diversity of p53-mediated cell death pathways, establishing a specific activated mechanism is a necessary step in developing effective anti-cancer drugs, since certain types of cell death can cause adverse outcomes in patients, including infection, sepsis, tumor progression and metastasis. The review summarizes knowledge about p53-dependent cell death mechanisms and the p53 transcriptional targets that are involved. It also describes shared molecular pathways among apoptosis, necrosis, and autophagy, as well as the methods and markers used to distinguish one type of cell death from another. Full article
Show Figures

Figure 1

30 pages, 711 KB  
Review
A Systematic Review on GLP-1 Receptor Agonists in Reproductive Health: Integrating IVF Data, Ovarian Physiology and Molecular Mechanisms
by Charalampos Voros, Fotios Chatzinikolaou, Ioannis Papapanagiotou, Spyridon Polykalas, Despoina Mavrogianni, Aristotelis-Marios Koulakmanidis, Diamantis Athanasiou, Vasiliki Kanaka, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Charalampos Tsimpoukelis, Dimitrios Vaitsis, Athanasios Karpouzos, Maria Anastasia Daskalaki, Nikolaos Kanakas, Marianna Theodora, Nikolaos Thomakos, Panagiotis Antsaklis, Dimitrios Loutradis and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2026, 27(2), 759; https://doi.org/10.3390/ijms27020759 - 12 Jan 2026
Viewed by 321
Abstract
Women of reproductive age, especially those with polycystic ovarian syndrome (PCOS), often use glucagon-like peptide-1 receptor agonists (GLP-1RAs) to improve their metabolic functions. A growing body of evidence suggests that GLP-1R signaling may directly affect ovarian physiology, influencing granulosa cell proliferation, survival pathways, [...] Read more.
Women of reproductive age, especially those with polycystic ovarian syndrome (PCOS), often use glucagon-like peptide-1 receptor agonists (GLP-1RAs) to improve their metabolic functions. A growing body of evidence suggests that GLP-1R signaling may directly affect ovarian physiology, influencing granulosa cell proliferation, survival pathways, and steroidogenic production, in addition to its systemic metabolic effects. Nonetheless, there is a limited comprehension of the molecular mechanisms that regulate these activities and their correlation with menstrual function, reproductive potential, and assisted reproduction. This comprehensive review focuses on ovarian biology, granulosa cell signaling networks, steroidogenesis, and translational fertility outcomes, integrating clinical, in vivo, and in vitro information to elucidate the effects of GLP-1 receptor agonists on reproductive health. We conducted a thorough search of PubMed, Scopus, and Web of Science for randomized trials, prospective studies, animal models, and cellular experiments evaluating the effects of GLP-1RA on reproductive or ovarian outcomes, in accordance with PRISMA criteria. The retrieved data included metabolic changes, androgen levels, monthly regularity, ovarian structure, granulosa cell growth and death, FOXO1 signaling, FSH-cAMP-BMP pathway activity, and fertility or IVF results. Clinical trials shown that GLP-1 receptor agonists improve menstrual regularity, decrease body weight and central adiposity, increase sex hormone-binding globulin levels, and lower free testosterone in overweight and obese women with PCOS. Liraglutide, when combined with metformin, significantly improved IVF pregnancy rates, whereas exenatide increased natural conception rates. Mechanistic studies demonstrate that GLP-1R activation affects FOXO1 phosphorylation, hence promoting granulosa cell proliferation and anti-apoptotic processes. Incretin signaling altered steroidogenesis by reducing the levels of StAR, P450scc, and 3β-HSD, so inhibiting FSH-induced progesterone synthesis, while simultaneously enhancing BMP-Smad signaling. Animal studies demonstrated both beneficial (enhanced follicular growth, anti-apoptotic effects) and detrimental results (oxidative stress, granulosa cell death, uterine inflammation), indicating a context- and dose-dependent response. GLP-1 receptor agonists influence female reproductive biology by altering overall physiological processes and specifically impacting the ovaries via FOXO1 regulation, steroidogenic enzyme expression, and BMP-mediated FSH signaling. Preliminary clinical data indicate improved reproductive function in PCOS, as seen by increased pregnancy rates in both natural and IVF cycles; nevertheless, animal studies reveal a potential risk of ovarian and endometrial damage. These results highlight the need for controlled human research to clarify reproductive safety, molecular pathways, and optimum therapy timing, particularly in non-PCOS patients and IVF settings. Full article
(This article belongs to the Special Issue Molecular Research on Reproductive Physiology and Endocrinology)
Show Figures

