Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (335)

Search Parameters:
Keywords = refractory metals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6826 KiB  
Article
Crack-Mitigating Strategy in Directed Energy Deposition of Refractory Complex Concentrated CrNbTiZr Alloy
by Jan Kout, Tomáš Krajňák, Pavel Salvetr, Pavel Podaný, Michal Brázda, Dalibor Preisler, Miloš Janeček, Petr Harcuba, Josef Stráský and Jan Džugan
Materials 2025, 18(15), 3653; https://doi.org/10.3390/ma18153653 - 4 Aug 2025
Viewed by 78
Abstract
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant [...] Read more.
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant challenges for manufacturing defect-free alloys using this approach. To address this issue, we investigated the preparation of a CrNbTiZr quaternary complex concentrated alloy from an equimolar blend of elemental powders using commercially available powder-blown L-DED technology. Initially, the alloys exhibited some defects owing to the internal stress caused by the temperature gradients. This was subsequently resolved by optimizing the deposition strategy. SEM, XRD and EDS were used to analyze the alloy in the as-deposited condition, revealing a BCC phase and a secondary Laves phase. Furthermore, Vickers hardness testing demonstrated a correlation between the hardness and the volume fraction of the Laves phase. Finally, successfully performed compression tests confirmed that the prepared material exhibits high-temperature strength and therefore is promising for high-temperature application under extreme conditions. Full article
Show Figures

Figure 1

30 pages, 7246 KiB  
Article
Linear Dependence of Sublimation Enthalpy on Young’s Elastic Modulus: Implications for Thermodynamics of Solids
by Anne M. Hofmeister
Materials 2025, 18(15), 3535; https://doi.org/10.3390/ma18153535 - 28 Jul 2025
Viewed by 369
Abstract
Classical thermodynamics omits rigidity, which property distinguishes solids from gases and liquids. By accounting for rigidity (i.e., Young’s elastic modulus, ϒ), we recently amended historical formulae and moreover linked heat capacity, thermal expansivity, and ϒ. Further exploration is motivation by the importance of [...] Read more.
Classical thermodynamics omits rigidity, which property distinguishes solids from gases and liquids. By accounting for rigidity (i.e., Young’s elastic modulus, ϒ), we recently amended historical formulae and moreover linked heat capacity, thermal expansivity, and ϒ. Further exploration is motivation by the importance of classical thermodynamics to various applied sciences. Based on heat performing work, we show here, theoretically, that density times sublimation enthalpy divided by the molar mass (ρΔHsub/M, energy per volume), depends linearly on ϒ (1 GPa = 109 J m−3). Data on diverse metals, non-metallic elements, chalcogenides, simple oxides, alkali halides, and fluorides with cubic structures validate this relationship at ambient conditions. Furthermore, data on hcp metals and molecular solids show that ρΔHsub/M is proportional to ϒ for anisotropic materials. Proportionality constants vary only from 0.1 to 0.7 among these different material types (>100 substances), which shows that the elastic energy reservoir of solids is large. Proportionality constants depend on whether molecules or atoms are sublimated and are somewhat affected by structure. We show that ductility of refractory, high-ϒ metals affect high-temperature determinations of their ΔHsub. Our results provide information on sublimation processes and subsequent gas phase reactions, while showing that elasticity of solids is the key parameter needed to assessing their energetics. Implications are highlighted. Full article
Show Figures

