Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,182)

Search Parameters:
Keywords = refrigeration performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5273 KB  
Article
A Streamlined Polynomial Regression-Based Modeling of Speed-Driven Hermetic-Reciprocating Compressors
by Jay Wang and Wei Lu
Appl. Sci. 2025, 15(22), 12016; https://doi.org/10.3390/app152212016 - 12 Nov 2025
Abstract
This study presents a streamlined and accurate approach for modeling the performance of hermetic reciprocating compressors under variable-speed conditions. Traditional compressor models often neglect the influence of motor frequency, leading to considerable deviations at low-speed operation. To address these limitations, a frequency-dependent numerical [...] Read more.
This study presents a streamlined and accurate approach for modeling the performance of hermetic reciprocating compressors under variable-speed conditions. Traditional compressor models often neglect the influence of motor frequency, leading to considerable deviations at low-speed operation. To address these limitations, a frequency-dependent numerical framework was developed using one-dimensional (1-D) and two-dimensional (2-D) polynomial regressions to represent volumetric efficiency (ηv) and isentropic efficiency (ηisentr) as functions of compression ratio (r) and motor speed frequency (f). The proposed model integrates manufacturer data and thermodynamic property databases to predict compressor behavior across a wide range of operating conditions. Validation using the Bitzer 4HTE-20K CO2 compressor demonstrated strong agreement with experimental data, maintaining prediction errors within ±10% for both power input and discharge temperature. Moreover, the model enhanced accuracy by up to 19.4% in the low-frequency range below 40 Hz, where conventional models typically fail. The proposed method provides a practical and computationally efficient tool for accurately simulating the performance of hermetic reciprocating compressors that support improved design, optimization, and control of refrigeration and heat pump systems. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

15 pages, 3663 KB  
Article
Advancing Sustainable Refrigeration: In-Depth Analysis and Application of Air Cycle Technologies
by Lorenz Hammerschmidt, Zlatko Raonic and Michael Tielsch
Thermo 2025, 5(4), 52; https://doi.org/10.3390/thermo5040052 - 12 Nov 2025
Abstract
Air cycle systems, once largely replaced by vapour-compression technologies due to efficiency concerns, are now re-emerging as a viable and sustainable alternative for highly dynamic thermal applications and excel in ultra-low temperature. By using air as the working fluid, these systems eliminate the [...] Read more.
Air cycle systems, once largely replaced by vapour-compression technologies due to efficiency concerns, are now re-emerging as a viable and sustainable alternative for highly dynamic thermal applications and excel in ultra-low temperature. By using air as the working fluid, these systems eliminate the need for synthetic refrigerants and comply naturally with evolving environmental regulations. This study presents the conceptual design and simulation-based analysis of a novel air cycle machine developed for advanced automotive testing environments. The system is intended to replicate a wide range of climatic conditions—from deep winter to peak summer—through the use of fast-responding turbomachinery and a flexible control strategy. A central focus is placed on the radial turbine, which is designed and evaluated using a modular, open source framework that integrates geometry generation, off-design CFD simulation, and performance mapping. The study outlines a potential operating strategy based on these simulations and discusses a control architecture combining lookup tables with zone-specific PID tuning. While the results are theoretical, they demonstrate the feasibility and flexibility of the proposed approach, particularly the turbine’s role within the system. Full article
Show Figures

