Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,769)

Search Parameters:
Keywords = regional microstructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4973 KB  
Article
Microstructure Evolution of a TRIP Fe–1.4Si–2.6Mn–0.17C Steel After Intercritical Treating and Its Effect on Mechanical Properties
by Valeria Miranda-Lopez, Manuel Alejandro Beltrán-Zúñiga, Victor M. Lopez-Hirata, Hector J. Dorantes-Rosales and Maribel L. Saucedo-Muñoz
Metals 2025, 15(10), 1096; https://doi.org/10.3390/met15101096 - 1 Oct 2025
Abstract
This work studied microstructure evolution during the intercritical treatment of Fe–1.4Si–2.6Mn–0.17C TRIP steel. Steel specimens were heated in the intercritical region, α ferrite and γ austenite phases, at 750 °C for 30 min, water-quenched, air-cooled, and austempered at 350 °C for 30 min. [...] Read more.
This work studied microstructure evolution during the intercritical treatment of Fe–1.4Si–2.6Mn–0.17C TRIP steel. Steel specimens were heated in the intercritical region, α ferrite and γ austenite phases, at 750 °C for 30 min, water-quenched, air-cooled, and austempered at 350 °C for 30 min. Microstructural analysis was performed by optical microscopy, scanning electron microscopy, and X-ray diffraction. All heat-treated specimens were mechanically characterized by uniaxial tension and Vickers hardness tests. Thermo-Calc software 2024b was used to analyze the microstructure and phases of heat-treated steel. The microstructural characterization results revealed that the phases and microconstituents were ferrite, austenite, cementite, pearlite, and retained austenite. Thermo-Calc results were consistent with the phases and microconstituents identified for each heat-treatment condition. On the other hand, the tension test results showed that the yield strength and ultimate tensile strength ranged between 690 and 820 MPa and 1190–1255 MPa, respectively, for these heat-treated steels. Likewise, Thermo-Calc proved to be a powerful tool for designing intercritical heat treatments for TRIP steels. Full article
Show Figures

Graphical abstract

16 pages, 12504 KB  
Article
Effect of Si Content on the Mechanical Behavior, Corrosion Resistance, and Passive Film Characteristics of Fe–Co–Ni–Cr–Si Medium-Entropy Alloys
by Sen Yang, Ran Wei, Xin Wei, Jiayi Cao and Jiepeng Ren
Coatings 2025, 15(10), 1137; https://doi.org/10.3390/coatings15101137 - 1 Oct 2025
Abstract
The nominal compositions of Fe65Co10−xNi10−xCr15Si2x (x = 1, 2, and 3 at.%) medium-entropy alloys (MEAs) were designed and fabricated by vacuum arc melting. Their microstructure, hardness, and mechanical properties were [...] Read more.
The nominal compositions of Fe65Co10−xNi10−xCr15Si2x (x = 1, 2, and 3 at.%) medium-entropy alloys (MEAs) were designed and fabricated by vacuum arc melting. Their microstructure, hardness, and mechanical properties were systematically characterized. Corrosion behavior was evaluated in 3.5 wt.% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy. The investigated MEAs exhibit a dual-phase microstructure composed of face-centered cubic (FCC) and body-centered-cubic (BCC) phases. With increasing Si content, yield strength and ultimate tensile strength increase, while uniform elongation decreases. Hardness also increases with increasing Si content. For the x = 3 MEA, the yield strength, ultimate tensile strength, and hardness of are ~518 MPa, ~1053 MPa, and 262 ± 4.8 HV, respectively. The observed strengthening can be primarily attributed to solid solution strengthening effect by Si. Polarization curves indicate that the x = 3 MEA exhibits the best corrosion resistance with the lowest corrosion current density ((0.401 ± 0.19) × 10−6 A × cm−2) and corrosion rate ((4.65 ± 0.19) × 10–2 μm × year−1)). Equivalent electric circuit analysis suggests the formation of a stable passive oxide film on the MEAs. This conclusion is supported by the capacitive behavior, high impedance values (> 104 Ω cm2) at low frequencies, and phase angles within a narrow window of 80.05°~80.64° in the medium-frequency region. The passive-film thickness was calculated and the corrosion morphology was analyzed by SEM. These results provide a reference for developing high-strength, corrosion-resistant, medium-entropy alloys. Full article
Show Figures

