Multi-Regional Natural Aging Behaviors and Degradation Mechanisms of Polyurethane-Coated Fabrics Under Coupled Multiple Environmental Factors
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Natural Aging
2.3. Characterization
2.3.1. Gloss
2.3.2. Color Measurement
2.3.3. Mechanical Properties
2.3.4. Microstructure
2.3.5. Surface Morphology
3. Results and Discussion
3.1. Appearances
3.2. Gloss
3.3. Color Measurement
3.4. Mechanical Properties
3.5. Scanning Electron Microscopy (SEM)
3.6. Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy (ATR-FTIR)
3.7. X-Ray Photoelectron Spectroscopy (XPS)
3.8. Degradation Mechanisms
4. Conclusions
- (1)
- The combined effect of these chemical and physical mechanisms resulted in visible chalking, thinning, fiber exposure, and fiber damage after 24 months of exposure. Consequently, the gloss retention rate was no greater than 40%, the color difference exceeded 5.8, and mechanical properties were reduced by more than 50%. Region BN exhibited the most severe degradation, followed by XM and JN.
- (2)
- In BN, high solar irradiation served as the primary accelerator, intensifying oxidation and hydrolysis. In XM, high salinity reduced coating adhesion and damaged the substrate, exacerbating degradation in coastal conditions. In JN, cyclic thermal stress resulting from temperature variations weakened interfacial bonding.
- (3)
- The degradation is primarily induced by chemical processes including hydrolysis and photodegradation of polyurethane, oxidation, and hydrolysis of ether bonds. These are accompanied by physical damage mechanisms such as swelling and thermal stress.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
UV | Ultraviolet rays |
BN | Xishuangbanna, China |
XM | Xiamen, China |
JN | Jinan, China |
Average temperature | |
Tmax | Maximum temperature |
Tmin | Minimum temperature |
RH | Relative humidity |
Rf | Average annual rainfall |
SD | Annual sunshine duration |
Umax | Maximum wind speed |
Is | Annual solar irradiance |
ΔE | Color difference |
ATR-FTIR | Attenuated total reflection Fourier-transform infrared |
XPS | X-ray photoelectron spectroscopy |
SEI | Secondary electron images |
BSE | Backscattered electron images |
References
- Zhang, W.; Feng, X.; Meng, X. Status and Development of Foreign Study on New Stealthy Materials. Aerosp. Mater. Technol. 2000, 3, 1–4+10. [Google Scholar]
- Lu, Q.; Li, M.; Tian, A.; Fu, S. Green Plant Leaf-Inspired Smart Camouflage Fabrics for Visible Light and Near-Infrared Stealth. J. Bionic Eng. 2022, 19, 788–798. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, J.; Zhao, Z.; Tian, Y. A Review of Camouflage and Its Technological Development. Sci. Technol. Innov. 2022, 23, 159–161. [Google Scholar]
- Lin, J.; Wang, L.; Liu, L.; Lu, K.; Li, G.; Yang, X. Two-Stage Interface Enhancement of Aramid Fiber Composites: Establishment of Hierarchical Interphase with Waterborne Polyurethane Sizing and Oxazolidone-Containing Epoxy Matrix. Compos. Sci. Technol. 2020, 193, 108114. [Google Scholar] [CrossRef]
- Kausar, A. Polymer Coating Technology for High Performance Applications: Fundamentals and Advances. J. Macromol. Sci. Part A-Pure Appl. Chem. 2018, 55, 440–448. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, T.; He, Y.; Wang, Y.; Bi, Y. Corrosion and Aging of Organic Aviation Coatings: A Review. Chin. J. Aeronaut. 2023, 36, 1–35. [Google Scholar] [CrossRef]
- Ghonia, J.R.; Savani, N.G.; Prajapati, V.; Dholakiya, B.Z. A Review on Polyurethane Based Multifunctional Materials Synthesis for Advancement in Textile Coating Applications. J. Polym. Res. 2024, 31, 1–42. [Google Scholar] [CrossRef]
- Yang, H.; Liu, H.; Wang, J.; Zu, M.; Xu, A. Research Progress on Large-span Camouflage Screen Materials and Technologies. Mater. Rep. 2025, 39, 62–67. [Google Scholar]
- Nguyen, T.V.; Le, X.H.; Dao, P.H.; Decker, C.; Nguyen-Tri, P. Stability of Acrylic Polyurethane Coatings under Accelerated Aging Tests and Natural Outdoor Exposure: The Critical Role of the Used Photo-Stabilizers. Prog. Org. Coat. 2018, 124, 137–146. [Google Scholar] [CrossRef]
