Highly Stable Covalent Organic Framework for Palladium Removal from Nuclear Wastewater
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of COF-42
2.3. Adsorption Performance of COF-42 Towards Pd2+
2.4. Characterizations
2.5. Calculations
3. Results and Discussion
3.1. The Characterization of COF-42
3.2. The Sorption Performance of COF-42 Towards Pd2+
3.3. The Sorption Mechanism of COF-42
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Järvine, A.K.; Murchison, A.G.; Keech, P.G.; Pandey, M.D. A probabilistic model for estimating the life expectancy of used nuclear fuel containers in a Canadian geological repository: Effects of latent defects and repository temperature. Nucl. Technol. 2020, 206, 1036–1058. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, J.; Ling, K.; Han, L.; Liu, L. Rapid vitrification of simulated HLLW by ultra-high power laser. J. Radioanal. Nucl. Chem. 2024, 333, 2263–2271. [Google Scholar] [CrossRef]
- Yakoumis, I.; Panou, M.; Moschovi, A.M.; Panias, D. Recovery of platinum group metals from spent automotive catalysts: A review. Clean. Eng. Technol. 2021, 3, 100112. [Google Scholar] [CrossRef]
- Tang, H.; Peng, Z.; Tian, R.; Ye, L.; Zhang, J.; Rao, M.; Li, G. Platinum-group metals: Demand, supply, applications and their recycling from spent automotive catalysts. J. Environ. Chem. Eng. 2023, 11, 110237. [Google Scholar] [CrossRef]
- Pathak, A.; Al-Sheeha, H.; Navvamani, R.; Kothari, R.; Marafi, M.; Rana, M.S. Recycling of platinum group metals from exhausted petroleum and automobile catalysts using bioleaching approach: A critical review on potential, challenges, and outlook. Rev. Environ. Sci. Bio. 2022, 21, 1035–1059. [Google Scholar] [CrossRef]
- Xia, J.; Ghahreman, A. Platinum group metals recycling from spent automotive catalysts: Metallurgical extraction and recovery technologies. Sep. Purif. Technol. 2023, 311, 123357. [Google Scholar] [CrossRef]
- Wang, J.; Luo, C.; Wang, W.; Wang, H.; Shi, J.; Yan, T.; Cao, M.; Li, J. Efficient capture of palladium from nuclear wastewater by the sulfide and thiol modified covalent organic framework. Colloid. Surface. A 2024, 698, 134601. [Google Scholar] [CrossRef]
- Ruhela, R.; Singh, A.K.; Tomar, B.S.; Hubli, R.C. Separation of palladium from high level liquid waste—A review. RSC Adv. 2014, 4, 24344. [Google Scholar] [CrossRef]
- Grünewald, W.; Roth, G.; Tobie, W.; Weiß, K.; Weisenburger, S. The role of the platinum group elements ruthenium, rhodium and palladium in the vitrification of radioactive high level liquid waste using joule heated ceramic lined waste glass melters. Glass Technol.-Part. A 2008, 49, 266–278. [Google Scholar]
- Song, L.; Wang, X.; Li, L.; Wang, Z.; Xu, H.; He, L.; Li, Q.; Ding, S. Recovery of palladium(II) from strong nitric acid solutions relevant to high-level liquid waste of PUREX process by solvent extraction with pyrazole-pyridine-based amide ligands. Hydrometallurgy 2022, 211, 105888. [Google Scholar] [CrossRef]
- Li, F.; Shang, Y.; Ding, Z.; Weng, H.; Xiao, J.; Lin, M. Efficient extraction and separation of palladium (Pd) and ruthenium (Ru) from simulated HLLW by photoreduction. Sep. Purif. Technol. 2017, 182, 9–18. [Google Scholar] [CrossRef]
- Weng, H.; Wang, Y.; Li, F.; Muroya, Y.; Yamashita, S.; Cheng, S. Recovery of platinum group metal resources from high-level radioactive liquid wastes by non-contact photoreduction. J. Hazard. Mater. 2023, 458, 131852. [Google Scholar] [CrossRef]