Figure 1

19 pages, 17110 KB  
Article
Effect of Oxygen Concentration on the Corrosion Behaviour of Coated and Uncoated 316L Stainless Steel in Liquid Lead
by Daniel Petrescu, Florentina Golgovici, Mircea Corban, Oana Brincoveanu and Ioana Demetrescu
Appl. Sci. 2025, 15(19), 10572; https://doi.org/10.3390/app151910572 - 30 Sep 2025
Abstract
The 316L stainless steel, uncoated and coated with two types of EB-PVD thin-film deposits, was tested in liquid lead both under oxygen-saturated conditions (~10−3 wt.%) for exposure times of 1000 and 2000 h and under low-oxygen conditions (~108 wt.%) for 1000 [...] Read more.
The 316L stainless steel, uncoated and coated with two types of EB-PVD thin-film deposits, was tested in liquid lead both under oxygen-saturated conditions (~10−3 wt.%) for exposure times of 1000 and 2000 h and under low-oxygen conditions (~108 wt.%) for 1000 h. The first coating consisted of a ~1 µm NiCrAlY thin film. At the same time, the second was a NiCrAlY/Al2O3 multilayer with a total thickness of ~3 µm, on top of which an additional 100–200 nm metallic Cr layer was deposited. Uncoated specimens tested under oxygen-saturated conditions developed a duplex oxide layer on their surface. SEM-EDS analyses revealed that the inner layer was denser and contained Fe, Cr, and O, whereas the outer layer was more porous and composed mainly of Fe and O. Microscopic examinations indicated that the multilayer-coated specimens exposed to low-oxygen conditions exhibited no signs of material degradation. In contrast, both the uncoated samples and those coated only with a single NiCrAlY layer showed generalised corrosion over the entire surface after exposure to liquid lead at low oxygen concentrations. The austenitic microstructure was degraded to a depth of 100–200 µm. Vickers microhardness indentations performed on the structurally altered regions revealed two distinct corrosion zones with markedly different hardness values. Full article
Show Figures

Figure 1

28 pages, 4569 KB  
Article
Physicochemical Characterization of Camellia oleifera Husks from Different Regions and Microwave-Assisted RSM Optimization of Tea Saponin Extraction
by Weixian Wu, Yuhuan Liu, Jian Huang, Xiaoyan Liu, Guangda Zhang, Zhiqiang Gu, Shuangquan Huang, Yunpu Wang and Qi Zhang
Foods 2025, 14(19), 3380; https://doi.org/10.3390/foods14193380 - 29 Sep 2025
Abstract
This study investigated the physicochemical properties of Camellia oleifera husks collected from three regions of Jiangxi Province (Ganzhou—GZ, Yichun—YC, and Jiujiang—JJ) and extracted tea saponins via microwave-assisted solvent extraction (MASE), aiming to provide a theoretical basis for the high-value utilization of this agricultural [...] Read more.
This study investigated the physicochemical properties of Camellia oleifera husks collected from three regions of Jiangxi Province (Ganzhou—GZ, Yichun—YC, and Jiujiang—JJ) and extracted tea saponins via microwave-assisted solvent extraction (MASE), aiming to provide a theoretical basis for the high-value utilization of this agricultural by-product. The husks from YC were rich in bioactive compounds such as tea saponins (16.29 ± 0.02%), with lower cellulose (21.05 ± 1.05%) and lignin (12.48 ± 1.14%) contents and higher hemicellulose (27.40 ± 0.80%) content. The husks from JJ exhibited abundant porosity and a larger specific surface area (40–60 mesh, 4.15 ± 0.04 m2/g). Single-factor extraction experiments indicated that the microstructure and chemical composition of Camellia oleifera husks significantly affected the extraction efficiency of saponins, tannins, and flavonoids. The optimal extraction conditions for tea saponins were established using Box–Behnken response surface methodology, with the liquid-to-solid ratio identified as the most critical factor. Optimal conditions for GZ husks were a liquid-to-solid ratio of 46.75 mL/g, ethanol concentration of 35.5%, extraction time of 6 min, and microwave power of 350 W, with the extraction yield of 7.49 ± 0.01%. Optimal conditions for YC husks were a liquid-to-solid ratio of 50.55 mL/g, ethanol concentration of 40.13%, extraction time of 6 min, and microwave power of 350 W, with the extraction yield of 16.29 ± 0.02%. Optimal conditions for JJ husks were a liquid-to-solid ratio of 47.44 mL/g, ethanol concentration of 37.28%, extraction time of 6 min, and microwave power of 350 W, with the extraction yield of 9.39 ± 0.02%. The study provides important scientific evidence for understanding the structure–function relationship of Camellia oleifera husks and offers practical guidance for developing sustainable industrial processes to convert agricultural by-products into high-value bioactive compounds, thereby promoting resource recycling and economic benefits in the Camellia oleifera industry. Full article
Show Figures