- Shi, Y.; Qin, J.; Tao, Y.; Jie, G.; Wang, J. Natural Weathering Severity of Typical Coastal Environment on Polystyrene: Experiment and Modeling. Polym. Test. 2019, 76, 138–145. [Google Scholar] [CrossRef]
- Bialomazur, M.; Jasinska, I.; Kowalczyk, K.; Musik, M.; Pasierbiewicz, K.; Wrobel, R.J. Acrylic Polyurethane Coatings Durability under Outdoor Weathering in an Industrial Area. Polimery 2021, 66, 503–517. [Google Scholar] [CrossRef]
- Liu, J.; Luo, L. Research Status of the Environmental Adaptability of Organic Coatings. Synth. Mater. Aging Appl. 2022, 51, 100–105. [Google Scholar]
- Long, J.; Xu, F.; Wu, Y.; Sun, B.; Gu, B. Thermal Oxygen Coupling Effects on Multiple-Layer Degradation Behaviors and Full-Field Crack Evolutions of 3D5d Braided Composites. Compos. Sci. Technol. 2023, 233, 109922. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, H.; Zheng, L.; Tian, Y.; Gong, Z.; Wang, J.; Li, W.; Gao, S. Releases of Microplastics and Chemicals from Nonwoven Polyester Fabric-Based Polyurethane Synthetic Leather by Photoaging. Sci. Total Environ. 2023, 902, 166584. [Google Scholar] [CrossRef]
- Ng, J.X.Y. A Study on the Surface Responses and Degradation Mechanisms of Epoxy-Amine Coating Subjected to UV Accelerated Weathering and Hygrothermal Ageing Using ToF-SIMS and FTIR Analysis. Polym. Degrad. Stab. 2024, 228, 110930. [Google Scholar] [CrossRef]
- Lu, P.; Zu, H.; An, J.; Su, J. Aging properties of polyurethane elastomers under different environmental conditions. Acta Mater. Compos. Sin. 2024, 42, 2557–2566. [Google Scholar]
- Choi, E.Y.; Kim, C.K. Degradation and Lifetime Prediction of Thermoplastic Polyurethane Encapsulants in Seawater for Underwater Acoustic Sensor Applications. Polym. Degrad. Stab. 2023, 209, 110281. [Google Scholar] [CrossRef]
- Deflorian, F.; Rossi, S.; Fedrizzi, L.; Zanella, C. Comparison of Organic Coating Accelerated Tests and Natural Weathering Considering Meteorological Data. Prog. Org. Coat. 2007, 59, 244–250. [Google Scholar] [CrossRef]
- Huang, Y.; Ye, L.; Liao, X.; Huang, G.; Dan, Y.; Guo, S.; Tao, Y.; Jie, G.; Li, G. The Degradation Behavior, Service Lifetime Prediction and Stabilization Strategy of Polymeric Materials under Complex Condition. Polym. Bull. 2017, 30, 52–63. [Google Scholar]
- Xie, F.; Zhang, T.; Bryant, P.; Kurusingal, V.; Colwell, J.M.; Laycock, B. Degradation and Stabilization of Polyurethane Elastomers. Prog. Polym. Sci. 2019, 90, 211–268. [Google Scholar] [CrossRef]
- Li, Y.; Liu, T.; Yang, B.; Zhang, Q.; Zhang, Y. Effects of Natural Ageing on Mechanical Properties of PVDF-Coated Fabrics. Struct. Eng. Int. 2016, 26, 348–356. [Google Scholar] [CrossRef]
- Yang, H. Study on the Aging and Anti-Aging of Thermoplastic Polyurethane Elastomer. Master’s Thesis, Xiamen University, Xiamen, China, 2017. [Google Scholar]
- Li, Q.; Li, H.; Zheng, H.; Wang, D.; Sun, Y.; Liu, Y.; Yi, F. Natural Aging Process and Mechanism of Acrylic Polyurethane Coating in Wanning Coastal Area. Paint. Coat. Ind. 2016, 46, 12–18.24. [Google Scholar]
- Gao, J.; Hu, W.; Wang, R.; Li, X. Study on a Multifactor Coupling Accelerated Test Method for Anticorrosive Coatings in Marine Atmospheric Environments. Polym. Test. 2021, 100, 107259. [Google Scholar] [CrossRef]
- Magnin, A.; Pollet, E.; Phalip, V.; Averous, L. Evaluation of Biological Degradation of Polyurethanes. Biotechnol. Adv. 2020, 39, 107457. [Google Scholar] [CrossRef]
- Fu, K.; Lu, C.; Liu, Y.; Zhang, H.; Zhang, B.; Zhang, H.; Zhou, F.; Zhang, Q.; Zhu, B. Mechanically Robust, Self-Healing Superhydrophobic Anti-Icing Coatings Based on a Novel Fluorinated Polyurethane Synthesized by a Two-Step Thiol Click Reaction. Chem. Eng. J. 2021, 404, 127110. [Google Scholar] [CrossRef]
- GB/T 9754-2007; National Technical Committee 5 on Paints & Pigments of Standardization Administration of China Paints and Varnishes Determination of Specular Gloss of Non-metallic Paint Films at 20°, 60°and 85°. Standardization Administration of China: Beijing, China, 2007.