Figure 1

19 pages, 4518 KB  
Article
Simulation Study on Heat Transfer and Flow Performance of Pump-Driven Microchannel-Separated Heat Pipe System
by Yanzhong Huang, Linjun Si, Chenxuan Xu, Wenge Yu, Hongbo Gao and Chaoling Han
Energies 2025, 18(22), 5882; https://doi.org/10.3390/en18225882 - 8 Nov 2025
Viewed by 245
Abstract
The separable heat pipe, with its highly efficient heat transfer and flexible layout features, has become an innovative solution to the heat dissipation problem of batteries, especially suitable for the directional heat dissipation requirements of high-energy-density battery packs. However, most of the number–value [...] Read more.
The separable heat pipe, with its highly efficient heat transfer and flexible layout features, has become an innovative solution to the heat dissipation problem of batteries, especially suitable for the directional heat dissipation requirements of high-energy-density battery packs. However, most of the number–value models currently studied examine the flow of refrigerant working medium within the pump as an isentropic or isothermal process and are unable to effectively analyze the heat transfer characteristics of different internal regions. Based on the laws of energy conservation, momentum conservation, and mass conservation, this study establishes a steady-state mathematical model of the pump-driven microchannel-separated heat pipe. The influence of factors—such as the phase state change in the working medium inside the heat exchanger, the heat transfer flow mechanism, the liquid filling rate, the temperature difference, as well as the structural parameters of the microchannel heat exchanger on the steady-state heat transfer and flow performance of the pump-driven microchannel-separated heat pipe—were analyzed. It was found that the influence of liquid filling ratio on heat transfer quantity is reflected in the ratio of change in the sensible heat transfer and latent heat transfer. The sensible heat transfer ratio is higher when the liquid filling is too low or too high, and the two-phase heat transfer is higher when the liquid filling ratio is in the optimal range; the maximum heat transfer quantity can reach 3.79 KW. The decrease in heat transfer coefficient with tube length in the single-phase region is due to temperature and inlet effect, and the decrease in heat transfer coefficient in the two-phase region is due to the change in flow pattern and heat transfer mechanism. This technology has the advantages of long-distance heat transfer, which can adapt to the distributed heat dissipation needs of large-energy-storage power plants and help reduce the overall lifecycle cost. Full article
Show Figures

Figure 1

32 pages, 3312 KB  
Review
Steam Generating High Temperature Heat Pumps: Best Practices, Optimization Strategies and Refrigerant Selection for Performance Improvement
by Giampaolo D’Alessandro, Marco Iezzi and Filippo de Monte
Energies 2025, 18(22), 5879; https://doi.org/10.3390/en18225879 - 8 Nov 2025
Viewed by 305
Abstract
The present paper provides a general overview of the state of the art of steam generating heat pumps (SGHPs) technology employed in the industrial field. Recommended best practices and optimization procedures for overall performance improvement of compression closed-loop-based systems are described in detail, [...] Read more.
The present paper provides a general overview of the state of the art of steam generating heat pumps (SGHPs) technology employed in the industrial field. Recommended best practices and optimization procedures for overall performance improvement of compression closed-loop-based systems are described in detail, as well as the main modifications of the thermodynamic heat pump cycle. Once the main configurations of SGHPs are described, the different concepts are compared in terms of supply temperature ranges; cases of comparison among different concepts are reviewed, and techno-economic barriers are also discussed. The working fluids (including natural refrigerants) commonly selected for these steam generating systems are presented along with their uses. Moreover, zeotropic refrigerant mixtures and new potentially usable mixtures are mentioned. After that, refrigerant selection criteria for high temperature heat pumps are also discussed. Then, using an internal heat exchanger, refrigerant injection technique and super heating in lubricated compressors are herein presented as best practices for general performance improvement. Regarding thermodynamic cycle modifications, basic auto-cascade and quasi-two-stage compression cycles are discussed along with further improvements suggested in the specialized literature. Lastly, optimization strategies useful to enhance the heat pumps’ design and based on TOPSIS method, advanced exergy analysis, exergy-based cost minimization and combined design are analyzed. Full article
(This article belongs to the Special Issue Innovations in Thermal Energy Processes and Management)
Show Figures

Figure 1

18 pages, 3133 KB  
Article
Data-Driven Detection and Prediction of Refrigeration Equipment Failures Using Rough Sets Theory and the Internet of Things
by Zbigniew Kokosiński, Piotr Szydłowski and Bartosz Kozłowski
Processes 2025, 13(11), 3618; https://doi.org/10.3390/pr13113618 - 8 Nov 2025
Viewed by 341
Abstract
This article presents a system for the detection and prediction of faults in refrigeration equipment developed using rough set theory, a method from artificial intelligence and leveraging Internet of Things (IoT) technology for continuous data collection. The system targets the most frequent failures [...] Read more.
This article presents a system for the detection and prediction of faults in refrigeration equipment developed using rough set theory, a method from artificial intelligence and leveraging Internet of Things (IoT) technology for continuous data collection. The system targets the most frequent failures (fan, compressor, and controller faults), allowing early detection and timely intervention. Measurement data are transmitted to a cloud platform for analysis within a distributed architecture, ensuring scalable and efficient processing. Data-driven diagnostic models were built on rough set theory, enabling decision-making based on incomplete or imprecise data. Experiments conducted on both real and simulated datasets demonstrated high detection effectiveness, with accuracy ranging from 76% to 90% across all monitored fault types. Diagnostic parameters were analyzed to assess the system performance comprehensively. The paper also discusses potential directions for further development, including adaptation to other refrigeration devices and integration of the decision-making system into IoT devices, opening the way for fully predictive maintenance solutions. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