- Zheng, H.; Ding, Y.; Wen, Q.; Liu, B.; Zhang, S. Separation and purification of platinum group metals from aqueous solution: Recent developments and industrial applications. Resour. Conserv. Recy. 2021, 167, 105417. [Google Scholar] [CrossRef]
- Xing, W.D.; Lee, M.S. A Process for the Separation of Noble Metals from HCl Liquor Containing Gold(III), Palladium(II), Platinum(IV), Rhodium(III), and Iridium(IV) by Solvent Extraction. Processes 2019, 7, 243. [Google Scholar] [CrossRef]
- Huang, N.; Zhai, L.; Xu, H.; Jiang, D. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J. Am. Chem. Soc. 2017, 139, 2428–2434. [Google Scholar] [CrossRef] [PubMed]
- Pellenz, L.; de Oliveira, C.R.S.; da Silva Júnior, A.H.; da Silva, L.J.S.; da Silva, L.; de Souza, A.A.U.; de Souza, S.M.; Borba, F.H.; da Silva, A. A comprehensive guide for characterization of adsorbent materials. Sep. Purif. Technol. 2023, 305, 122435. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, C.; Fang, H.; Zhu, W.; Shi, J.; Liu, G. Synthesis of ordered mesoporous silica from biomass ash and its application in CO2 adsorption. Environ. Res. 2023, 231, 116070. [Google Scholar] [CrossRef]
- Bhatt, P.; Joshi, S.; Urper Bayram, G.M.; Khati, P.; Simsek, H. Developments and application of chitosan-based adsorbents for wastewater treatments. Environ. Res. 2023, 226, 115530. [Google Scholar] [CrossRef]
- González Fernández, L.A.; Medellín Castillo, N.A.; Sánchez Polo, M.; Navarro Frómeta, A.E.; Vilasó Cadre, J.E. Algal-based carbonaceous materials for environmental remediation: Advances in wastewater treatment, carbon sequestration, and Biofuel Applications. Processes 2025, 13, 556. [Google Scholar] [CrossRef]
- Trucillo, P.; Di Maio, E.; Lancia, A.; Di Natale, F. Selective gold and palladium adsorption from standard aqueous solutions. Processes 2021, 9, 1282. [Google Scholar] [CrossRef]
- Gendy, E.A.; Oyekunle, D.T.; Ifthikar, J.; Jawad, A.; Chen, Z. A review on the adsorption mechanism of different organic contaminants by covalent organic framework (COF) from the aquatic environment. Environ. Sci. Pollut. Res. 2022, 29, 32566–32593. [Google Scholar] [CrossRef] [PubMed]
- Diercks, C.S.; Yaghi, O.M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, 923. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.Y.; Cui, X.H.; Feng, J.; Lu, G.; Wang, W. Facile synthesis of –CQN– linked covalent organic frameworks under ambient conditions. Chem. Commun. 2017, 53, 11956. [Google Scholar] [CrossRef]
- Gao, L.; Dong, Q.; Zhao, X.; Hu, X.; Chu, H.; Lv, R.; Qin, S. Open tubular column immobilized with covalent organic frameworks for rapid separation of small molecular compounds by capillary electrochromatography. Processes 2022, 10, 843. [Google Scholar] [CrossRef]
- Chen, X.; Geng, K.; Liu, R.; Tan, K.T.; Gong, Y.; Li, Z.; Tao, S.; Jiang, Q.; Jiang, D. Covalent organic frameworks: Chemical approaches to designer structures and built-in functions. Angew. Chem. Int. Ed. 2020, 59, 5050–5091. [Google Scholar] [CrossRef]
- Guan, X.; Chen, F.; Fang, Q.; Qiu, S. Design and applications of three dimensional covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 1357–1384. [Google Scholar] [CrossRef]
- Evans, A.M.; Parent, L.R.; Flanders, N.C.; Bisbey, R.P.; Vitaku, E.; Kirschner, M.S.; Schaller, R.D.; Chen, L.X.; Gianneschi, N.C.; Dichtel, W.R. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 2018, 361, 52–57. [Google Scholar] [CrossRef]