Graphical abstract

17 pages, 2829 KiB  
Article
Apparatus and Experiments Towards Fully Automated Medical Isotope Production Using an Ion Beam Accelerator
by Abdulaziz Yahya M. Hussain, Aliaksandr Baidak, Ananya Choudhury, Andy Smith, Carl Andrews, Eliza Wojcik, Liam Brown, Matthew Nancekievill, Samir De Moraes Shubeita, Tim A. D. Smith, Volkan Yasakci and Frederick Currell
Instruments 2025, 9(3), 18; https://doi.org/10.3390/instruments9030018 - 18 Jul 2025
Viewed by 256
Abstract
Zirconium-89 (89Zr) is a widely used radionuclide in immune-PET imaging due to its physical decay characteristics. Despite its importance, the production of 89Zr radiopharmaceuticals remains largely manual, with limited cost-effective automation solutions available. To address this, we developed an automated [...] Read more.
Zirconium-89 (89Zr) is a widely used radionuclide in immune-PET imaging due to its physical decay characteristics. Despite its importance, the production of 89Zr radiopharmaceuticals remains largely manual, with limited cost-effective automation solutions available. To address this, we developed an automated system for the agile and reliable production of radiopharmaceuticals. The system performs transmutations, dissolution, and separation for a range of radioisotopes. Steps in the production of 89Zr-oxalate are used as an exemplar to illustrate its use. Three-dimensional (3D) printing was exploited to design and manufacture a target holder able to include solid targets, in this case an 89Y foil. Spot welding was used to attach 89Y to a refractory tantalum (Ta) substrate. A commercially available CPU chiller was repurposed to efficiently cool the metal target. Furthermore, a commercial resin (ZR Resin) and compact peristaltic pumps were employed in a compact (10 × 10 × 10 cm3) chemical separation unit that operates automatically via computer-controlled software. Additionally, a standalone 3D-printed unit was designed with three automated functionalities: photolabelling, vortex mixing, and controlled heating. All components of the assembly, except for the target holder, are housed inside a commercially available hot cell, ensuring safe and efficient operation in a controlled environment. This paper details the design, construction, and modelling of the entire assembly, emphasising its innovative integration and operational efficiency for widespread radiopharmaceutical automation. Full article
Show Figures

Figure 1

20 pages, 2516 KiB  
Article
Utilisation of Pyrometallurgical Wastes: Recovery of Copper from the Spent Refractory Bricks from a Smelter in Namibia
by Titus Nghipulile, Godfrey Dzinomwa, Benjamin Mapani, Jaquiline Tatenda Kurasha and Chanda Anamela Kambobe
Minerals 2025, 15(7), 722; https://doi.org/10.3390/min15070722 - 10 Jul 2025
Viewed by 287
Abstract
The reprocessing of metallurgical wastes to recover much-needed metals such as copper not only ensures an adequate supply of metals but also contributes to the cleaning of the environment. A copper smelter in Namibia accumulated significant amounts of spent refractory bricks that are [...] Read more.
The reprocessing of metallurgical wastes to recover much-needed metals such as copper not only ensures an adequate supply of metals but also contributes to the cleaning of the environment. A copper smelter in Namibia accumulated significant amounts of spent refractory bricks that are enriched with metal values including copper. This supposedly waste material can potentially serve as a supplement to the ore concentrate, as a smelter feedstock for this toll smelter. Representative samples of crushed bricks, designated as Sample 1 and Sample 2, were used for mineralogical characterisation and flotation test work. The assays for Sample 1 and Sample 2 were 14% Cu and 18% Cu, respectively. Microscopy results identified various copper phases including metallic Cu, bornite, malachite and chalcopyrite. Batch flotation tests were conducted to investigate the effect of grind size (P80 of 53, 75 and 106 μm), pulp pH (natural pulp pH, 10, 10.5 and 11) and collector (potassium amyl xanthate, PAX) dosage (70, 100 and 130 g/t) on the recovery of copper, concentrate grade and weight recovery. In some tests, a co-collector (dithiophosphate, DTP) and sulphidiser (Na2S) were also added in the quest to maximise the recovery of copper. Based on the test conditions investigated in this study, the grind size is the key variable affecting the recovery of copper. The best copper recovery of 86% (with a weight recovery in the range of 42 to 45% (w/w) and concentrate grade of 37% Cu) was achieved for the finest grind size of 53 μm. The reagent suite that yielded the best recovery was 70 g/t PAX with no addition of the sulphidiser while the pH was 10. There is scope for developing the process routes to recover other valuable metals such as iron, lead and zinc that are also in the spent bricks, as well as potential reuse of the spent bricks (after recovering valuable metals) to make new refractory bricks. Full article
(This article belongs to the Special Issue Circular Economy of Remining Secondary Raw Materials)
Show Figures