39 pages, 5498 KB  
Article
Energy Performance Upgrade of Municipal and Public Buildings and Facilities
by Dimitris Al. Katsaprakakis, George M. Stavrakakis, Nikos Savvakis, Eirini Dakanali, Yiannis Yiannakoudakis, George Zidianakis, Aristotelis Tsekouras, Efi Giannopoulou and Sofia Yfanti
Energies 2025, 18(21), 5798; https://doi.org/10.3390/en18215798 - 3 Nov 2025
Viewed by 260
Abstract
This article presents the accumulated technical and scientific knowledge from energy performance upgrade work in emblematic and essential municipal and public buildings in Crete and the Greek islands, such as the Venetian historical building Loggia, which is used as the Heraklion City Hall, [...] Read more.
This article presents the accumulated technical and scientific knowledge from energy performance upgrade work in emblematic and essential municipal and public buildings in Crete and the Greek islands, such as the Venetian historical building Loggia, which is used as the Heraklion City Hall, the Natural History Museum of Crete, Pancretan Stadium, the municipal swimming pool of the municipality of Minoa Pediadas, the indoor sports hall in Leros, primary schools, high schools and a cultural center. Each one of the aforementioned buildings has a distinct use, thus covering almost all different categories of municipal or public buildings and facilities. The applied energy performance upgrade process in general terms is: (1) Mapping of the current situation, regarding the existing infrastructure and final energy consumption. (2) Formulation and sizing of the proposed passive measures and calculation of the new indoor heating and cooling loads. (3) Selection, sizing and siting of the proposed active measures and calculation of the new expecting energy sources consumption. (4) Sizing and siting of power and heat production systems from renewable energy sources (RES). Through the work accomplished and presented in this article, practically all the most technically and economically feasible passive and active measures were studied: insulation of opaque surfaces, opening overhangs, natural ventilation, replacement of openings, daylighting solar tubes, open-loop geo-exchange plants, refrigerant or water distribution networks, air-to-water heat pumps, solar thermal collectors, lighting systems, automation systems, photovoltaics etc. The main results of the research showed energy savings through passive and active systems that can exceed 70%, depending mainly on the existing energy performance of the facility. By introducing photovoltaic plants operating under the net-metering mode, energy performance upgrades up to zero-energy facilities can be achieved. The payback periods range from 12 to 45 years. The setup budgets of the presented projects range from a few hundred thousand euros to 7 million euros. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Performance in Building)
Show Figures