Figure 1

16 pages, 527 KB  
Review
Multifaceted Attack Networks of Artemisinin in Reversing Chemoresistance in Colorectal Cancer
by Mingfei Liu, Yueling Yan, Shirong Li, Rongrong Wang, Kewu Zeng and Jingchun Yao
Molecules 2026, 31(2), 244; https://doi.org/10.3390/molecules31020244 - 11 Jan 2026
Viewed by 255
Abstract
Chemotherapy resistance in colorectal cancer (CRC) represents a critical clinical challenge leading to treatment failure and poor patient prognosis. Artemisinin is a natural product isolated from Artemisia annua, and its clinically relevant derivatives include dihydroartemisinin (DHA) and artesunate. Beyond their established antimalarial efficacy, [...] Read more.
Chemotherapy resistance in colorectal cancer (CRC) represents a critical clinical challenge leading to treatment failure and poor patient prognosis. Artemisinin is a natural product isolated from Artemisia annua, and its clinically relevant derivatives include dihydroartemisinin (DHA) and artesunate. Beyond their established antimalarial efficacy, both artemisinin and its derivatives—collectively referred to as artemisinin-derived compounds (ADs)—have been increasingly recognized for their unique potential to reverse multidrug resistance in cancer. Unlike previous reviews focusing on isolated mechanisms, this review systematically constructs a multidimensional, synergistic attack network centered on ADs to elucidate their integrated actions against chemotherapy-resistant CRC. Mechanistically, ADs suppress cancer stem cell (CSC)-associated resistance phenotypes while concurrently reshaping the tumor immune microenvironment, highlighting a functional coupling between stemness inhibition and immune remodeling. In parallel, this review presents apoptosis reactivation and ferroptosis induction as complementary, dual-track cell death strategies that collectively circumvent apoptosis resistance. Moreover, ADs exert “one-strike–multiple-effects” through coordinated regulation of pro-survival signaling networks and immune-related pathways, including the induction of immunogenic cell death (ICD) and the modulation of immunosuppressive macrophage subsets. Beyond mechanistic insights, this review integrates emerging translational considerations, including clinical pharmacokinetics, safety and tolerability, formulation and delivery strategies, and rational combination therapy paradigms in CRC. Collectively, these findings position ADs as multi-dimensional modulators rather than a single-agent cytotoxic, providing a coherent mechanistic and translational rationale for their further development in chemotherapy-resistant CRC. Full article
Show Figures

Figure 1

16 pages, 1025 KB  
Review
Treatment of Inflammatory Bowel Disease with Drugs Targeting PANoptosis: A Comprehensive Review
by John K. Triantafillidis and Stavros Karakatsanis
Biomedicines 2026, 14(1), 148; https://doi.org/10.3390/biomedicines14010148 - 11 Jan 2026
Viewed by 221
Abstract
Background: Inflammatory Bowel Disease (IBD) involves a complex interplay between immune dysregulation and intestinal barrier failure. Traditional views focused on individual cell death pathways, but the emerging concept of PANoptosis—a coordinated inflammatory cell death involving apoptosis, necroptosis, and pyroptosis—offers a more holistic understanding [...] Read more.
Background: Inflammatory Bowel Disease (IBD) involves a complex interplay between immune dysregulation and intestinal barrier failure. Traditional views focused on individual cell death pathways, but the emerging concept of PANoptosis—a coordinated inflammatory cell death involving apoptosis, necroptosis, and pyroptosis—offers a more holistic understanding of IBD pathogenesis. Objective: This review evaluates the role of PANoptosis in IBD, identifies key molecular triggers (such as the ZBP1-ADAR1 axis), and discusses the therapeutic potential of targeting this process. Methods: We analyzed recent literature and clinical trial data regarding programmed cell death (PCD) inhibitors and natural compounds in IBD models. Results: Preclinical data suggest that targeting PANoptotic regulators like RIPK1 and ZBP1 can restore barrier integrity. However, clinical translation remains challenging; for instance, while targeting pyroptosis via IL-1/IL-18 (Anakinra) showed promise in theory, clinical results in IBD have been disappointing. Furthermore, RIPK1 inhibitors such as GSK2982772 have failed to meet primary endpoints in Phase 2 trials. Conclusions: PANoptosis is a “hot” therapeutic target, but successful treatment likely requires combination therapies or “PANoptosome” specific modulators rather than single-pathway inhibition. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Graphical abstract

27 pages, 1311 KB  
Review
Peptide-Functionalized Iron Oxide Nanoparticles for Cancer Therapy: Targeting Strategies, Mechanisms, and Translational Opportunities
by Andrey N. Kuskov, Lydia-Nefeli Thrapsanioti, Ekaterina Kukovyakina, Anne Yagolovich, Elizaveta Vlaskina, Petros Tzanakakis, Aikaterini Berdiaki and Dragana Nikitovic
Molecules 2026, 31(2), 236; https://doi.org/10.3390/molecules31020236 - 10 Jan 2026
Viewed by 340
Abstract
Therapeutic peptides have emerged as promising tools in oncology due to their high specificity, favorable safety profile, and capacity to target molecular hallmarks of cancer. Their clinical translation, however, remains limited by poor stability, rapid proteolytic degradation, and inefficient biodistribution. Iron oxide nanoparticles [...] Read more.
Therapeutic peptides have emerged as promising tools in oncology due to their high specificity, favorable safety profile, and capacity to target molecular hallmarks of cancer. Their clinical translation, however, remains limited by poor stability, rapid proteolytic degradation, and inefficient biodistribution. Iron oxide nanoparticles (IONPs) offer a compelling solution to these challenges. Owing to their biocompatibility, magnetic properties, and ability to serve as both drug carriers and imaging agents, IONPs have become a versatile platform for precision nanomedicine. The integration of peptides with IONPs has generated a new class of hybrid systems that combine the biological accuracy of peptide ligands with the multifunctionality of magnetic nanomaterials. Peptide functionalization enables selective tumor targeting and deeper tissue penetration, while the IONP core supports controlled delivery, MRI-based tracking, and activation of therapeutic mechanisms such as magnetic hyperthermia. These hybrids also influence the tumor microenvironment (TME), facilitating stromal remodeling and improved drug accessibility. Importantly, the iron-driven redox chemistry inherent to IONPs can trigger regulated cell death pathways, including ferroptosis and autophagy, inhibiting opportunities to overcome resistance in aggressive or refractory tumors. As advances in peptide engineering, nanotechnology, and artificial intelligence accelerate design and optimization, peptide–IONP conjugates are poised for translational progress. Their combined targeting precision, imaging capability, and therapeutic versatility position them as promising candidates for next-generation cancer theranostics. Full article
Show Figures

Graphical abstract

Back to TopTop