Figure 1

17 pages, 4293 KB  
Article
Multi-Regional Natural Aging Behaviors and Degradation Mechanisms of Polyurethane-Coated Fabrics Under Coupled Multiple Environmental Factors
by Siying Wang, Dengxia Wang, Qi An, Jiakai Li, Kai Chong, Xinbo Wang, Jingjing Liu, Keyong Xie, Xuejun Hou, Jian Hou and Yan Sun
Polymers 2025, 17(19), 2634; https://doi.org/10.3390/polym17192634 - 29 Sep 2025
Abstract
Polyurethane-coated fabrics are widely employed as tarpaulin materials. However, due to the long duration and large space requirements of natural exposure tests, studies on fabric degradation remain scarce. To systematically investigate the natural aging patterns and mechanisms of polyurethane-coated fabrics, this study conducted [...] Read more.
Polyurethane-coated fabrics are widely employed as tarpaulin materials. However, due to the long duration and large space requirements of natural exposure tests, studies on fabric degradation remain scarce. To systematically investigate the natural aging patterns and mechanisms of polyurethane-coated fabrics, this study conducted 24-month natural aging tests in three representative regions: Xishuangbanna (tropical monsoon climate), Xiamen (subtropical maritime monsoon climate), and Jinan (temperate monsoon climate). Changes in appearance, mechanical properties, surface morphology, elemental composition, and microstructure were thoroughly analyzed. The results indicated that gloss decreased by over 60%, the color difference exceeded 5.8, and tear strength was reduced by more than 50%. SEM, ATR-FTIR, and XPS analyses revealed that hydrolysis and oxidation occurred in the coating, leading to coating thinning, fiber exposure, and even damage. In Xishuangbanna, high temperature, high humidity, and strong solar radiation are responsible for the most severe degradation of fabrics. High temperature, humidity, and salt fog synergistically accelerated the aging process. In Jinan, significant thermal strain contributed to deterioration, and fabrics exhibited the mildest degradation. This multi-region natural exposure study realistically simulates in-service aging behavior, providing important validation for accelerated laboratory aging methods, product reliability improvement, and service-life modeling. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