Figure 1

32 pages, 6390 KB  
Article
Reproducing Cold-Chain Conditions in Real Time Using a Controlled Peltier-Based Climate System
by Javier M. Garrido-López, Alfonso P. Ramallo-González, Manuel Jiménez-Buendía, Ana Toledo-Moreo and Roque Torres-Sánchez
Sensors 2025, 25(21), 6689; https://doi.org/10.3390/s25216689 - 1 Nov 2025
Viewed by 528
Abstract
Temperature excursions during refrigerated transport strongly affect the quality and shelf life of perishable food, yet reproducing realistic, time-varying cold-chain temperature histories in the laboratory remains challenging. In this study, we present a compact, portable climate chamber driven by Peltier modules and an [...] Read more.
Temperature excursions during refrigerated transport strongly affect the quality and shelf life of perishable food, yet reproducing realistic, time-varying cold-chain temperature histories in the laboratory remains challenging. In this study, we present a compact, portable climate chamber driven by Peltier modules and an identification-guided control architecture designed to reproduce real refrigerated-truck temperature histories with high fidelity. Control is implemented as a cascaded regulator: an outer two-degree-of-freedom PID for air-temperature tracking and faster inner PID loops for module-face regulation, enhanced with derivative filtering, anti-windup back-calculation, a Smith predictor, and hysteresis-based bumpless switching to manage dead time and polarity reversals. The system integrates distributed temperature and humidity sensors to provide real-time feedback for precise thermal control, enabling accurate reproduction of cold-chain conditions. Validation comprised two independent 36-day reproductions of field traces and a focused 24-h comparison against traditional control baselines. Over the long trials, the chamber achieved very low long-run errors (MAE0.19 °C, MedAE0.10 °C, RMSE0.33 °C, R2=0.9985). The 24-h test demonstrated that our optimized controller tracked the reference, improving both transient and steady-state behaviour. The system tolerated realistic humidity transients without loss of closed-loop performance. This portable platform functions as a reproducible physical twin for cold-chain experiments and a reliable data source for training predictive shelf-life and digital-twin models to reduce food waste. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 3162 KB  
Review
Advances in Flame-Retardant Coatings for Rigid Polyurethane Foams: A Critical Review
by Qinhe Guo, Jiong Chen, Lulu Xu, Min Chen, Yan Zhang, Yi Xiao, Yao Yuan, Kate Nguyen and Wei Wang
Fire 2025, 8(11), 419; https://doi.org/10.3390/fire8110419 - 28 Oct 2025
Viewed by 761
Abstract
Rigid polyurethane foams (RPUFs) are essential polymeric materials, prized for their low density, high mechanical strength, and superior thermal insulation, making them indispensable in construction, refrigeration, and transportation. Despite these advantages, their highly porous, carbon-rich structure renders them intrinsically flammable, promoting rapid flame [...] Read more.
Rigid polyurethane foams (RPUFs) are essential polymeric materials, prized for their low density, high mechanical strength, and superior thermal insulation, making them indispensable in construction, refrigeration, and transportation. Despite these advantages, their highly porous, carbon-rich structure renders them intrinsically flammable, promoting rapid flame spread, intense heat release, and the generation of toxic smoke. Traditional strategies to reduce flammability have primarily focused on incorporating additive or reactive flame retardants into the foam matrix, which can effectively suppress combustion but often compromise mechanical integrity, suffer from migration or compatibility issues, and involve complex synthesis routes. Despite recent progress, the long-term stability, scalability, and durability of surface flame-retardant coatings for RPUFs remain underexplored, limiting their practical application in industrial environments. Recent advances have emphasized the development of surface-engineered flame-retardant coatings, including intumescent systems, inorganic–organic hybrids, bio-inspired materials, and nanostructured composites. These coatings form protective interfaces that inhibit ignition, restrict heat and mass transfer, promote char formation, and suppress smoke without altering the intrinsic properties of RPUFs. Emerging deposition methods, such as layer-by-layer assembly, spray coating, ultraviolet (UV) curing, and brush application, enable precise control over thickness, uniformity, and adhesion, enhancing durability and multifunctionality. Integrating bio-based and hybrid approaches further offers environmentally friendly and sustainable solutions. Collectively, these developments demonstrate the potential of surface-engineered coatings to achieve high-efficiency flame retardancy while preserving thermal and mechanical performance, providing a pathway for safe, multifunctional, and industrially viable RPUFs. Full article
(This article belongs to the Special Issue Smart Firefighting Technologies and Advanced Materials)
Show Figures

Figure 1

13 pages, 999 KB  
Article
Statistical Analysis of Heat Transfer Effects on Flow Patterns Maps in a Flat-Plate Collector/Evaporator with R600a Under Variable Tilt Angles
by William Quitiaquez, Isaac Simbaña, Alex Herrera, Patricio Quitiaquez, César Nieto-Londoño, Erika Pilataxi, Anthony Xavier Andrade and Yoalbys Retirado-Mediaceja
Processes 2025, 13(11), 3419; https://doi.org/10.3390/pr13113419 - 24 Oct 2025
Viewed by 318
Abstract
This present investigative work proceeds with the statistical study of the heat transfer coefficient (CTC) in the different flow transitions that are formed in a horizontal pipe with variation in the angles of inclination in a collector/evaporator component of a heat pump of [...] Read more.
This present investigative work proceeds with the statistical study of the heat transfer coefficient (CTC) in the different flow transitions that are formed in a horizontal pipe with variation in the angles of inclination in a collector/evaporator component of a heat pump of solar assisted direct expansion (DX-SAHP) by using R600a refrigerant as working fluid in Quito - Ecuador. The dimensions of the collector/evaporator are 3.8 and 1000 mm inside diameter and length, respectively. To determine the results obtained, five practical tests are carried out with inclination angles of 10, 20, 30, 40 and 45°, with speeds or mass flows that vary between 203.24 and 222.28 kg·m−2·s−1, the heat fluxes reached values between 200.58 and 507.23 W·m−2. The correlations proposed by Kattan, Kundu, and Mohseni, and the experimental data were considered for the analysis of the effects of heat transfer on flow patterns. The results obtained from the investigation show that the maximum CTC is 6163.83 W·m−2·K−1 with an inclination angle of 45°. Statistical analysis was performed considering the direction of Pearson presented results that for the angle of inclination of 10° a greater inverse direction of −0.316 is obtained. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

