Industrial Wastewater Treatment by Coagulation–Flocculation and Advanced Oxidation Processes: A Review
Abstract
1. Introduction
2. Coagulation–Flocculation–Decantation
2.1. Coagulation Mechanisms
- (1)
- Electrical double layer compression: The electric double layer (EDL) is generated to retrain the particles negative surface charge, achieving electroneutrality. By enhancement of the ion concentration in the solution, or if the ions carry exceptional charge, the electroneutrality is achieved. In accordance with the Derjaguin–Landau–Verwey–Overbeek (DVLO) theory, the destabilization and flocculation of particles can be achieved by an enhancement in ionic strength, or ion valence compresses EDL thickness adequately, granting van der Waals forces prolongation beyond EDL. The ionic strength effect explains the particles’ stability in freshwater (ionic strength <, > EDL extension) and rapid flocculation in saltwater (>ionic strength, >EDL compression) [49];
- (2)
- Charge neutralization: The particles’ destabilization is attained with adsorption of ions or polymers with opposite charge. A large number of particles (clays, humic acids, bacteria) in natural waters have a negative charge in neutral pH (pH 6 to 8). Using hydrolyzed metal salts with positive charge and cationic organic polymers, the destabilization of the particles is reached through neutralization of the charge on the particle surface. If the particle surface does not have a net charge, EDL will not subsist and van der Waals forces will make the particles stick together [50,51,52];
- (3)
- Adsorption and interparticle bridging: In an onwards polymer chain, particles are adsorbed in one or more locations due to (a) coulombic interactions (charge–charge), (b) dipole interaction, (c) hydrogen bonding, and (d) van der Waals forces of attraction. These polymers generate a ‘‘bridge’’ between particle surfaces, promoting the formation of larger aggregates that settle more effectively. When referring to polymer bridging, the best coagulant concentration is proportional to the concentration of the present particles. Adsorption and interparticle bridging materialize due to non-ionic polymers’ high-molecular-weight (MW 105 to 107 g/mol) and low-surface-charge. High-molecular-weight cationic polymers have a great charge density, neutralizing surface charge [49,51];
- (4)
- Enmeshment in precipitate, or ‘‘sweep floc’’: With the application of coagulant in high concentrations, insoluble precipitates produced by iron and aluminum lead to particles becoming entangled in amorphous precipitates, which is known as precipitation and enmeshment or “sweep floc”. At short coagulant concentrations, steps for iron and aluminum salts were described as (i) hydrolysis and polymerization of metal ions, (ii) hydrolysis products adsorption at the particle surface interface, and (iii) charge neutralization [51].
2.2. Types of Coagulants
2.2.1. Metal-Based Coagulants
2.2.2. Non-Metal-Based Coagulants
Animal-Based, Mineral-Based, and Synthetic Polymers
Plant-Based Coagulants
2.3. Variable Conditions Affecting CFD Process
2.3.1. Coagulant/Flocculant Concentration Effect
2.3.2. pH Effect
2.3.3. Temperature Effect
2.3.4. Mixing Speed Effect
2.4. Application of CFD Process on Treatment of Industrial Wastewaters
Wastewater | Coagulant | Operational Conditions | Results | References |
---|---|---|---|---|
Beverage industrial | FeCl3 | COD = 3470 mg O2 L−1, [FeCl3] = 300 mg L−1, Rapid mix = 200 rpm/ 2 min, Slow mix = 60 rpm/ 30 min, Sedimentation time = 1 h, pH = 9, [Polyacrilamine] = 25 mg/L | CODrem = 91%, TSSrem = 97%, TPrem = 99% | [78] |
Concentrated fruit juice | Al2(SO4)3 | COD = 21,040 mg O2 L−1, Turbidity = 719 NTU, pH = 6.5, [Alum] = 0.4 g/L, Rapid mix = 150 rpm/ 3 min, Slow mix = 20 rpm/ 15 min, Sedimentation time = 60 min | CODrem = 74.5%, Turbidityrem = 42.8% | [87] |