19 pages, 3880 KB  
Article
Microstructural Mechanisms Influencing Soil-Interface Shear Strength: A Case Study on Loess and Concrete Plate Contact
by Chengliang Ji, Wanli Xie, Qingyi Yang, Chenfei Qu, Peijun Fan, Zhiyi Wu and Kangze Yuan
Buildings 2025, 15(19), 3512; https://doi.org/10.3390/buildings15193512 - 29 Sep 2025
Abstract
Understanding the shear behavior of loess–concrete interfaces is essential for foundation design in collapsible loess regions, yet the pore-scale mechanisms remain unclear. This study investigates the relationship between interface shear strength and loess microstructure at different burial depths. Direct shear tests were conducted [...] Read more.
Understanding the shear behavior of loess–concrete interfaces is essential for foundation design in collapsible loess regions, yet the pore-scale mechanisms remain unclear. This study investigates the relationship between interface shear strength and loess microstructure at different burial depths. Direct shear tests were conducted on undisturbed loess samples under stress conditions simulating in situ confinement. High-resolution SEM images were analyzed via Avizo to quantify pore area ratios at multiple scales, fractal dimensions, and directional probability entropy. Pearson correlation, principal component analysis (PCA), and hierarchical cluster analysis (HCA) were employed to statistically interpret the microstructure–mechanics relationship. Results show that interface shear strength increases significantly with depth (35.2–258.4 kPa), primarily due to reduced total porosity and macropore content, increased small and micropore fractions, and enhanced isotropy of pore orientation. Fractal dimension negatively correlates with strength, indicating that compaction-induced boundary regularization enhances particle contact and shear resistance, while entropy positively correlates with strength, reflecting structural homogenization and isotropic pore orientation. PCA and HCA further confirm that small and micropores are the dominant contributors to interface resistance. This study provides a quantitative framework linking microstructural evolution to mechanical performance, offering new insights for optimizing pile–soil interface design in loess areas. Full article
(This article belongs to the Special Issue Foundation Treatment and Building Structural Performance Enhancement)
Show Figures

Figure 1

13 pages, 2741 KB  
Article
Experimental Study on the Time Response of the Microstructure of a Bentonite Suspension
by Hozman Butaybi-Mohamed, Pablo Fatuarte-Gutiérrez, David Gómez-Landero-López, Nicolás Reyes-Clemente, Juan I. Ros-Ruiz and Francisco J. Rubio-Hernández
Fluids 2025, 10(10), 257; https://doi.org/10.3390/fluids10100257 - 28 Sep 2025
Abstract
To obtain deeper information on the role played by microstructure evolution with time of particle suspensions specifically used in drilling processes, two representative time scales of a bentonite suspension were proposed. On one hand, a thixotropic time, which represents how fast the microstructure [...] Read more.
To obtain deeper information on the role played by microstructure evolution with time of particle suspensions specifically used in drilling processes, two representative time scales of a bentonite suspension were proposed. On one hand, a thixotropic time, which represents how fast the microstructure of the suspensions reaches equilibrium between build-up and break-down under shear, was obtained from hysteresis loop tests. On the other hand, a representative relaxation time, which refers to the time it takes to dissipate the stresses developed in the microstructure returning to the original free-stress state after some disturbance of the microstructure, was obtained from frequency sweep tests in the linear viscoelastic region using the Generalized Maxwell Model. The ratio of the relaxation time to the thixotropic time, named the thixo-elastic parameter, was lower than unity. Therefore, bentonite suspensions reach an equilibrium state resulting from equality of break and build processes after a long time of rest, while returning very fast to their original free-stress state, enabling the microstructure to rebuild mainly through a thixotropic phenomenon, which was almost not affected by internal stresses, and which facilitates the entrapping of rock cuttings generated during drilling processes. Full article
(This article belongs to the Special Issue IBERHEO 2024—Iberian Rheology)
Show Figures