- Liao, H.; Ding, H.; Li, B.; Ai, X.; Wang, C. Click synthesis of cyclic porphyrin-based covalent organic frameworks and their application in biomimetic catalysis. J. Mater. Chem. A 2014, 2, 8854. [Google Scholar] [CrossRef]
- Zhang, L.; Yi, L.; Sun, Z.J.; Deng, H. Covalent organic frameworks for optical applications. Aggregate 2021, 2, e24. [Google Scholar] [CrossRef]
- Ding, X.; Guo, J.; Feng, X.; Honsho, Y.; Guo, J.; Seki, S.; Maitarad, P.; Saeki, A.; Nagase, S.; Jiang, D. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem. Int. Ed. 2011, 50, 1289–1293. [Google Scholar] [CrossRef]
- Ding, S.Y.; Dong, M.; Wang, Y.W.; Chen, Y.T.; Wang, H.Z.; Su, C.Y.; Wang, W. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg(II) from water. J. Am. Chem. Soc. 2016, 138, 3031. [Google Scholar] [CrossRef] [PubMed]
- Zanganeh, A.R. COF-42 as sensory material for voltammetric determination of Cu(II) ion: Optimizing experimental condition via central composite design. J Appl. Electrochem. 2022, 53, 765–780. [Google Scholar] [CrossRef]
- Sun, Q.; Aguila, B.; Perman, J.; Nguyen, N.; Ma, S. Flexibility matters: Cooperative active sites in covalent organic framework and threaded ionic polymer. J. Am. Chem. Soc. 2016, 138, 15790–15796. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Wang, J.; Gu, S.; Kaspar, R.B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 2015, 137, 8352. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Sasmal, H.S.; Kundu, T.; Kandambeth, S.; Illath, K.; Diaz Diaz, D.; Banerjee, R. Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification. J. Am. Chem. Soc. 2017, 139, 4513–4520. [Google Scholar] [CrossRef]
- Khayum, M.A.; Vijayakumar, V.; Karak, S.; Kandambeth, S.; Bhadra, M.; Suresh, K.; Acharambath, N.; Kurungot, S.; Banerjee, R. Convergent covalent organic framework thin sheets as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces 2018, 10, 28139–28146. [Google Scholar] [CrossRef]
- Doonan, C.J.; Tranchemontagne, D.J.; Glover, T.G.; Hunt, J.R.; Yaghi, O.M. Exceptional ammonia uptake by a covalent organic framework. Nat. Chem. 2010, 2, 235–238. [Google Scholar] [CrossRef]
- Rabbani, M.; Sekizkardes, G.A.K.; Kahveci, Z.; Reich, T.E.; Ding, R.; El-Kaderi, H.M. A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications. Chem.-Eur. J. 2013, 19, 3324–3328. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Q.; Huang, Y.; An, H.; Zhao, Y.; Feng, Y.; Li, X.; Shi, X.; Liang, J.; Pan, F.; et al. PolyCOFs: A new class of freestanding responsive covalent organic framework membranes with high mechanical performance. ACS Cent. Sci. 2019, 5, 1352–1359. [Google Scholar] [CrossRef]
- Elmerhi, N.; Kumar, S.; Abi Jaoude, M.; Shetty, D. Covalent organic framework-derived composite membranes for water treatment. Chem. Asian J. 2024, 19, e202300944. [Google Scholar] [CrossRef]