Concentrated fruit juice | FeCl3 | COD = 21,040 mg O2 L−1, Turbidity = 719 NTU, pH = 5.5, [Ferric chloride] = 0.4 g L−1, Rapid mix = 150 rpm/3 min, Slow mix = 20 rpm/15 min, Sedimentation time = 60 min | CODrem = 84.5%, Turbidityrem = 54.1% | [87] |
Landfill leachate | FeCl3 | COD = 5123 mg O2 L−1, COD: [FeCl3] = 1:2.2, pH = 7.95, Rapid mix = 150 rpm/ 2 min, Slow mix = 50 rpm/30 min, Sedimentation time = 60 min | CODrem = 75.3% | [91] |
Olive mill | Lime | COD = 29.3 g L−1, TSS = 52.7 g/L, TP = 2.5 mg/L, [Lime] = 30,000 mg L−1, [K1] = 287 mg L−1, pH = 5.1, rapid mix = 200 rpm/ 2 min, slow mix = 90 rpm/15 min, sedimentation time = 60 min | TSSrem = 88.9%, TPrem = 45.7%, CODrem = 10.5% | [92] |
Municipal | Casein | [Fe3+] = 20 mg L−1, [Casein] = 3 mg L−1, pH = 5.5, Rapid mix = 150/3 (rpm/min), Slow mix = 40/15 (rpm/min), Sedimentation time = 15 min, V = 500 mL | Turbidityrem = 98%, TSSrem = 98%, TOCrem = 56.3% | [88] |
Winery | Bentonite PVPP Potassium caseinate | [potassium caseinate] = 0.4 g L−1, [bentonite] = [PVPP] = 0.1 g L−1, pH = 3.0, Rapid mix = 150/3 (rpm/min), Slow mix = 20/20 (rpm/min), Sedimentation time = 12 h | Turbidityrem = 99.6%, TSSrem = 95.5%, TOCrem = 8.8%, CODrem = 12.4%, Polyphenolsrem = 99.9% | [89] |
Tofu industrial | PVP | [PAC] = 300 mg L−1, V = 500 mL, Fast mix = 120/2 (rpm/min), Slow mix = 40/10 (rpm/min), Sedimentation time = 30 min, filtration by PVDF/PVP membrane | TSSrem = 94.1%, Turbidityrem = 93.0%, TDSrem = 19.9% | [93] |
Pulp and paper mills | Bentonite | [PASiC] = 400 mg L−1, [Bentonite] = 450 mg L−1, T = 30 °C, Stirring speed = 300/30 (rpm/min), pH = 7.0 | CODrem = 60.87%, Colorrem = 41.38% | [94] |
Textile dye | Bentonite | [Bentonite] = 0.9 g L−1, [OFIP] = 0.4 g L−1, Fast mix = 180/5 (rpm/min), Slow mix = 40/25 (rpm/min), Sedimentation time = 15 min | Dyerem = 98.99% | [95] |
Laboratory tap water | Moringa oleifera seeds (MO) | [MO] = 50 mg L−1, pH = 6.4 | Turbidityrem = 90%, EC = 150 µ mho cm−1, Vsludge = 1.5 mL L−1 | [30,90] |
Acid red 88 (AR88) | Moringa oleifera seeds (MO) | [AR88] = 78 mg L−1, [MO] = 17 mg L−1, pH = 4–9, stirring = 30 rpm/ 1 h | TOC < 150 mg C/L | [30] |
Methylene blue (MB)/ malachite green (MG) | Daucus carota (DC) | [DC] = 2 g L−1, pH = 7.0, temperature: 303 K, contact time: 30 min | MBrem = 87%, MGrem = 75% | [96] |
Winery | Acacia dealbata Link (ADL) | pH = 3.0, [ADL] = 0.5 g L−1, [Bentonite] = 50 mg L−4, Fast mix = 150/3 (rpm/min), Slow mix = 20/20 (rpm/min), Sedimentation time = 12 h | TOCrem = 8.4% Turbidityrem = 97.2% TSSrem = 94.8% | [97] |
3. Hydroxyl Radical-Based AOPs
3.1. Homogeneous Fenton Process
3.2. Homogeneous Photo-Fenton Process
3.3. Iron Chelation in Fenton and Photo-Fenton Processes
- (1)
- The Fe3+ regeneration is very slow, producing with low kinetic rates;
- (2)
- An acidic pH is required to avoid catalyst precipitation;
- (3)
- It is necessary to neutralize the treated water to recover the catalyst and to obtain a pH near neutral (6.0–8.0).
3.4. Heterogeneous Fenton and Heterogeneous Photo-Fenton Processes
3.5. Employment of Fenton-Based Processes to Wastewater Treatment
Wastewater | Catalyst | Operational Conditions | Results | References |
---|---|---|---|---|
Winery | Fe2+ | pH = 3.5, BOD5/COD = 0.55, [H2O2]:[Fe2+] = 15 | CODrem = 93.2% | [144] |
Reactive Black 5 (RB5) | Fe2+ | pH = 5.0, [H2O2] = 7.3 × 10−4 mol L−1, [Fe2+] = 1.5 × 10−4 | [RB5]rem = 95% | [153] |
Olive mill | Fe2+ | pH = 3.5, [H2O2]:[Fe2+] = 15 | CODrem = 17.6%, TPhrem = 82.5% | [154] |
Municipal | Fe2+ | pH = 6.0–7.0, [H2O2] = 30 mg L−1, [Fe2+] = 4 mg L−1, radiation = UV-C | Pollutantrem = 95% | [155] |
Landfill leachate | Fe2+ | pH = 3.0, [H2O2] = 10,000 mg L−1, [Fe2+] = 2000 mg L−1, radiation = UV-C | CODrem = 86% | [146] |