Figure 1

15 pages, 2361 KiB  
Article
Synergistic Leaching of Low-Grade Tungsten–Molybdenum Ore via a Novel KMnO4-Na2CO3-NaHCO3 Composite System Guided by Process Mineralogy
by Jian Kang, Linlin Tong, Qin Zhang, Han Zhao, Xinyao Wang, Bin Xiong and Hongying Yang
Minerals 2025, 15(7), 712; https://doi.org/10.3390/min15070712 - 3 Jul 2025
Viewed by 376
Abstract
The mineral processing of a low-grade tungsten-molybdenum ore (LGTMO) was investigated to assess the potential of recovering molybdenum (Mo) and tungsten (W). Techniques such as Polarizing Microscope (PM), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Mineral Liberation Analysis (MLA), and Advanced Mineral Identification and [...] Read more.
The mineral processing of a low-grade tungsten-molybdenum ore (LGTMO) was investigated to assess the potential of recovering molybdenum (Mo) and tungsten (W). Techniques such as Polarizing Microscope (PM), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Mineral Liberation Analysis (MLA), and Advanced Mineral Identification and Characterization System (AMICS) were employed. The recoverable metals in the ore are Mo (0.158% ± 0.03%) and W (0.076% ± 0.02%). Mo exists in two forms: 63.30% as molybdenite and 36.7% as powellite (CaMoxW1−xO4). W is present as 75.26% scheelite and 24.74% powellite. The complete dissociation rates of molybdenite and scheelite-powellite are 27.14% and 88.87%, respectively. Particles of scheelite-powellite with a diameter less than 10 µm account for 34.61%, while molybdenite particles with a diameter below 10 µm make up 72.73%. Scheelite-powellite is mainly associated with olivine and dolomite, while molybdenite is mainly associated with pyroxene, calcite, and hornblende. Based on the process mineralogy, the mineralogical factors influencing the flotation recovery of molybdenite and scheelite-powellite were analyzed. Finally, a complete hydrometallurgical leaching test was carried out. The optimal experimental conditions are as follows: liquid-solid ratio of 6 mL/g, KMnO4 concentration of 0.015 mol/L, Na2CO3 concentration of 0.12 mol/L, NaHCO3 concentration of 0.024 mol/L, leaching time of 4 h, and leaching temperature of 85 °C. Under these conditions, the leaching efficiencies of Mo and W reach 79.23% and 41.41%, respectively. This study presents a novel approach for the recovery of refractory W and Mo resources in LGTMO while simultaneously providing a theoretical basis for the high-efficiency utilization of these resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

23 pages, 5026 KiB  
Review
Ductile–Brittle Transition Mechanism and Dilute Solution Softening Effect of Body-Centered Cubic Metals
by Jie Zhang, Tianliang Zhao, Tingping Hou, Yan Li and Kaiming Wu
Metals 2025, 15(7), 743; https://doi.org/10.3390/met15070743 - 30 Jun 2025
Viewed by 341
Abstract
Body-centered cubic (BCC) metals, extensively utilized in low-alloy high-strength steels and heat-resistant alloys, exhibit a pronounced ductile–brittle transition (DBT) at cryogenic temperatures, marked by a well-defined yet narrow ductile–brittle transition temperature (DBTT) window. This paper overviews the research progress regarding the DBT mechanism [...] Read more.
Body-centered cubic (BCC) metals, extensively utilized in low-alloy high-strength steels and heat-resistant alloys, exhibit a pronounced ductile–brittle transition (DBT) at cryogenic temperatures, marked by a well-defined yet narrow ductile–brittle transition temperature (DBTT) window. This paper overviews the research progress regarding the DBT mechanism of BCC metals. This mechanism was recently found to be related to the mobility of screw dislocation relative to edge dislocation, a decrease in which can induce a critical drop in the proliferation efficiency of dislocation sources. Furthermore, this paper summarizes the current research on the dilute solution softening effect of BCC metals, which has been frequently observed and studied in refractory alloys. The mechanism of this effect involves the low-temperature mobility of screw dislocations that could be promoted by specific solute atoms through kink pair nucleation. This offers a potential strategy for reducing the DBTT of low-alloy steels using a dilute solution, namely microalloying in metallurgy. However, the current understanding of the relationship between the macroscopic ductility of BCC alloys and the dilute solution softening effect is limited. This review aimed to draw attention to this relationship and strengthen related research. Full article
(This article belongs to the Special Issue Recent Insights into Mechanical Properties of Metallic Alloys)
Show Figures