19 pages, 3298 KB  
Article
An Enhancement in the Magnetocaloric Effect in a Composite Powder Based on Lanthanum Manganites
by Fidel Ivan Reyes Patricio, Cristhian Antonio Taboada Moreno, Ana María Bolarín Miró, Claudia Alicia Cortés Escobedo, María Isabel Reyes Valderrama and Félix Sánchez De Jesús
Materials 2025, 18(21), 4869; https://doi.org/10.3390/ma18214869 - 24 Oct 2025
Viewed by 262
Abstract
This study presents a dual-phase lanthanum manganite ceramic composite based on a mixture of equal weight ratios of La0.7Ca0.2Sr0.1MnO3 and La0.7Ca0.25Sr0.05MnO3 designed to enhance the magnetocaloric effect (MCE) of [...] Read more.
This study presents a dual-phase lanthanum manganite ceramic composite based on a mixture of equal weight ratios of La0.7Ca0.2Sr0.1MnO3 and La0.7Ca0.25Sr0.05MnO3 designed to enhance the magnetocaloric effect (MCE) of individual compounds, under a low magnetic field (≤18 kOe). X-ray diffraction (XRD) analysis revealed the coexistence of two orthorhombic manganite phases corresponding to the individual compounds, with no secondary phases detected. Temperature-dependent magnetization measurements in the composite evidenced two Curie temperatures at 286.8 K and 307.6 K, reflecting the effect of Ca2+ and Sr2+ concentrations. Arrott plots and β parameters confirmed that the phase transition is of second order. Although the maximum magnetic entropy change (ΔSM) of the composite is slightly lower than that of the individual manganite phases, its relative cooling power (RCP) reaches 188.82 J·kg−1, with an extended operational temperature window (OTW) of approximately 85 K, spanning from around 243 K to 328 K. This broad OTW enables efficient operation over a wider temperature range compared to similar materials, such as the individual La0.7Ca0.2Sr0.1MnO3 and La0.7Ca0.25Sr0.05MnO3 compounds, which exhibit an RCP of 55.24 and 65.12 J·kg−1, respectively, under a comparable magnetic field (~18 kOe). The improved magnetocaloric performance is attributed to interfacial exchange coupling and strain-mediated effects that broaden the ΔSM response and generate a non-additive RCP. These results demonstrate that interphase coupling and microstructural tuning effectively broaden the operating temperature range for magnetic refrigeration under moderate fields, making this composite a strong candidate for practical cooling applications. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

19 pages, 873 KB  
Article
Extended Stability of Ascorbic Acid in Pediatric TPN Admixtures: The Role of Storage Temperature and Emulsion Integrity
by Rafał Chiczewski, Żaneta Sobol, Alicja Pacholska and Dorota Wątróbska-Świetlikowska
Pharmaceutics 2025, 17(11), 1375; https://doi.org/10.3390/pharmaceutics17111375 - 24 Oct 2025
Viewed by 427
Abstract
Background/Objectives: This study assessed the chemical and physical stability of ascorbic acid in pediatric total parenteral nutrition (TPN) admixtures under conditions reflecting both hospital compounding and home administration. Methods: Two storage protocols were examined: (A) refrigerated storage (15 days, 4 ± 2 °C) [...] Read more.
Background/Objectives: This study assessed the chemical and physical stability of ascorbic acid in pediatric total parenteral nutrition (TPN) admixtures under conditions reflecting both hospital compounding and home administration. Methods: Two storage protocols were examined: (A) refrigerated storage (15 days, 4 ± 2 °C) followed by addition of ascorbic acid and a 24-h period of storage at room temperature, and (B) vitamin supplementation within 24 h after composing and storage at 21 ± 2 °C. A validated high-performance liquid chromatography (HPLC) method was used to quantify ascorbic acid degradation. Physical stability was evaluated via optical microscopy, dynamic light scattering (DLS), laser diffraction (LD), zeta potential, and pH measurement. Results: Ascorbic acid content remained above 90% of the declared value in both protocols, although gradual degradation was observed with increasing storage time and temperature. Emulsion droplet sizes remained within pharmacopeial limits (<500 nm), and no coalescence or phase separation was detected. Zeta potential values (−20 to −40 mV) confirmed kinetic stability, while pH ranged from 5.8 to 6.2, remaining within acceptable safety margins. Conclusions: Vitamin C in pediatric TPN admixtures is stable under refrigerated conditions for up to 15 days. However, the additional 24 h at room temperature resulted in measurable loss of ascorbic acid content, suggesting a need for improved guidance in home-based parenteral nutrition, particularly regarding transport and handling. The study underscores the importance of strict cold-chain maintenance and highlights the role of emulsion matrix and packaging in protecting labile vitamins. This research provides practical implications for hospital pharmacists and caregivers, supporting better formulation practices and patient safety in pediatric home TPN programs. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Graphical abstract