Winery | Fe2+ | pH = 3.0, [H2O2] = 0.5 M, [Fe3+] = 5 mg L−1, radiation: Xenon emitting at 290 and 400 nm spectral range. | TOCrem = 95% | [145] |
Winery | Fe2+ | [DOC]0 = 400 mg C/L, [Fe2+] = 2.5 mM, [KPS] = 1.0 mM, [PMS] = 1.0 mM, pH = 3.0, radiation UV-C, mercury lamp (254 nm), agitation 350 rpm, temperature 298 K, reaction time 240 min | TOCrem = 84.9% | [19] |
Sulfamethazine (SMT), carbamazepine (CBZ), diclofenac (DFC), ibuprofen (IBF), β-estradiol (E2), progesterone (P4) and estrone (E1) | Fe2+ | [CEC] = 100 µg L−1, V = 20 L, [Na2SO4] = 0.05 M, [Fe2+] = 0.05 mM, pH 3, current density 20 mA cm−2, conductivity 1.62 mS cm−1, RPR with solar light | CECrem = 90–96% | [148] |
Caffeic acid (CA) | Fe2+ | [CA] = 5.5 × 10−4 mol L−1, [Fe2+] = 1.1 × 10−4 mol L−1, pH = 3.0, radiation UV-A, IUV = 32.7 W m−2, F = 4 mL min−1, agitation 150 rpm, temperature = 298 K, HRT = 15 min | Carem = 99.2% DOCrem = 35.9% | [156] |
E. coli contaminated wastewater Trimethoprim (TMP) contaminated wastewater | Fe3+-NTA | 5-cm deep RPRs with solar light, [Fe3+-NTA] = 0.2 mM Fe, [H2O2] = 4.41 mM, pH = 7, time = 60 min—E. coli inativation 5-cm deep RPRs, [TMP] = 50 µg/L, [Fe3+-NTA] = 0.2 mM, [H2O2] = 4.41 mM, pH = 7–TMP removal | E. colirem < detection limit TMPrem = 95% | [115] |
Urban wastewater contaminated with Diclofenac (DCF) | Fe3+-EDDS | [DCF] = 100 μg/L, [Fe3+] = 0.1 mM, [EDDS] = 0.1 mM, [H2O2] = 50 mg/L, pH = 7, RPR with solar light | DCFrem > 99% | [116] |
Winery | Fe2+-EDDS | pH = 6.0, [H2O2] = 175 mM, [Fe2+] = 5 mM, [EDDS] = 1 mM, T = 298 K, solar radiation, time = 240 min | CODrem = 81.6% | [151] |
Landfill leachate | Fe2+ | pH = 3, H2O2/COD = 2, Fe2+/H2O2 = 0.4, time = 20 min (Fenton) pH = 3, H2O2/COD = 2; Fe2+/H2O2 = 0.3, radiation UV-C, time = 20 min (Photo-Fenton) | CODrem = 71.9% (Fenton) CODrem = 75.1% (photo-Fenton) | [152] |
Acid Black 194 (AB194) dye | Fe2+ | pH = 2.31, [Fe2+] = 1977 mg L−1, [H2O2] = 3679 mg L−1, agitation = 190 rpm, T = 20 °C, time = 180 min | CODrem = 89% TOCrem = 87% | [157] |
Cheese wastewater | Fe3+ | COD = 12,511 mg O2 L−1, pH = 3, [Fe3+] = 5.0 × 10−4 mol L−1, [H2O2] = 0.2 mol L−1, radiation = UV-A, t = 24 h | CODrem = 91.2% TOCrem = 97.5% | [158] |
Industrial wastewater with methyl orange (MeO) | Fe2+ | Solar electrochemical-raceway pond reactor (SEC-RPR), [MeO] = 20 mg L−1, pH = 3, [Fe2+] = 0.05 mM, A = 40 mA cm− 2, solar UV radiation = 38 W m− 2 | [MeO]rem > 99% TOCrem > 80% | [149] |
Sulfamethoxazole (SMX) | Fe3+-NTA | 5-cm deep raceway pond reactors (RPR), [H2O2] = 1.47 mM, [NaOCl] = 0.134 mM, [Fe3+-NTA] = 0.1 mM | [SMX] > 50% | [150] |
Winery wastewater | Fe-Sm | [H2O2] = 98 mM, [Catalyst] = 3.0 g L−1, pH = 4.0, UV-C (254 nm) | TOCrem = 65.1% | [147] |
Winery wastewater | Fe-Mt | [Fe-Mt] = 3.0 g L−1—single addition, [H2O2] = 136 mM, pH 3.0, agitation 350 rpm, reaction time 270 min, radiation UV-C mercury lamp (254 nm) | TOCrem = 52.5% (Ads) TOCrem = 88.3% (H-PF) | [159] |
Acid black 1 (AB1) | Pillared laponite clay-based Fe nanocomposites (Fe-Lap-RD) | [H2O2] = 6.4 mM, [Catalyst] = 1.0 g L−1, pH = 3.0, UV-C (254 nm) | TOCrem = 100% | [160] |
Winery wastewater | LaCoO3–TiO2 composite | [MPS] = 0.01 M, [Catalyst] = 0.5 g L−1, pH = 7.0, UV-A light | Polyphenolsrem = 95%, CODrem = 60% | [161] |
4. Sulfate Radical-Based AOPs
- The concentration of oxidant agent necessary for radicals generation is solid at room temperature, facilitating delivery and holding;
- radicals have considerable steadiness and a longer life span than radicals;
- Fenton-based processes require acidic pH (around 3); however, SR-AOPs operate in a wider pH range (3–9);
- In aqueous solution, radicals have greater solubility than radicals;
- The efficiency of radicals are limited, considering that they act throughout unselective multi-step pathways.