Figure 1

42 pages, 4211 KiB  
Review
Industrial Wastewater Treatment by Coagulation–Flocculation and Advanced Oxidation Processes: A Review
by Marco S. Lucas, Ana R. Teixeira, Nuno Jorge and José A. Peres
Water 2025, 17(13), 1934; https://doi.org/10.3390/w17131934 - 27 Jun 2025
Viewed by 923
Abstract
As human living standards have improved, the demand for industrial products—such as food, dyes, cosmetics, pharmaceuticals, and others—has significantly increased. This surge in production has, in turn, led to a rise in industrial wastewater (IW) generation, which is often marked by low biodegradability [...] Read more.
As human living standards have improved, the demand for industrial products—such as food, dyes, cosmetics, pharmaceuticals, and others—has significantly increased. This surge in production has, in turn, led to a rise in industrial wastewater (IW) generation, which is often marked by low biodegradability and a high concentration of toxic or refractory compounds. This review highlights the use of coagulation–flocculation–decantation (CFD) and advanced oxidation processes (AOPs) for treating such wastewater. A comprehensive analysis of CFD is provided, covering the underlying mechanisms, types of coagulants (including metal-based, animal-derived, mineral, and plant-based), and the optimal operational conditions required to maximize treatment efficiency. This review discusses the properties and performance of these coagulants in detail. In addition, this paper explores the methods used in AOPs to reduce organic carbon, focusing particularly on the roles of hydroxyl and sulfate radicals. Emphasis is placed on the enhancement of these processes using radiation, chelating agents, and heterogeneous catalysts, along with their effectiveness in IW treatment. Finally, the integration of CFD as a pre-treatment step to improve the efficiency of subsequent AOPs is provided. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

16 pages, 3258 KiB  
Article
Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100)
by Yang Wang, Junhao Chen, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(6), 580; https://doi.org/10.3390/cryst15060580 - 19 Jun 2025
Viewed by 275
Abstract
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the [...] Read more.
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the mechanisms of Volmer–Weber (VW, island growth mode) nucleation at low coverage and Stranski–Krastanov (SK, layer-plus-island growth) transitions driven by interface metallization, stress release, and energy reduction, which facilitates coherent monolayer formation by lowering the energy barrier by ~34%. Molecular dynamics simulations demonstrate that the strategic co-optimization of substrate temperature (Tsub) and deposition rate (Vdep) induces an abrupt cliff-like drop in mosaic spread. Experimental validations confirm that this T-V synergy achieves unprecedented interfacial coherence, whereby AFM roughness reaches 0.34 nm (RMS) and the XRC-FWHM of 0.13° approaches single-crystal benchmarks. Notably, our novel “accelerated heteroepitaxy” protocol reduces growth time without compromising quality, addressing the efficiency–quality paradox in industrial-scale diamond substrate fabrication. These findings establish universal thermal–kinetic design principles applicable to refractory metal/oxide heterostructures for next-generation quantum sensors and high-power electronic devices. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