Figure 1

16 pages, 3908 KB  
Article
Numerical Study on the Solidification Microstructure Evolution in Industrial Twin-Roll Casting of Low-Carbon Steel
by Yulong Shi, Kongfang Feng, Liang Liu, Gaorui He and Bo Wang
Materials 2025, 18(19), 4484; https://doi.org/10.3390/ma18194484 - 26 Sep 2025
Abstract
Twin-roll strip casting (TRSC) is a key development in near-net-shape casting technology, offering the potential for high-efficiency and low-cost production. During the TRSC process, the solidification characteristics of the strip are largely governed by the configuration of the melt delivery system as well [...] Read more.
Twin-roll strip casting (TRSC) is a key development in near-net-shape casting technology, offering the potential for high-efficiency and low-cost production. During the TRSC process, the solidification characteristics of the strip are largely governed by the configuration of the melt delivery system as well as by various process parameters. In this study, a three-dimensional model of low-carbon steel strip casting was developed using ProCAST software to investigate microstructure evolution under industrial-scale conditions. Simulation results revealed that the solidified strip exhibits a typical three-layer structure: a surface equiaxed grain zone in contact with the cooling rolls, a subsurface columnar grain zone, and a central equiaxed grain zone. Introducing side holes into the delivery system promoted the formation of a distinct columnar grain region near the side dams, resulting in a reduction in the average grain size in this region from 43.7 μm to 38.2 μm compared to the delivery system without side holes. Increasing the heat transfer coefficient at the interface between the molten pool and the cooling rolls significantly enlarged the columnar grain zone. This change had little effect on the average grain size and grain density, with the average grain size remaining close to 37 μm and the grain density variation being less than 0.7%. In contrast, when the casting speed was raised from 50 m min−1 to 70 m min−1, a reduction in the area of the columnar grain zone was observed, while the average grain size decreased slightly (by less than 0.5 μm), and the grain density increased accordingly. This study provides valuable insights for optimizing process parameters and designing more effective melt delivery systems in industrial twin-roll strip casting. Full article
(This article belongs to the Special Issue Advanced Sheet/Bulk Metal Forming)
Show Figures

Figure 1

20 pages, 6754 KB  
Article
Study on the Wear Behavior Mechanism of SUS304 Stainless Steel During the Homogenization Process of LFP/NCM Slurry
by Xiangli Wen, Mingkun Bi, Lvzhou Li and Jianning Ding
Materials 2025, 18(19), 4457; https://doi.org/10.3390/ma18194457 - 24 Sep 2025
Viewed by 31
Abstract
During the homogenization process of lithium battery slurry, the slurry shearing process causes the surface of the homogenization equipment to wear and generate metal containing debris, which poses a risk of inducing battery self-discharge and even explosion. Therefore, inhibiting wear of homogenizing equipment [...] Read more.
During the homogenization process of lithium battery slurry, the slurry shearing process causes the surface of the homogenization equipment to wear and generate metal containing debris, which poses a risk of inducing battery self-discharge and even explosion. Therefore, inhibiting wear of homogenizing equipment is imperative, and systematic investigation into the wear behavior and underlying mechanisms of SUS304 stainless steel during homogenization is urgently required. In this study, lithium iron phosphate (LFP) and lithium nickel cobalt manganese oxide (NCM) cathode slurries were used as research objects. Changes in surface parameters, microstructure, and elemental composition of the wear region on SUS304 stainless steel under different working conditions were characterized. The results indicate that in the SUS304-lithium-ion battery slurry system, the potential wear mechanism of SUS304 gradually evolves with changes in load and rotational speed, following the order: adhesive wear (low speed, low load) → abrasive wear (medium speed, high load) → fatigue wear (high speed). Under high-load and high-rotational-speed conditions, oxidative corrosion wear on the ball–disc contact surface is particularly pronounced. Additionally, wear of SUS304 is more severe in the LFP slurry system compared to the NCM system. Macroscopic experiments also revealed that the speed effect is a core factor influencing the wear of SUS304, and the increase in its wear rate is more than twice that caused by the load effect. This study helps to clarify the wear behavior and wear mechanism evolution of homogenization equipment during the lithium battery homogenization process, providing data support and optimization direction for subsequent material screening and surface strengthening treatment of homogenization equipment components. Full article
Show Figures