- In heat activation, which involves increasing temperatures, the rate of reaction is accelerated; however, it can result in very aggressive oxidizing conditions and high energy consumption [162];
- Ultraviolet penetration into water is constrained and unfeasible in the subsurface, affecting UV-activated PS and PMS reactions enforcement;
4.1. Activation Methods of Persulfate
4.1.1. Thermal Activation
4.1.2. Alkaline Activation
4.1.3. Radiation Activation
4.1.4. Transition Metal Ions and Metal Oxide Activation
4.2. Application of Sulfate Radicals in Wastewater Treatment
Wastewater | Operational Conditions | Results | References |
---|---|---|---|
Winery | COD = 5000 mg O2 L−1, TOC = 1700 mg C L−1, [KPS] = 25 mM, [KPS]:[Fe2+] = 1:1, pH = 7.0, Solar radiation | CODrem = 67% | [186] |
Winery | ] = 2.5 mM, [M2(SO4)n] = 1.0 mM, pH = 6.5, Temperature = 323 K | CODrem (Fe2+) = 51%, CODrem (Co2+) = 42%, CODrem (Cu2+) = 35% | [167] |
Winery | /H2O2 dosage = 0.1:0.025 (g/g), pH = 7.0, T = 343 K, agitation 350 rpm, t = 2 h | TOCrem = 76.7%, CODrem = 81.4%, Polyphenolsrem > 99% | [192] |
Winery | [PMS] = 5.88 mM, [Co2+] = 5 mM, pH = 6, radiation UV-A 32.7 W m−2, UV-C 15 W, US 500 W, T = 343 K, reaction time = 240 min | CODrem (UV-A) = 82.3% CODrem (UV-C) = 76.0% CODrem (US) = 52.2% | [74] |
Micropollutants (MP) | [PMS] = 0.5 mM, pH = 7.17, Contact time (4–18 s), UV-C radiation | MPrem (%) = 48% | [190] |
Acid Orange 7 (AO7) | [PDS] = 10 mM, [Cu-AC] = 0.5 g L−1, current density = 16 mA/cm2, pH = 5.0 | AO7rem= 95.7% | [187] |
Ciprofloxacin (CIP) | PDS = 1 mM, Cu0.84Bi2.08O4 = 1 g L−1, Visible light | [CIP]rem = 90% | [195] |
Aniline | PDS = 0.08 mol L−1, pH = 5, UV = 30 W, Aniline = 20 mg L−1, Time = 60 min | [Aniline]rem = 96% | [196] |
Tannic Acid (TA) | ] = 53.10 mM, pH = 9.0, UV-C (254 nm) | Aromaticrem = 96.32%, TOCrem = 54.41% | [188] |
Levofloxacin (LFX) | /Fe2+ (mM) = 1/30/3, pH = 3.0 | [LFX]rem = 56%, k1 = 5.74 × 10−2 min−1 | [197] |
Penicillin G (PEN G) | [PEN G] = 0.02 mM, [persulfate] = 0.5 mM, pH = 5.0, [temperature] = 353 K | [PEN G]rem = 98% | [198] |
Pharmaceutical active compounds (PhACs) | pilot-scale UV-C photoreactor (254 nm), 45 W, pH = 8.2, flow rate = 0.36 m3/h, [PDS] = [PMS] = 0.4 mmol; [PhACs] = 10 mg L−1 | PhACrem (UV/PDS) = 84% PhACrem (UV/PMS) = 85% | [191] |
Acid orange II (AO II) | AO II: 100 mg L−1, ribbon Cu46Zr44.5Al7.5Y2 = 0.6 g, [PS] = 0.25 mM, temperature: 313 K, pH = 2, t = 70 min | AO IIrem = 98% | [199] |
Imidazolium-based ionic liquids (Ils) | [ILs]0 = 100 μM, [PDS]0 = [PMS]0 = 500 μM, pH unadjusted | [Emim][Cl]rem = 99% [Omim][Cl]rem = 99% [Emim][Br]rem = 97% | [200] |
Congo red (CR) | [CR] = 20 mg/L, current density = 5.71 mA/cm2, [PMS] = 30 μM, [Cu(II)] = 15 μM | ARrem = 95.4% | [201] |
2-chlorobiphenyl (2-PCB) | [2-PCB]0 = 8 mg L−1, [PS]0 = 0.2 mM, [pH]0 = 6.5. | 2-PCBrem = 83% | [202] |
Sulfamethazine (SMZ) | [SMZ] = 30 mg L−1, [Na2SO4] = 0.2 M, pH = 7, t = 30 min | SMZrem = 100% | [203] |
Ammonia nitrogen | Electrochemical (EC) system—Ti/RuO2 anode, Ti cathode, and Fe inductive electrode (EC/PDS system) ] = 100 mM, cell voltage = 2.5 V, t = 60 min, pH = 3.0 | rem = 100% | [204] |
Table Olive Manufacturing | COD = 28.6 g L−1, turbidity = 170 NTU, [Al2(SO4)3] = 8.0 g L−1, pH = 7.0, T = 20 ◦C [PMS] = 0.2 M, [Fe3+] = 0.03 M, pH = 7.0, T = 20 °C, time = 200 min | CODrem = 70.0% | [205] |
Industrial | TOC = 100 mg C L−1, UV radiation, [PS] = 4 g L−1, time = 180 min | TOCrem = 90.0% | [206] |
Landfill leachate | [PMS] = 30 mM, [ZVI] = 0.6 g L−1, pH = 4.0, UV radiation, time = 40 min | TOCrem = 98.0% | [193] |
Municipal landfill leachate | COD = 5650 mg O2 L−1, applied voltage = 3 V, pH = 6.0, [PS] = 500 mg L−1, [Fe2+] = 100 mg L−1 | CODrem = 88.7% | [193] |
5. Ozone-Based AOPs
5.1. Types of Ozone Treatments
5.1.1. Ozonation
Direct Ozonation
- (a)
- Oxidation–reduction
- (b)
- Cycloaddition
- (c)
- Electrophilic substitution
- (d)
- Nucleophilic reaction
Indirect Ozonation
- (a)
- Alkaline pH
5.1.2. Peroxone (O3/H2O2)
5.1.3. Ozone and UV Radiation (O3/UV)
5.1.4. Catalytic Ozonation
5.2. Application of Ozonation Process to Wastewater Treatment
Wastewater | Operational Conditions | Results | References |
---|---|---|---|
Winery | O3/UV-C/H2O2, COD/H2O2 = 2, pH = 4.0, Time = 300 min | TOCrem = 49% | [211] |