11 pages, 3341 KiB  
Article
Carburization of Tantalum Metal Powder Using Activated Carbon
by Seonmin Hwang and Dongwon Lee
Materials 2025, 18(12), 2710; https://doi.org/10.3390/ma18122710 - 9 Jun 2025
Viewed by 320
Abstract
Tantalum carbide (TaC) is a highly refractory material with a melting point of 4153 K, making it attractive for applications requiring excellent hardness and thermal stability. In this study, we investigated the carburization behavior of high-purity tantalum metal powder synthesized by magnesium thermal [...] Read more.
Tantalum carbide (TaC) is a highly refractory material with a melting point of 4153 K, making it attractive for applications requiring excellent hardness and thermal stability. In this study, we investigated the carburization behavior of high-purity tantalum metal powder synthesized by magnesium thermal reduction of Ta2O5, using activated carbon and graphite as carbon sources under high vacuum. Carburization was conducted at 1100–1400 °C for durations of 5–20 h. Carbon contents were analyzed via combustion analysis, and activation energies were calculated based on Arrhenius plots. The results showed that the activated carbon significantly enhanced carbon uptake compared to graphite due to its higher porosity and surface reactivity. The formation and transformation of carbide phases were confirmed via X-ray diffraction, revealing a progression from Ta to Ta2C and eventually to single-phase TaC with increasing carbon content. Scanning electron microscopy (SEM) analysis showed that fine particles formed on the surface as carbon content increased, indicating local nucleation of TaC. Although the theoretical carbon content of stoichiometric TaC (6.22 wt.%) was not fully achieved, the near-theoretical lattice parameter (4.4547 Å) was approached. These findings suggest that activated carbon can serve as an effective carburizing agent for the synthesis of TaC under vacuum conditions. Full article
(This article belongs to the Special Issue Low-Carbon Technology and Green Development Forum)
Show Figures

Figure 1

14 pages, 4293 KiB  
Article
Highly Stable Covalent Organic Framework for Palladium Removal from Nuclear Wastewater
by Wenchen Song, Junli Wang, Wentao Wang, Hui Wang and Yao Liu
Processes 2025, 13(6), 1784; https://doi.org/10.3390/pr13061784 - 5 Jun 2025
Viewed by 459
Abstract
The effective management of High-Level Liquid Waste (HLLW) is critical for environmental and human health protection. The presence of platinum group metals (PGMs) in HLLW, particularly their refractory nature due to their high melting points, complicates vitrification processes. This study presents a targeted [...] Read more.
The effective management of High-Level Liquid Waste (HLLW) is critical for environmental and human health protection. The presence of platinum group metals (PGMs) in HLLW, particularly their refractory nature due to their high melting points, complicates vitrification processes. This study presents a targeted adsorption strategy using COF-42 for Pd2+ sequestration in HLLW systems. The comprehensive characterization of COF-42 and its Pd-loaded counterpart (Pd@COF-42) via PXRD, FT-IR, TGA, XPS, and SEM confirms structural robustness and successful Pd2+ incorporation. Kinetic and thermodynamic analyses reveal pseudo-second-order adsorption behavior with a maximum capacity of 170.6 mg/g, highlighting the exceptional Pd2+ affinity. Systematic optimization identifies HNO3 concentration (≤3 M) and adsorbent dosage (≤30 mg) as critical parameters governing adsorption efficiency through protonation–deprotonation equilibria. Furthermore, COF-42 exhibits superior selectivity for Pd2+ over 13 competing metal ions and maintains ~80% adsorption efficiency after four regeneration cycles. These performance metrics originate from the synergistic interplay of (1) framework flexibility enabling adaptive Pd2+ coordination, (2) hierarchical porosity facilitating ion diffusion, and (3) dense –NH/–NH2 groups acting as electron-rich chelation sites. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

24 pages, 6291 KiB  
Article
Temperature Dependence of Hardness of High Entropy Alloys
by Ottó K. Temesi, Albert Karacs, Nguyen Q. Chinh and Lajos K. Varga
Metals 2025, 15(6), 623; https://doi.org/10.3390/met15060623 - 30 May 2025
Viewed by 360
Abstract
Correlations have been found for the base value of hardness (as the ratio between the heat of fusion and molar volume) and the softening temperature (as the ratio of heat of fusion and specific heat capacity). The relative change of bulk hardness as [...] Read more.
Correlations have been found for the base value of hardness (as the ratio between the heat of fusion and molar volume) and the softening temperature (as the ratio of heat of fusion and specific heat capacity). The relative change of bulk hardness as a function of temperature, H(T), is studied by three new parametric formulas beside the well-known exponential decay and Arrhenius-type expressions. Mathematically, two formulas can be considered as deriving from the exponential decay; the third one is a new rational fraction expression based on the power of normalized temperature. The normalizing temperature is taken as the softening temperature. In the Arrhenius expression, a temperature-dependent activation energy is introduced, which increases steadily with heating but never surpasses the value of self-diffusion. This rational fracture expression has been shown to be applicable to both pure metals and alloys with arbitrary H(T) curve shapes, from convex (pure metals) to concave (alloys). A detailed description of the fitting of these parametric formulas is given, applying the H(T) data from the literature and from our own measurements. Measuring our refractory high entropy alloy (RHEA) samples, an early softening temperature, smaller than the expected half of the melting point (Ts < Tm/2) was detected, signaling a phase instability in the case of Ti-, Zr- and Hf-containing alloys. Full article
(This article belongs to the Special Issue Feature Papers in Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