Figure 1

13 pages, 3069 KB  
Article
The Metadynamic Recrystallization Role in Ultrafast <111> Fiber Texture Evolution During Short-Term Holding in β-Forged Ti-6242
by Haodong Rao, Dong Liu, Jianguo Wang, Yaqi Lai and Yu Zhang
Materials 2025, 18(19), 4447; https://doi.org/10.3390/ma18194447 - 23 Sep 2025
Viewed by 154
Abstract
The Ti-6242 titanium alloy samples were forged at 1020 °C (slightly above the β-transus) and subjected to ultra-short isothermal holding (0–320 s) prior to quenching to investigate the rapid microstructural evolution in the parent β phase. Electron backscatter diffraction (EBSD) with parent β-phase [...] Read more.
The Ti-6242 titanium alloy samples were forged at 1020 °C (slightly above the β-transus) and subjected to ultra-short isothermal holding (0–320 s) prior to quenching to investigate the rapid microstructural evolution in the parent β phase. Electron backscatter diffraction (EBSD) with parent β-phase reconstruction reveals that within only 1–3 s of holding, a pronounced <111> fiber texture develops along the forging axis, superseding the original <100> deformation fiber. This ultrafast texture change is attributed to metadynamic recrystallization (MDRX)—the post-deformation growth of nuclei formed during dynamic deformation. The newly formed <111>-oriented β grains still contain residual substructure, indicating incomplete strain release consistent with MDRX. Longer holds (tens of seconds) lead to more extensive static recrystallization and normal grain growth, which dilute the strong <111> fiber as grains of other orientations form and coarsen. These findings demonstrate that even a brief pause after forging can markedly alter the prior β texture via a MDRX mechanism. This insight highlights a novel approach to microtexture control in Ti-6242: by leveraging MDRX during short holds, one can potentially disrupt the formation of aligned α colony microtextured regions (MTRs, or “macrozones”) upon subsequent cooling, thereby mitigating dwell-fatigue susceptibility. The study revises the interpretation of the recrystallization mechanism in short-term holds and provides guidance for optimizing β-phase processing to improve fatigue performance. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

23 pages, 24962 KB  
Article
Effect of Piston Velocity on Microstructural Consistency and Critical Regions in a High-Pressure Die Cast AlSi9Cu3(Fe) Alloy Component
by Dana Bolibruchová, Marek Matejka, Richard Pastirčák and Radka Podprocká
Metals 2025, 15(10), 1065; https://doi.org/10.3390/met15101065 - 23 Sep 2025
Viewed by 113
Abstract
High-pressure die casting (HPDC) is a highly efficient method for producing aluminum parts that require high dimensional accuracy and complex shapes. However, the quality of the resulting castings, specifically their porosity and microstructure, is critically dependent on the setting of process parameters. Any [...] Read more.
High-pressure die casting (HPDC) is a highly efficient method for producing aluminum parts that require high dimensional accuracy and complex shapes. However, the quality of the resulting castings, specifically their porosity and microstructure, is critically dependent on the setting of process parameters. Any deficiencies in these aspects can lead to a significant reduction in the mechanical properties of the components. This article deals with the influence of plunger speed during high-pressure die casting on microstructure homogeneity and the occurrence of porosity in critical areas of AlSi9Cu3(Fe) alloy castings. Numerical simulations and experimental evaluation demonstrated that with increasing plunger speed, there is a transition from a transitional to a laminar flow regime to a fully turbulent regime, which affects the homogeneity of the alloy and its solidification. Turbulent flow minimizes shrinkage porosity in castings but increases the risk of gas porosity and oxide inclusions due to reoxidation processes, leading to the entrainment of air and oxide layers. Microporosity analysis showed that the lowest occurrence of shrinkage-type pores was found at a plunger speed of 4 m/s due to rapid filling and shorter solidification time. The optimal plunger speed range is between 3 and 3.6 m/s, ensuring a compromise between microstructure stability and minimization of porosity in critical areas. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