- GB/T 11186.2-1989; National Technical Committee 5 on Paints & Pigments of Standardization Administration of China Methods for Measuring the Colour of Paint Films—Part 2: Colour Measurement. Standardization Administration of China: Beijing, China, 1989.
- GB/T 3917.3-2009; National Technical Committee 606 on Technical Textiles of Standardization Administration of China Textiles-Tear Properties of Fabrics—Part 3: Determination of Tear Force of Trapezoid-shaped Test Specimens. Standardization Administration of China: Beijing, China, 2009.
- Wang, Y.; Yao, J. A Brief Discussion on Fabric Luster. Text. Dye. Finish. J. 2006, 11–13, 53. [Google Scholar]
- Gheno, G.; Ganzerla, R.; Bortoluzzi, M.; Paganica, R. Accelerated Weathering Degradation Behaviour of Polyester Thermosetting Powder Coatings. Prog. Org. Coat. 2016, 101, 90–99. [Google Scholar] [CrossRef]
- Wilhelm, C.; Rivaton, A.; Gardette, J. Infrared Analysis of the Photochemical Behaviour of Segmented Polyurethanes: 3. Aromatic Diisocyanate Based Polymers. Polymer 1998, 39, 1223–1232. [Google Scholar] [CrossRef]
- Malm, V.; Straat, M.; Walkenstrom, P. Effects of Surface Structure and Substrate Color on Color Differences in Textile Coatings Containing Effect Pigments. Text. Res. J. 2014, 84, 125–139. [Google Scholar] [CrossRef]
- GB/T 1766-2008; National Technical Committee 5 on Paints & Pigments of Standardization Administration of China Paints and Varnishes—Rating Schemes of Degradation of Coats. Standardization Administration of China: Beijing, China, 2008.
- Üzümcü, B.; Sari, B.; Temel, E. Effect of UV Exposure on the Mechanical Properties of Polyurethane-Coated Fabrics. Tekstil Ve Konfeksiyon 2023, 34, 51–68. [Google Scholar] [CrossRef]
- Salopek Čubrić, I.; Potočić Matković, V.M.; Skenderi, Z.; Tarbuk, A. Impact of Substrate on Water Vapor Resistance of Naturally Weathered Coated Fabrics. Text. Res. J. 2017, 87, 1541–1553. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y. Test and Mesoscopic Finite Element Analysis on Mechanical Properties Degradation of Aged Coated Fabrics. In Proceedings of the VII International Conference on Textile Composites and Inflatable Structures (Structural Membranes 2017), Munich, Germany, 9–11 October 2017; International Center Numerical Methods Engineering: Barcelona, Spain, 2017; pp. 125–132. [Google Scholar]
- Mourad, A.-H.I.; Idrisi, A.H.; Zahoor, A.; Sherif, M.M.; Abdel-Magid, B.M. Experimental Investigation of Long-Term Performance of Fiber-Reinforced Epoxy and Polyurethane Polymer Composites. Polym. Test. 2024, 132, 108359. [Google Scholar] [CrossRef]
- Jang, Y.-J.; Kim, J.-S.; Park, S.-Y. Application of Polyurethane Precursors Comprising Pyrazole-Blocking Waterborne Polyurethane Dispersion and Recycled Polyol to Optical Poly(Ethylene Terephthalate) Films. Macromol. Res. 2025. [Google Scholar] [CrossRef]