Winery | [TiO2]0 = 1.5 g L−1, [O3]ginlet = 50 mg L−1, pH = 7.0 | CODrem = 80% | [233] |
Winery | COD = 9432 mg O2 L−1, TOC = 1962 mg C L−1, pH = 4.0, [Fe2+] = 1.0 mM, ozone flow rate 5 mg min−1, air flow 1.0 L min−1, agitation 350 rpm, time 600 min and a UV-C mercury lamp (254 nm). | TOCrem = 63.2% = 1843 kWh m−3 order−1 | [231] |
Industrial | O3/Solar radiation/TiFeAC, Time = 5–8 h, pH = 7.0 | TOCrem = 40% CODrem = 50% | [228] |
Landfill leachates | O3, O3 production rate = 3.98 g, O3 h−1, pH = 6.9 | Colorrem = 99%, Turbidityrem = 98%, BOD5rem = 97%, CODrem = 19% | [234] |
Landfill leachates | O3/TiO2, [TiO2] = 0.5 g/L, O3 production rate = 3.98 g, O3 h−1, pH = 6.9 | Colorrem = 95%, Turbidityrem = 94%, BOD5rem = 98%, CODrem = 24% | |
2,4-dichlorophenoxyacetic acid (2,4-D) | TiO2/UVA/O3, [2,4-D]0 = 2×10−3 mol dm−3, pH = 2.6, Time = 120 min, [TiO2] = 2 g dm−3, O3 flow rate = 1.4±0.1 g h−1, Radiation = UVA (350 nm) | (2,4-D)rem = >99% | [235] |
Simazine, [2-chloro, 4,6-bis(ethylamino)-1,3,5-s-triazine] | T = 293 K, pH = 7, CSimz 0 = 2.5 × 10−5 M, CO3 in = 9.5 mg L−1, Gas flow-rate = 30 L h−1, [Mn2+] = 0.5 mg L−1 | Simazinerem = 90% | [236] |
p-chlorobenzoic acid | [PMS] = 0.103 mmol L−1, [pCBA] = 1 mmol L−1, [O3]0 = 0.103 mmol L−1, pH = 7.9 | pCBArem = 88.2% | [237] |
Phenol | [O3] = 15.3 g m−3, [Fe3+] = 1 mM, UV radiation, Time = 2 h | TOCrem = 97% | [238] |
Azithromycin (AZY) | O3 dose = 50 mg h− 1, catalyst dose = 0.2 g L− 1, [AZY] = 50 ppm, temperature = 298 K | AZYrem = 99% | [229] |
Leather wastewater (LW) | [O3] = 10 mg L−1, DOC = 46.02 mg C L−1, SCOD = 138 mg O2 L−1 | DOCf = 17.99 mg C L−1 SCODf = 66 mg O2 L−1 | [239] |
Bisphenol A (BPA) | [BPA] = 50 ppm, [δ-MnO2] = 0.1 g L−1, [O3] = 4 mg L−1, O3 flow rate: 0.2 L min−1, t = 20 min | BPArem = 68.2% | [240] |
4-nitrophenol (4-NP) | [4-NP] = 25 mg L−1, [O3] = 2 mg min−1, [a-MnO2-50] = 0.1 g L−1, pH = 7, time = 90 min | 4-NPrem = 100% (t = 45 min) TOCrem = 91.1% (t = 90 min) | [241] |
Ibuprofen (IBP) | [IBP] = 13.1 mg L−1, ozone dosage = 5 mg L−1, gas flow rate = 100 mL min−1, volume = 200 mL, catalyst particles packed rate = 10%—catalysts (CuMn2O4-LR; MnO2–Co3O4-LR) | IBPrem = 91% (CuMn2O4-LR) IBPrem = 88% (MnO2–Co3O4-LR) | [242] |
Aniline | [Aniline] = 500 mg L−1, [CaMn2O4] = 600 mg, 35 mg L−1 O3 gas flow, 0.6 L min−1 gas flow rate, pH = 10.3, T = 298 K, time = 120 min | [Aniline]rem = 100% CODrem = 78.2% | [230] |
Petroleum refinery wastewater (PRW) | COD = 1146 mg O2 L−1, [catalyst] = 0.25 g L−1, ozone flow = 0.063 m h−1, pH = 5.5, T = 25 °C, time = 5 h | CODrem = 90% (Mn2O3) CODrem = 89% (FeOOH) CODrem = 89% (CeO2) | [243] |
Benzene | [benzene] = 90 mg L−1, [CeO2/Ƴ-Al2O3] = 5.0 w/t, [O3] = 560 mg L−1, 300 mL min−1 gas fed, T = 30 °C, time = 360 min | [benzene]rem = 92.5% | [244] |
Humic acids (HA) | [HA] = 0.50 g L−1, [ACN2O2N2] = 0.50 g L−1, pH = 5.0, V = 1 L, T = 20 °C, t = 30 min, O2 flow rate = 200 NmL min−1 | CODrem = 96% | [245] |
Ibuprofen (IBP) | [IBP] = 0.5 mM, [GO/Fe3O4] = 30 mg L−1, [O3] = 4 mg L−1, [BuOH] = 0.05 mg L−1, pH = 7.0, t = 5 min | TOCrem = 51% | [246] |
Industrial | COD = 3000 mg O2 L−1, DBE = 1 cm, [O3] = 4 g L−1, CD = 5 Adm−2, EP = Fe/Fe, PDC = 0.6, t = 200 min | CODrem = 100% Colorrem = 100% UEE = 4.90 kWh m−3 | [232] |
Dairy | COD = 9430 mg O2 L−1, fast speed = 200 rpm/ 2 min, slow speed = 45 rpm/ 15 min, sedimentation time = 30 min [O3] = 1 g h−1, air flow rate = 10 L min−1, V = 2 L, t = 240 min | CODrem = 37.2% (O3) CODrem = 65.0% (CFD/O3) | [247] |
Paper pulping | Aeration time = 10 μm, [O3] = 0.18 g h−1, [H2O2] = 100 mg L−1, pH = 9, t = 80 min | CODrem = 73.6% | [248] |
6. Conclusions
7. Future Perspectives
- Pilot-scale and full-scale validation: scaling up from laboratory studies to pilot and full-scale applications is essential to assess the performance, reliability, and operational challenges of CFD-AOPs systems under real industrial wastewater conditions;
- Sustainability and economic assessments: comprehensive life cycle assessments and cost-benefit analyses are needed to evaluate the environmental impacts and economic viability of integrated CFD-AOPs processes compared to conventional treatment methods.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sharma, M.K.; Tyagi, V.K.; Singh, N.K.; Singh, S.P.; Kazmi, A.A. Sustainable Technologies for On-Site Domestic Wastewater Treatment: A Review with Technical Approach. Environ. Dev. Sustain. 2022, 24, 3039–3090. [Google Scholar] [CrossRef]