26 pages, 3078 KB  
Article
Numerical Study on a PV/T Using Microchannel Heat Pipe
by Hu Huang, Hao Fu, Huashan Li, Chenghang Pan, Zongyu Sun and Xiao Ren
Processes 2025, 13(11), 3402; https://doi.org/10.3390/pr13113402 - 23 Oct 2025
Viewed by 309
Abstract
Photovoltaic/Thermal (PV/T) technology efficiently harnesses solar energy by co-generating electricity and hot water. Unlike conventional PV systems, PV/T systems improve thermal utilization, cool PV modules, and prevent performance degradation caused by high temperatures. Among the various PV/T configurations, micro-channel heat pipe (MCHP) systems [...] Read more.
Photovoltaic/Thermal (PV/T) technology efficiently harnesses solar energy by co-generating electricity and hot water. Unlike conventional PV systems, PV/T systems improve thermal utilization, cool PV modules, and prevent performance degradation caused by high temperatures. Among the various PV/T configurations, micro-channel heat pipe (MCHP) systems are prominent due to their ability to enhance heat transfer through the use of vacuum-filled, refrigerant-sealed MCHPs. This study explores how factors such as working fluid type, evaporation section heat flux, fill ratio, and condensation section length impact system performance. A 3D steady-state CFD model simulating phase-change heat transfer was developed to analyze thermal and electrical efficiencies. The results reveal that R134a outperforms acetone in heat transfer, with thermal resistance showing a significant decrease (from 0.5 °C·W−1 at a 30% fill rate to 0.3 °C·W−1 at a 70% fill rate) under varying heat source powers. The optimal fill ratio depends on the heat flux; for powers up to 70 W, the fill ratio ranges from 30% to 50%, while above 70 W, it shifts to 60–80%. Additionally, a longer condensation section reduces thermal resistance by up to 30% and enhances heat transfer efficiency, improving the overall system performance by 10%. These findings offer valuable insights into optimizing MCHP PV/T systems for increased efficiency. Full article
(This article belongs to the Special Issue Multi-Phase Flow and Heat and Mass Transfer Engineering)
Show Figures

Figure 1

19 pages, 7787 KB  
Article
Microbial and Chemical Stability of Unpreserved Atropine Sulfate 0.01% w/w Eye Drops—A Pilot Study on the Impact of Dispenser Type and Storage Temperature over 12 Weeks of Daily Use After Compounding
by Victoria Klang, Stefan Brenner, Johanna Grabner, Philip Unzeitig, My Vanessa Nguyen Hoang, Maria Lummerstorfer, Roman Pichler, Katja Steiner and Richard D. Harvey
Life 2025, 15(11), 1646; https://doi.org/10.3390/life15111646 - 22 Oct 2025
Viewed by 425
Abstract
Progressive myopia in children is a highly prevalent condition in societies worldwide and is often treated with compounded low-dose atropine sulfate (AS) eye drops without preserving agents to avoid irritation/sensitisation. Surprisingly, there is a lack of data regarding the in-use stability of contamination-free [...] Read more.
Progressive myopia in children is a highly prevalent condition in societies worldwide and is often treated with compounded low-dose atropine sulfate (AS) eye drops without preserving agents to avoid irritation/sensitisation. Surprisingly, there is a lack of data regarding the in-use stability of contamination-free LDPE dispenser units (CFDs) for this compounded multidose product, which causes uncertainty among prescribers and patients in Europe. Thus, our aim was to compare the effect of different dispenser types on the chemical and microbial stability of unpreserved AS eye drops (0.01% w/w). A dripping simulation was performed to obtain information on microbial stability over 4 weeks through plating and separately over 12 weeks through direct inoculation, HPLC and pH analysis. For CFDs, no contamination was found after 4, 8 or 12 weeks of use when stored at 23 or 4 °C as opposed to the control. AS content remained within 0.01 ± 0.0002% w/w after 12 weeks, with higher chemical stability at 4 °C despite decreasing pH. A stress test confirmed the validity of the CFD system. In conclusion, using CFDs and refrigerated storage was found to be safe for compounded unpreserved AS eye drops over 12 weeks of use. Full article
(This article belongs to the Special Issue Dive into Myopia)
Show Figures