32 pages, 41844 KiB  
Article
Surface Resistivity Correlation to Nano-Defects in Laser Powder Bed Fused Molybdenum (Mo)-Silicon Carbide (SiC) Alloys
by Andrew Mason, Larry Burggraf, Ryan Kemnitz and Nate Ellsworth
J. Manuf. Mater. Process. 2025, 9(6), 174; https://doi.org/10.3390/jmmp9060174 - 26 May 2025
Viewed by 594
Abstract
The integration of Silicon Carbide (SiC) nanoparticles into Laser Powder Bed Fusion (LB-PBF) Molybdenum (Mo) printing represents a significant advancement in refractory metal additive manufacturing. Our investigation examined how varying SiC nanoparticle sizes affect the microstructural and electrical properties of LB-PBF-printed molybdenum components [...] Read more.
The integration of Silicon Carbide (SiC) nanoparticles into Laser Powder Bed Fusion (LB-PBF) Molybdenum (Mo) printing represents a significant advancement in refractory metal additive manufacturing. Our investigation examined how varying SiC nanoparticle sizes affect the microstructural and electrical properties of LB-PBF-printed molybdenum components while maintaining a 0.01 mass fraction of Mo. At an Linear Energy Densities (LED) of 1.8 J/mm, the addition of 80 nm SiC particles achieved a 46% reduction in porosity, while sheet resistance decreased by 6% at LED of 2.0 J/mm with 80 nm SiC particles. These performance improvements stem from several mechanisms: SiC particles serve as oxygen scavengers, facilitate secondary phase formation, and enhance laser absorption efficiency. Their dual role as sacrificial oxidizing agents and Mo disilicide phase promoters represents a novel approach to addressing microcracking and porosity in LB-PBF-printed Mo components. Through systematic investigation of particle size effects on both microscale and nanoscale properties, our findings suggest that optimized nanoparticle addition could become a universal strategy for enhancing LB-PBF processing of refractory metals, particularly in applications requiring enhanced mechanical and electrical performance. Full article
Show Figures

Figure 1

20 pages, 4082 KiB  
Article
Phase Evolution During High-Energy Ball Milling and Annealing of Ti-Doped Mo-V-Si-B Alloys
by Dennis Zang, Julia Becker, Ulf Betke, Georg Hasemann, Kateryna Khanchych, Bronislava Gorr and Manja Krüger
Materials 2025, 18(11), 2494; https://doi.org/10.3390/ma18112494 - 26 May 2025
Viewed by 481
Abstract
Refractory metal-based Mo-Si-B alloys have long been considered the most promising candidates for replacing nickel-based superalloys in the aerospace and energy sector due to their outstanding mechanical properties and good oxidation of the Mo-silicide phases. In general, the addition of vanadium to Mo-Si-B [...] Read more.
Refractory metal-based Mo-Si-B alloys have long been considered the most promising candidates for replacing nickel-based superalloys in the aerospace and energy sector due to their outstanding mechanical properties and good oxidation of the Mo-silicide phases. In general, the addition of vanadium to Mo-Si-B alloys leads to a significant density reduction, while small amounts of titanium provide additional strengthening without changing the phase evolution within the Moss-Mo3Si-Mo5SiB2 phase field. In this work, high-energy ball milling studies on Mo-40V-9Si-8B, substituting both molybdenum and vanadium with 2 and 5 at. % Ti in all constituents, were performed to evaluate the potential milling parameters and investigate the effects of Ti doping on the milling characteristics and phase formation of these multicomponent alloys. After different milling durations, the powders were analysed with regard to their microstructure, particle size, oxygen concentration and microhardness. After heat treatment, the silicide phases (Mo,V)3Si and (Mo,V)5SiB2 precipitated homogeneously within a (Mo,V) solid solution matrix phase. Thermodynamic phase calculations using the CALPHAD method showed good agreement with the experimental phase compositions after annealing, confirming the stability of the observed microstructure. Full article
Show Figures