- Machado, T.F.; Silva Serra, M.E.; Murtinho, D.; Valente, A.J.M.; Naushad, M. Covalent organic frameworks: Synthesis, properties and applications—An Overview. Polymers 2021, 13, 970. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Guo, H.; Wang, T.; Gong, L.; Wang, Y.; Ai, J.; Huang, D.; Chen, H.; Yang, W. A sensitive electrochemical aptasensor based on covalent organic frameworks for the detection of ochratoxin A. Anal. Methods 2017, 9, 3737–3750. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhong, W.; Cui, K.; Zhuang, Z.; Li, L.; Li, L.; Bi, J.; Yu, Y. A covalent organic framework bearing thioether pendant arms for selective detection and recovery of Au from ultra-low concentration aqueous solution. Chem. Commun. 2018, 54, 9977–9980. [Google Scholar] [CrossRef] [PubMed]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. Adsorption of heavy metals: Mechanisms, kinetics, and applications of various adsorbents in wastewater remediation—A Review. Waste 2023, 1, 775–805. [Google Scholar] [CrossRef]
- Fei, Y.; Hu, Y.H. Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: A review. J. Mater. Chem. A 2022, 10, 1047–1085. [Google Scholar] [CrossRef]
- Wang, J.; Luo, C.; Wang, W.; Wang, H.; Liu, Y.; Li, J.; Yan, T. Enhanced separation of palladium from nuclear wastewater by the sulfur-rich functionalized covalent organic framework. Nanomaterials 2025, 15, 714. [Google Scholar] [CrossRef]
- Xie, Y.; Rong, Q.; Wen, C.; Liu, X.; Hao, M.; Chen, Z.; Yang, H.; Waterhouse, G.I.N.; Ma, S.; Wang, X. Covalent organic framework with predesigned single-ion traps for highly efficient palladium recovery from wastes. CCS Chem. 2024, 6, 1908–1919. [Google Scholar] [CrossRef]
- Uribe-Romo, F.J.; Doonan, C.J.; Furukawa, H.; Oisaki, K.; Yaghi, O.M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 2011, 133, 11478–11481. [Google Scholar] [CrossRef]
- Diwakara, S.D.; Ong, W.S.Y.; Wijesundara, Y.H.; Gearhart, R.L.; Herbert, F.C.; Fisher, S.G.; McCandless, G.T.; Alahakoon, S.B.; Gassensmith, J.J.; Dodani, S.C.; et al. Supramolecular reinforcement of a large-pore 2D covalent organic framework. J. Am. Chem. Soc. 2022, 144, 2468–2473. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.M.; Ryder, M.R.; Ji, W.; Strauss, M.J.; Corcos, A.R.; Vitaku, E.; Flanders, N.C.; Bisbey, R.P.; Dichtel, W.R. Trends in the thermal stability of two-dimensional covalent organic frameworks. Faraday Discuss. 2021, 225, 226–240. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Yu, F.; Yang, Z.; Zhang, X.; Yang, P.; Ma, J. Lanthanum modification κ–carrageenan/sodium alginate dual-network aerogels for efficient adsorption of ciprofloxacin hydrochloride. Environ. Technol. Innov. 2021, 24, 102052. [Google Scholar]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Uribe-Romo, F.J.; Hunt, J.R.; Furukawa, H.; Klöck, C.; O’Keeffe, M.; Yaghi, O.M. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 2009, 131, 4570–4571. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Wang, J.; Wang, W.; Wang, H.; Liu, Y. Highly Stable Covalent Organic Framework for Palladium Removal from Nuclear Wastewater. Processes 2025, 13, 1784. https://doi.org/10.3390/pr13061784
Song W, Wang J, Wang W, Wang H, Liu Y. Highly Stable Covalent Organic Framework for Palladium Removal from Nuclear Wastewater. Processes. 2025; 13(6):1784. https://doi.org/10.3390/pr13061784
Chicago/Turabian StyleSong, Wenchen, Junli Wang, Wentao Wang, Hui Wang, and Yao Liu. 2025. "Highly Stable Covalent Organic Framework for Palladium Removal from Nuclear Wastewater" Processes 13, no. 6: 1784. https://doi.org/10.3390/pr13061784
APA StyleSong, W., Wang, J., Wang, W., Wang, H., & Liu, Y. (2025). Highly Stable Covalent Organic Framework for Palladium Removal from Nuclear Wastewater. Processes, 13(6), 1784. https://doi.org/10.3390/pr13061784