22 pages, 15273 KB  
Article
Investigation on the Microstructure and Mechanical Properties of FeGa3 Surface Film on SKD11 Substrate
by Roonie Protasius, Masaki Tanaka, Shigeto Yamasaki, Tatsuya Morikawa, Kazuyuki Yagi, Masahiko Tezuka, Yasufumi Yoshida, Yukinari Yoshida and Makoto Higashionna
Materials 2025, 18(18), 4427; https://doi.org/10.3390/ma18184427 - 22 Sep 2025
Viewed by 120
Abstract
Gallium-based liquid metal is corrosive to steel alloys, forming FeGa3 surface films which can potentially be applied as a solid lubricant to enhance wear resistance and mitigate liquid metal-induced corrosion. However, the characteristics of these films remain insufficiently explored. In this study, [...] Read more.
Gallium-based liquid metal is corrosive to steel alloys, forming FeGa3 surface films which can potentially be applied as a solid lubricant to enhance wear resistance and mitigate liquid metal-induced corrosion. However, the characteristics of these films remain insufficiently explored. In this study, Ga-In-Sn alloy was ultrasonically soldered onto annealed and decarburised substrates, followed by heating in a vacuum chamber to form a 30 μm thick FeGa3 reaction layer. The film on the annealed samples with an alpha-ferrite microstructure exhibited high porosity and a surface roughness of 1.97 Ra. In contrast, the film on the decarburised samples with a ferritic microstructure showed minimal porosity and a lower surface roughness of 1.29 Ra. Nanoindentation tests revealed Young modulus values of 231 GPa and 242 GPa and hardness values of 11.4 GPa and 12.7 GPa for the annealed and decarburised samples, respectively. The high porosity in the annealed samples is attributed to the suppression of FeGa3 formation in regions containing chromium carbides. Shear stress for fracture, measured by microcantilever tests at the interface between the substrate and the inner matrix of the surface film, showed lower fracture shear stress in the annealed sample, attributed to the presence of larger pores within its microstructure. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

31 pages, 3788 KB  
Article
Multi-Scale Feature Convolutional Modeling for Industrial Weld Defects Detection in Battery Manufacturing
by Waqar Riaz, Xiaozhi Qi, Jiancheng (Charles) Ji and Asif Ullah
Fractal Fract. 2025, 9(9), 611; https://doi.org/10.3390/fractalfract9090611 - 21 Sep 2025
Viewed by 226
Abstract
Defect detection in lithium-ion battery (LIB) welding presents unique challenges, including scale heterogeneity, subtle texture variations, and severe class imbalance. We propose a multi-scale convolutional framework that integrates EfficientNet-B0 for lightweight representation learning, PANet for cross-scale feature aggregation, and a YOLOv8 detection head [...] Read more.
Defect detection in lithium-ion battery (LIB) welding presents unique challenges, including scale heterogeneity, subtle texture variations, and severe class imbalance. We propose a multi-scale convolutional framework that integrates EfficientNet-B0 for lightweight representation learning, PANet for cross-scale feature aggregation, and a YOLOv8 detection head augmented with multi-head attention. Parallel dilated convolutions are employed to approximate self-similar receptive fields, enabling simultaneous sensitivity to fine-grained microstructural anomalies and large-scale geometric irregularities. The approach is validated on three datasets including RIAWELC, GC10-DET, and an industrial LIB defects dataset, where it consistently outperforms competitive baselines, achieving 8–10% improvements in recall and F1-score while preserving real-time inference on GPU. Ablation experiments and statistical significance tests isolate the contributions of attention and multi-scale design, confirming their role in reducing false negatives. Attention-based visualizations further enhance interpretability by exposing spatial regions driving predictions. Limitations remain regarding fixed imaging conditions and partial reliance on synthetic augmentation, but the framework establishes a principled direction toward efficient, interpretable, and scalable defect inspection in industrial manufacturing. Full article
Show Figures