- Fridrihsone-Girone, A.; Stirna, U.; Misāne, M.; Lazdiņa, B.; Deme, L. Spray-Applied 100% Volatile Organic Compounds Free Two Component Polyurethane Coatings Based on Rapeseed Oil Polyols. Prog. Org. Coat. 2016, 94, 90–97. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, L.; Fu, L.; Xiong, G.; Wu, H.; Guo, S. Efficient Regulation of the Cross-Linking Structure in Polyurethane: Achieving Outstanding Processing and Mechanical Properties for a Wind Turbine Blade. Polymers 2024, 16, 235. [Google Scholar] [CrossRef]
- Environmental Resistance of Flax/Bio-Based Epoxy and Flax/Polyurethane Composites Manufactured by Resin Transfer Moulding. Compos. Part A Appl. Sci. Manuf. 2016, 88, 140–147. [CrossRef]
- Zhou, Z.-X.; Li, Y.-W.; Zheng, Y.-Q.; Luo, Z.; Gong, C.-R.; Xu, Y.; Wu, L.-X. Synthesis and Characterization of a Dual-Curing Resin for Three-Dimensional Printing. J. Mater. Sci. 2019, 54, 5865–5876. [Google Scholar] [CrossRef]
- Nagle, D.J.; Celina, M.; Rintoul, L.; Fredericks, P.M. Infrared Microspectroscopic Study of the Thermo-Oxidative Degradation of Hydroxy-Terminated Polybutadiene/Isophorone Diisocyanate Polyurethane Rubber. Polym. Degrad. Stab. 2007, 92, 1446–1454. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, J.; Lu, Q.; Dong, H.; Karnaushenko, D.D.; Becker, C.; Karnaushenko, D.; Li, Y.; Tang, H.; Qu, Z.; et al. A Patternable and In Situ Formed Polymeric Zinc Blanket for a Reversible Zinc Anode in a Skin-Mountable Microbattery. Adv. Mater. 2021, 33, 2007497. [Google Scholar] [CrossRef] [PubMed]
- Kralovec, C.; Dengg, A.; Schagerl, M.; Schiller, A.; Bisagni, C.; Loebbecke, M.; Haubrich, J.; Hanelt, R. Static Strength and Fatigue Life of Pinned Hybrid Titanium-Composite Single-Lap-Shear Joints. Compos. Struct. 2025, 354, 118765. [Google Scholar] [CrossRef]
- Singh, K.; Saini, J.S.; Bhunia, H.; Singh, J. Investigations to Increase the Failure Load for Joints in Glass Epoxy Composites. Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci. 2019, 233, 2074–2090. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Li, X.; Liu, D.; Jiang, Y.; Sun, Z. O3/UV Synergistic Aging of Polyester Polyurethane Film Modified by Composite UV Absorber. J. Nanomater. 2013, 2013, 169405. [Google Scholar] [CrossRef]
- Decker, C.; Masson, F.; Schwalm, R. Weathering Resistance of Waterbased UV-Cured Polyurethane-Acrylate Coatings. Polym. Degrad. Stab. 2004, 83, 309–320. [Google Scholar] [CrossRef]
- Król, P. Synthesis Methods, Chemical Structures and Phase Structures of Linear Polyurethanes. Properties and Applications of Linear Polyurethanes in Polyurethane Elastomers, Copolymers and Ionomers. Prog. Mater. Sci. 2007, 52, 915–1015. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, B.; Zhao, Q.; Wang, Y.; Meng, J. Study on the artificially-accelerated aging behavior of PU coating. J. Nanchang Hangkong Univ. (Nat. Sci.) 2007, 21, 52–56. [Google Scholar]
- Li, Z.; Liu, J.; Xing, S.; Zhang, L.; Lu, Z.; Zhang, P. Failure Behavior and Damage Mechanism of Acrylic Polyurethane Coating in Tropical Marine Atmospheric Environment. Int. J. Electrochem. Sci. 2020, 15, 2511–2527. [Google Scholar] [CrossRef]
- Nie, C.; Wang, G.; Wang, D.; Wang, M.; Gao, X.; Bai, Z.; Wang, N.; Yang, J.; Xing, Z.; Dou, S. Recent Progress on Zn Anodes for Advanced Aqueous Zinc—Ion Batteries. Adv. Energy Mater. 2023, 13, 2300606. [Google Scholar] [CrossRef]