Figure 1

12 pages, 4024 KB  
Proceeding Paper
Superconducting Quantum Sensors for Fundamental Physics Searches
by Gulden Othman, Robert H. Hadfield, Katharina-Sophie Isleif, Friederike Januschek, Axel Lindner, Manuel Meyer, Dmitry Morozov, Devendra Kumar Namburi, Elmeri Rivasto, José Alejandro Rubiera Gimeno and Christina Schwemmbauer
Phys. Sci. Forum 2025, 11(1), 2; https://doi.org/10.3390/psf2025011002 - 20 Oct 2025
Viewed by 179
Abstract
Superconducting Transition Edge Sensors (TESs) are a promising technology for fundamental physics applications due to their low dark count rates, excellent energy resolution, and high detection efficiency. On the DESY campus, we have been developing a program to characterize cryogenic quantum sensors for [...] Read more.
Superconducting Transition Edge Sensors (TESs) are a promising technology for fundamental physics applications due to their low dark count rates, excellent energy resolution, and high detection efficiency. On the DESY campus, we have been developing a program to characterize cryogenic quantum sensors for fundamental physics applications, particularly focused on TESs. We currently have two fully equipped dilution refrigerators that enable simultaneous TES characterization and fundamental physics searches. In this paper, we summarize the current status of our TES characterization, including recent calibration efforts and efficiency measurements, as well as simulations to better understand TES behavior and its backgrounds. Additionally, we summarize some physics applications that we are already exploring or planning to explore. We will give preliminary projections on a direct dark matter search with our TES, where exploiting low-threshold electron scattering in superconducting materials allows us to search for sub-MeV-scale dark matter. We are also working toward performing a measurement of the even-number photon distribution (beyond one pair) of a quantum-squeezed light source. Finally, if it proves to meet the requirements, our TES detector may be used as a second, independent detection system to search for an axion signal at the ALPS II experiment. Full article
(This article belongs to the Proceedings of The 19th Patras Workshop on Axions, WIMPs and WISPs)
Show Figures

Figure 1

19 pages, 1170 KB  
Article
Machine Learning-Driven Prediction of Heat Transfer Coefficients for Pure Refrigerants in Diverse Heat Exchangers Types
by Edgar Santiago Galicia, Andres Hernandez-Matamoros and Akio Miyara
J. Exp. Theor. Anal. 2025, 3(4), 32; https://doi.org/10.3390/jeta3040032 - 16 Oct 2025
Viewed by 474
Abstract
Traditional empirical correlations for predicting saturated flow boiling heat transfer coefficients (HTC) often struggle with accuracy and generalizability, particularly across different refrigerants, heat exchanger geometries, and operating conditions. To address these limitations, this study investigates the application of machine learning for more robust [...] Read more.
Traditional empirical correlations for predicting saturated flow boiling heat transfer coefficients (HTC) often struggle with accuracy and generalizability, particularly across different refrigerants, heat exchanger geometries, and operating conditions. To address these limitations, this study investigates the application of machine learning for more robust HTC prediction. A comprehensive dataset was compiled, consisting of 22,608 data points from over 140 published studies, covering 18 pure refrigerants under diverse experimental setups. The primary goal was to evaluate the performance of different machine learning approaches—Wide Neural Network (WNN), Linear Regression (LR), and Support Vector Machine (SVM)—in predicting HTCs across varying tube types and heat exchanger configurations. The results indicate that the WNN model achieved the highest predictive accuracy, with a Root Mean Square Error (RMSE) of 1.97 and a coefficient of determination (R2) of 0.91, corresponding to less than 5% prediction error for all refrigerants. These outcomes confirm that machine learning models can effectively capture the complex thermofluid interactions involved in boiling heat transfer. This work demonstrates that data-driven methods provide a reliable and generalizable alternative to empirical correlations. Full article
Show Figures

Figure 1

Back to TopTop