Figure 1

14 pages, 3883 KiB  
Article
Numerical Optimization of Laser Powder Bed Fusion Process Parameters for High-Precision Manufacturing of Pure Molybdenum
by İnayet Burcu Toprak, Nafel Dogdu and Metin Uymaz Salamci
Appl. Sci. 2025, 15(10), 5485; https://doi.org/10.3390/app15105485 - 14 May 2025
Viewed by 494
Abstract
This study presents a comprehensive numerical investigation of the Laser Powder Bed Fusion (LPBF) process for pure molybdenum, focusing on high-precision modeling and process optimization. The powder spreading behavior is simulated using the Discrete Element Method (DEM), while molten pool dynamics are analyzed [...] Read more.
This study presents a comprehensive numerical investigation of the Laser Powder Bed Fusion (LPBF) process for pure molybdenum, focusing on high-precision modeling and process optimization. The powder spreading behavior is simulated using the Discrete Element Method (DEM), while molten pool dynamics are analyzed through Computational Fluid Dynamics (CFD). Optimization of process parameters is performed using FLOW-3D Release 7 software in conjunction with the HEEDS-SHERPA algorithm. A total of 247 simulations are conducted to assess the effects of four critical parameters: laser power (50–400 W), scanning speed (80–300 mm/s), laser spot diameter (40–100 µm), and powder layer thickness (50–100 µm). The optimal parameter set—350 W laser power, 120 mm/s scanning speed, 50 µm spot diameter, and 50 µm layer thickness—results in an 80% laser absorption rate, a 60% reduction in micro-porosity, and over a 30% enhancement in both molten pool volume and surface area. Utilizing a fine 10 µm mesh resolution enables detailed insights into temperature gradients and phase transition behavior. The findings highlight that optimized parameter selection significantly improves the structural integrity of Mo-based components while minimizing manufacturing defects, thus offering valuable guidance for advancing industrial-scale additive manufacturing of refractory metals. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

24 pages, 14846 KiB  
Article
The Development of an Optimized Impact Pad for a Six-Strand Tundish Using CFD Simulations
by Peter Demeter, Branislav Buľko, Róbert Dzurňák, Ivan Priesol, Slavomír Hubatka, Lukáš Fogaraš, Martina Hrubovčáková and Jaroslav Demeter
Appl. Sci. 2025, 15(10), 5450; https://doi.org/10.3390/app15105450 - 13 May 2025
Viewed by 383
Abstract
The behavior of molten steel within a tundish plays a crucial role in achieving uniform temperature and chemical composition, enhancing the removal efficiency of non-metallic inclusions, and reducing the wear of refractory linings. These aspects are key for ensuring the production of steel [...] Read more.
The behavior of molten steel within a tundish plays a crucial role in achieving uniform temperature and chemical composition, enhancing the removal efficiency of non-metallic inclusions, and reducing the wear of refractory linings. These aspects are key for ensuring the production of steel with superior quality. In multi-strand delta-type tundishes, such as the six-strand configuration, flow dynamics become particularly challenging. Key considerations include strand-specific residence times, the uniform distribution of steel flow, and the mitigation of refractory degradation. This paper presents a detailed numerical analysis aimed at designing an optimally shaped impact pad. The effectiveness of each proposed design was assessed through a tracer-based visualization of flow behavior and the evaluation of residence time distribution (RTD) curves. RTD curves were created in isothermal conditions, while the calculations of the temperature fields of steel in the tundish were made in non-isothermal conditions. The results of the simulations were verified by a real plant trial test and indicate that the use of the “SPHERIC-K4” impact pad can greatly enhance the flow characteristics of liquid steel during the continuous casting process. These improvements include preventing the erosion of the tundish refractory lining, improving the distribution of residence times between individual casting strands, and adjusting the proportions of the mixing zones. Full article
Show Figures

Figure 1

Back to TopTop