- Li, X.; Ma, C.; Shi, T.; Yang, H.; Zhang, C.; Qi, W.; Li, C.; Liu, R.; He, W.; Liu, Y. Waterborne Robust Superhydrophobic PFDTES@TiO2-PU Coating with Stable Corrosion Resistance, Long-Term Environmental Adaptability, and Delayed Icing Functions on Al–Li Alloy. J. Mater. Res. Technol. 2024, 32, 3357–3370. [Google Scholar] [CrossRef]
- Ni, W.; Li, P.; Zhu, Y.; Di, Z.; Guo, L.; Liu, Y. Comparative Study of Anti-Corrosion Properties and Lifespan Prediction Model for Inorganic Zinc-Rich Coating and Thermal-Spray Zinc Coating. Coatings 2022, 12, 505. [Google Scholar] [CrossRef]
- Bhargava, S.; Kubota, M.; Lewis, R.D.; Advani, S.G.; Prasad, A.K.; Deitzel, J.M. Ultraviolet, Water, and Thermal Aging Studies of a Waterborne Polyurethane Elastomer-Based High Reflectivity Coating. Prog. Org. Coat. 2015, 79, 75–82. [Google Scholar] [CrossRef]
- Wilhelm, C.; Gardette, J.-L. Infrared Analysis of the Photochemical Behaviour of Segmented Polyurethanes: 1. Aliphatic Poly(Ester-Urethane). Polymer 1997, 38, 4019–4031. [Google Scholar] [CrossRef]
Location | (°C) | Tmax (°C) | Tmin (°C) | RH (%) | Rf (mm) | Umax (m/s) | SD (h) | Is (MJ/m2) |
---|---|---|---|---|---|---|---|---|
BN | 22.6 | 40.8 | 9.7 | 73 | 1327.8 | 4.50 | 2235 | 6396.90 |
XM | 22.1 | 36.7 | 4.8 | 79 | 1279.7 | 9.55 | 2233 | 5558.48 |
JN | 15.4 | 39.0 | −17.7 | 52 | 660.3 | 10.14 | 2568 | 5871.58 |
Degree | ΔE* | Grade |
---|---|---|
0 | ≤1.5 | No color change |
1 | 1.6~3.0 | Very slight color change |
2 | 3.1~6.0 | Slight color change |
3 | 6.1~9.0 | Distinct color change |
4 | 9.1~12.0 | Considerable color change |
5 | >12.0 | Severe color change |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, D.; An, Q.; Li, J.; Chong, K.; Wang, X.; Liu, J.; Xie, K.; Hou, X.; Hou, J.; et al. Multi-Regional Natural Aging Behaviors and Degradation Mechanisms of Polyurethane-Coated Fabrics Under Coupled Multiple Environmental Factors. Polymers 2025, 17, 2634. https://doi.org/10.3390/polym17192634
Wang S, Wang D, An Q, Li J, Chong K, Wang X, Liu J, Xie K, Hou X, Hou J, et al. Multi-Regional Natural Aging Behaviors and Degradation Mechanisms of Polyurethane-Coated Fabrics Under Coupled Multiple Environmental Factors. Polymers. 2025; 17(19):2634. https://doi.org/10.3390/polym17192634
Chicago/Turabian StyleWang, Siying, Dengxia Wang, Qi An, Jiakai Li, Kai Chong, Xinbo Wang, Jingjing Liu, Keyong Xie, Xuejun Hou, Jian Hou, and et al. 2025. "Multi-Regional Natural Aging Behaviors and Degradation Mechanisms of Polyurethane-Coated Fabrics Under Coupled Multiple Environmental Factors" Polymers 17, no. 19: 2634. https://doi.org/10.3390/polym17192634
APA StyleWang, S., Wang, D., An, Q., Li, J., Chong, K., Wang, X., Liu, J., Xie, K., Hou, X., Hou, J., & Sun, Y. (2025). Multi-Regional Natural Aging Behaviors and Degradation Mechanisms of Polyurethane-Coated Fabrics Under Coupled Multiple Environmental Factors. Polymers, 17(19), 2634. https://doi.org/10.3390/polym17192634