Figure 1

15 pages, 9033 KB  
Article
Evaluation of the Resistance of APS-Developed Woka-Diamalloy Carbide Coatings to High-Temperature Damage
by Yildiz Yarali Ozbek, Okan Odabas, Yasin Ozgurluk and Abdullah Cahit Karaoglanli
Metals 2025, 15(9), 1054; https://doi.org/10.3390/met15091054 - 21 Sep 2025
Viewed by 226
Abstract
This study was conducted to evaluate the high-temperature protection performance of new hard coating systems. Woka 7202 (Cr3C2-NiCr) and Diamalloy 2002 (WC-NiCrFeBSiC) powders were coated onto 316L stainless steel substrates using the atmospheric plasma spraying (APS) method and subjected [...] Read more.
This study was conducted to evaluate the high-temperature protection performance of new hard coating systems. Woka 7202 (Cr3C2-NiCr) and Diamalloy 2002 (WC-NiCrFeBSiC) powders were coated onto 316L stainless steel substrates using the atmospheric plasma spraying (APS) method and subjected to isothermal oxidation (5–100 h) and hot corrosion (55% V2O5 + 45% Na2SO4, 1–5 h) tests. Although the coatings exhibited a laminar microstructure and some pores, cracks, and oxide-containing regions, they did not show any flaking or structural integrity deformations during the tests. Microstructural changes, oxide layer morphology, and the phases formed were examined in detail. The findings demonstrate that these coating systems not only provide chemical and structural stability against existing high-temperature environments, but also meet the requirements of next-generation thermal protection needs. In this regard, the study provides directly applicable information for the coating design and performance optimization for turbine blades, energy production equipment, and similar industrial components exposed to high-temperature oxidation and hot corrosion. Full article
(This article belongs to the Special Issue Processing, Microstructure and Properties of Cemented Carbide)
Show Figures

Graphical abstract

15 pages, 4007 KB  
Article
Investigation on the Mechanical Properties of White Layers by Cutting and Burnishing Coupling Effect in BTA Deep Hole Drilling
by Huang Zhang, Pengxiang Yan, Haoran Guo, Ze Chen, Zihao Hou and Yaoming Li
J. Manuf. Mater. Process. 2025, 9(9), 319; https://doi.org/10.3390/jmmp9090319 - 20 Sep 2025
Viewed by 226
Abstract
The unique cutting–burnishing coupling effect in BTA deep hole drilling generates a high-hardness and -brittleness white layer (ultrafine martensitic layer), which will degrade component performance and accelerate tool wear. This work investigated the formation mechanism and the mechanical properties of the white layer [...] Read more.
The unique cutting–burnishing coupling effect in BTA deep hole drilling generates a high-hardness and -brittleness white layer (ultrafine martensitic layer), which will degrade component performance and accelerate tool wear. This work investigated the formation mechanism and the mechanical properties of the white layer generated in three distinct regions (the cutting edge radius zone, cutting–burnishing corner zone, and guide pad edge zone) through nanoindentation, SEM and BSE. The microstructure and thickness of the white layer under different feedrates are investigated. The correlations between the white layer, the structure of guide pads, and wear behaviors of the TiN- and TiCN/Al2O3-coated guide pads are revealed. Variations in hardness are observed across different zones. The white layer undergoes a soft-to-hard transition due to rapid quenching and the cutting–burnishing effect at the sharp corner. The highest hardness (9.758 GPa) was observed in the guide pad zone, accompanied by grain refinement. The chamfered TiN-coated guide pad exhibits superior wear resistance but suffers fatigue cracking and adhesive wear in the initial guiding zone. The TiCN/Al2O3-coated pad with rounded corners experiences brittle spalling in the mid-to-rear guiding zone. These findings enhance the understanding of the white layer formation in deep hole drilling and provide a foundation for tool optimization. Full article
Show Figures

Figure 1

Back to TopTop