- Huseyn, P.I.; Ibrahimova, M.J.; Abbasov, V.M.; Nasirov, F.A.; Aslanbeyli, A.M. Chitosan Biopolymer in Industrial Wastewater Treatment. Process. Petrochem. Oil Refin. 2024, 25, 59–88. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Bittencourt Sydney, E.; Bianchi Pedroni Medeiros, A.; Magalhães, A.I.; de Carvalho, J.C.; Karp, S.G.; de Souza Vandenberghe, L.P.; Junior Letti, L.A.; Thomaz Soccol, V.; de Melo Pereira, G.V.; et al. Agro-Industrial Wastewater in a Circular Economy: Characteristics, Impacts and Applications for Bioenergy and Biochemicals. Bioresour. Technol. 2021, 341, 125795. [Google Scholar] [CrossRef]
- Amor, C.; Marchão, L.; Lucas, M.S.; Peres, J.A. Application of Advanced Oxidation Processes for the Treatment of Recalcitrant Agro-Industrial Wastewater: A Review. Water 2019, 11, 205. [Google Scholar] [CrossRef]
- Dong, X.; Lin, Y.; Ren, G.; Ma, Y.; Zhao, L. Catalytic Degradation of Methylene Blue by Fenton-like Oxidation of Ce-Doped MOF. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125578. [Google Scholar] [CrossRef]
- Teixeira, A.R.; Jorge, N.; Fernandes, J.R.; Lucas, M.S.; Peres, J.A. Textile Dye Removal by Acacia Dealbata Link. Pollen Adsorption Combined with UV-A/NTA/Fenton Process. Top. Catal. 2022, 65, 1045–1061. [Google Scholar] [CrossRef]
- Jain, B.; Singh, A.K.; Kim, H.; Lichtfouse, E.; Sharma, V.K. Treatment of Organic Pollutants by Homogeneous and Heterogeneous Fenton Reaction Processes. Environ. Chem. Lett. 2018, 16, 947–967. [Google Scholar] [CrossRef]
- Guo, R.; Xie, X.; Chen, J. The Degradation of Antibiotic Amoxicillin in the Fenton-Activated Sludge Combined System. Environ. Technol. 2015, 36, 844–851. [Google Scholar] [CrossRef]
- Rizzo, L.; Lofrano, G.; Belgiorno, V. Olive Mill and Winery Wastewaters Pre-Treatment by Coagulation with Chitosan. Sep. Sci. Technol. 2010, 45, 2447–2452. [Google Scholar] [CrossRef]
- Faggiano, A.; De Carluccio, M.; Fiorentino, A.; Ricciardi, M.; Cucciniello, R.; Proto, A.; Rizzo, L. Photo-Fenton like Process as Polishing Step of Biologically Co-Treated Olive Mill Wastewater for Phenols Removal. Sep. Purif. Technol. 2023, 305, 122525. [Google Scholar] [CrossRef]
- Göde, J.N.; Hoefling Souza, D.; Trevisan, V.; Skoronski, E. Application of the Fenton and Fenton-like Processes in the Landfill Leachate Tertiary Treatment. J. Environ. Chem. Eng. 2019, 7, 103352. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.Y.A.; Ghanbari, F. A Review of the Recent Advances on the Treatment of Industrial Wastewaters by Sulfate Radical-Based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Reshadi, M.A.M.; Bazargan, A.; McKay, G. A Review of the Application of Adsorbents for Landfill Leachate Treatment: Focus on Magnetic Adsorption. Sci. Total Environ. 2020, 731, 138863. [Google Scholar] [CrossRef] [PubMed]
- Scaria, J.; Nidheesh, P.V. Pre-Treatment of Real Pharmaceutical Wastewater by Heterogeneous Fenton and Persulfate Oxidation Processes. Environ. Res. 2023, 217, 114786. [Google Scholar] [CrossRef]
- Rana, R.S.; Singh, P.; Kandari, V.; Singh, R.; Dobhal, R.; Gupta, S. A Review on Characterization and Bioremediation of Pharmaceutical Industries’ Wastewater: An Indian Perspective. Appl. Water Sci. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Abedinzadeh, N.; Shariat, M.; Monavari, S.M.; Pendashteh, A. Evaluation of Color and COD Removal by Fenton from Biologically (SBR) Pre-Treated Pulp and Paper Wastewater. Process Saf. Environ. Prot. 2018, 116, 82–91. [Google Scholar] [CrossRef]
- Fazal, T.; Mushtaq, A.; Rehman, F.; Ullah Khan, A.; Rashid, N.; Farooq, W.; Rehman, M.S.U.; Xu, J. Bioremediation of Textile Wastewater and Successive Biodiesel Production Using Microalgae. Renew. Sustain. Energy Rev. 2018, 82, 3107–3126. [Google Scholar] [CrossRef]
- Mosse, K.P.M.; Patti, A.F.; Christen, E.W.; Cavagnaro, T.R. Review: Winery Wastewater Quality and Treatment Options in Australia. Aust. J. Grape Wine Res. 2011, 17, 111–122. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Lucas, M.S.; Peres, J.A. Combined Organic Coagulants and Photocatalytic Processes for Winery Wastewater Treatment. J. Environ. Manag. 2023, 326, 116819. [Google Scholar] [CrossRef]
- Marchão, L.; Fernandes, J.R.; Sampaio, A.; Peres, J.A.; Tavares, P.B.; Lucas, M.S. Microalgae and Immobilized TiO2/UV-A LEDs as a Sustainable Alternative for Winery Wastewater Treatment. Water Res. 2021, 203, 117464. [Google Scholar] [CrossRef]
- Pulido, J.M.O. A Review on the Use of Membrane Technology and Fouling Control for Olive Mill Wastewater Treatment. Sci. Total Environ. 2016, 563–564, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.R.; Jorge, N.; Fernandes, J.R.; Lucas, M.S.; Peres, J.A. Olive Washing Wastewater Treatment by Coagulation/Flocculation/Decantation and UV-A LEDs/Fenton. Eng. Proc. 2023, 56, 317. [Google Scholar]
- Maza-Márquez, P.; Martínez-Toledo, M.V.; González-López, J.; Rodelas, B.; Juárez-Jiménez, B.; Fenice, M. Biodegradation of Olive Washing Wastewater Pollutants by Highly Efficient Phenol-Degrading Strains Selected from Adapted Bacterial Community. Int. Biodeterior. Biodegrad. 2013, 82, 192–198. [Google Scholar] [CrossRef]
- Zakeri, H.R.; Yousefi, M.; Mohammadi, A.A.; Baziar, M.; Mojiri, S.A.; Salehnia, S.; Hosseinzadeh, A. Chemical Coagulation-Electro Fenton as a Superior Combination Process for Treatment of Dairy Wastewater: Performance and Modelling. Int. J. Environ. Sci. Technol. 2021, 18, 3929–3942. [Google Scholar] [CrossRef]
- Akansha, J.; Nidheesh, P.V.; Gopinath, A.; Anupama, K.V.; Suresh Kumar, M. Treatment of Dairy Industry Wastewater by Combined Aerated Electrocoagulation and Phytoremediation Process. Chemosphere 2020, 253, 126652. [Google Scholar] [CrossRef]
- Vunain, E.; Masoamphambe, E.F.; Mpeketula, P.M.G.; Monjerezi, M.; Etale, A. Evaluation of Coagulating Efficiency and Water Borne Pathogens Reduction Capacity of Moringa oleifera Seed Powder for Treatment of Domestic Wastewater from Zomba, Malawi. J. Environ. Chem. Eng. 2019, 7, 103118. [Google Scholar] [CrossRef]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent Advancement of Coagulation-Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Valverde, K.C.; Moraes, L.C.K.; Bongiovani, M.C.; Camacho, F.P.; Bergamasco, R. Coagulation Diagram Using the Moringa Oleifera Lam and the Aluminium Sulphate, Aiming the Removal of Color and Turbidity of Water. Acta Scientiarum. Technol. 2013, 35, 485–489. [Google Scholar] [CrossRef]
- Okoro, B.U.; Sharifi, S.; Jesson, M.A.; Bridgeman, J. Natural Organic Matter (NOM) and Turbidity Removal by Plant-Based Coagulants: A Review. J. Environ. Chem. Eng. 2021, 9, 106588. [Google Scholar] [CrossRef]
- Mateus, G.A.P.; Formentini-Schmitt, D.M.; Nishi, L.; Fagundes-Klen, M.R.; Gomes, R.G.; Bergamasco, R. Coagulation/Flocculation with Moringa oleifera and Membrane Filtration for Dairy Wastewater Treatment. Water Air Soil Pollut. 2017, 228, 342. [Google Scholar] [CrossRef]
- Beltrán-Heredia, J.; Sánchez-Martín, J.; Muñoz-Serrano, A.; Peres, J.A. Towards Overcoming TOC Increase in Wastewater Treated with Moringa oleifera Seed Extract. Chem. Eng. J. 2012, 188, 40–46. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Marchão, L.; Tavares, P.B.; Lucas, M.S.; Peres, J.A. Removal of Methylene Blue from Aqueous Solution by Application of Plant-Based Coagulants. Eng. Proc. 2022, 19, 38. [Google Scholar] [CrossRef]
- Martins, R.B.; Jorge, N.; Lucas, M.S.; Raymundo, A.; Barros, A.I.R.N.A.; Peres, J.A. Food By-Product Valorization by Using Plant-Based Coagulants Combined with AOPs for Agro-Industrial Wastewater Treatment. Int. J. Environ. Res. Public Health 2022, 19, 4134. [Google Scholar] [CrossRef] [PubMed]
- Babuponnusami, A.; Muthukumar, K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Jorge, N.; Santos, C.; Teixeira, A.R.; Marchão, L.; Tavares, P.B.; Lucas, M.S.; Peres, J.A. Treatment of Agro-Industrial Wastewaters by Coagulation-Flocculation-Decantation and Advanced Oxidation Processes—A Literature Review. Eng. Proc. 2022, 19, 33. [Google Scholar] [CrossRef]
- Vilar, V.J.P.; Moreira, F.C.; Ferreira, A.C.C.; Sousa, M.A.; Gonçalves, C.; Alpendurada, M.F.; Boaventura, R.A.R. Biodegradability Enhancement of a Pesticide-Containing Bio-Treated Wastewater Using a Solar Photo-Fenton Treatment Step Followed by a Biological Oxidation Process. Water Res. 2012, 46, 4599–4613. [Google Scholar] [CrossRef]
- Silva, J.A. Advanced Oxidation Process in the Sustainable Treatment of Refractory Wastewater: A Systematic Literature Review. Sustainability 2025, 17, 3439. [Google Scholar] [CrossRef]
- Bello, M.M.; Abdul Raman, A.A.; Asghar, A. A Review on Approaches for Addressing the Limitations of Fenton Oxidation for Recalcitrant Wastewater Treatment. Process Saf. Environ. Prot. 2019, 126, 119–140. [Google Scholar] [CrossRef]
- Hassanshahi, N.; Karimi-Jashni, A. Comparison of Photo-Fenton, O3/H2O2/UV and Photocatalytic Processes for the Treatment of Gray Water. Ecotoxicol. Environ. Saf. 2018, 161, 683–690. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Castro-Alférez, M.; Nahim-Granados, S.; Polo-López, M.I.; Lucas, M.S.; Li Puma, G.; Fernández-Ibáñez, P. Inactivation of Water Pathogens with Solar Photo-Activated Persulfate Oxidation. Chem. Eng. J. 2020, 381, 122275. [Google Scholar] [CrossRef]
- Esteban García, B.; Rivas, G.; Arzate, S.; Sánchez Pérez, J.A. Wild Bacteria Inactivation in WWTP Secondary Effluents by Solar Photo-Fenton at Neutral pH in Raceway Pond Reactors. Catal. Today 2018, 313, 72–78. [Google Scholar] [CrossRef]
- Shukla, P.; Sun, H.; Wang, S.; Ang, H.M.; Tadé, M.O. Co-SBA-15 for Heterogeneous Oxidation of Phenol with Sulfate Radical for Wastewater Treatment. Catal. Today 2011, 175, 380–385. [Google Scholar] [CrossRef]
- Berruti, I.; Inmaculada Polo-López, M.; Oller, I.; Flores, J.; Luisa Marin, M.; Bosca, F. Sulfate Radical Anion: Laser Flash Photolysis Study and Application in Water Disinfection and Decontamination. Appl. Catal. B 2022, 315, 121519. [Google Scholar] [CrossRef]
- Liu, C.; Wu, B.; Chen, X. Sulfate Radical-Based Oxidation for Sludge Treatment: A Review. Chem. Eng. J. 2018, 335, 865–875. [Google Scholar] [CrossRef]
- Zhi, D.; Lin, Y.; Jiang, L.; Zhou, Y.; Huang, A.; Yang, J.; Luo, L. Remediation of Persistent Organic Pollutants in Aqueous Systems by Electrochemical Activation of Persulfates: A Review. J. Environ. Manag. 2020, 260, 110125. [Google Scholar] [CrossRef]
- Jeong, Y.; Gong, G.; Lee, H.J.; Seong, J.; Hong, S.W.; Lee, C. Transformation of Microplastics by Oxidative Water and Wastewater Treatment Processes: A Critical Review. J. Hazard. Mater. 2023, 443, 130313. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Yang, H. A Review on Mitigation of Pressure-Driven Membrane Fouling by Coagulation/Flocculation as a Pretreatment in Membrane Separation Processes. Sep. Purif. Technol. 2025, 364, 132370. [Google Scholar] [CrossRef]
- Langelier, W.F.; Ludwig, H.F. Mechanism of Flocculation in the Clarification of Turbid Waters. J. AWWA 1949, 41, 163–181. [Google Scholar] [CrossRef]
- Howe Kerry, J.; Hand, D.W.; Crittenden, J.C.; Trussell, R.R. George Tchobanoglous. In Principles of Water Treatment, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Dentel, S.K. Application of the Precipitation-Charge Neutralization Model of Coagulation. Environ. Sci. Technol. 1988, 22, 825–832. [Google Scholar] [CrossRef]
- Ghernaout, D.; Ghernaout, B. Sweep Flocculation as a Second Form of Charge Neutralisation—A Review. Desalination Water Treat. 2012, 44, 15–28. [Google Scholar] [CrossRef]
- Van Benschoten, J.E.; Edzwald, J.K. Chemical Aspects of Coagulation Using Aluminum Salts—I. Hydrolytic Reactions of Alum and Polyaluminum Chloride. Water Res. 1990, 24, 1519–1526. [Google Scholar] [CrossRef]
- Joo, D.J.; Shin, W.S.; Choi, J.H.; Choi, S.J.; Kim, M.C.; Han, M.H.; Ha, T.W.; Kim, Y.H. Decolorization of Reactive Dyes Using Inorganic Coagulants and Synthetic Polymer. Dye. Pigment. 2007, 73, 59–64. [Google Scholar] [CrossRef]
- Arukula, D.; Prem, P.; Tanwi, P.; Hariraj, S.; Vijay, L.M.; Brijesh, K.M. Treatment of Tannery Wastewater Using Aluminium Formate: Influence of the Formate over Sulphate-Based Coagulant. Glob. NEST J. 2018, 20, 458–464. [Google Scholar]
- Gonzalez-Merchan, C.; Genty, T.; Paquin, M.; Gervais, M.; Bussière, B.; Potvin, R.; Neculita, C.M. Influence of Ferric Iron Source on Ferrate’s Performance and Residual Contamination during the Treatment of Gold Mine Effluents. Miner. Eng. 2018, 127, 61–66. [Google Scholar] [CrossRef]
- Barbera, A.C.; Maucieri, C.; Ioppolo, A.; Milani, M.; Cavallaro, V. Effects of Olive Mill Wastewater Physico-Chemical Treatments on Polyphenol Abatement and Italian Ryegrass (Lolium multiflorum Lam.) Germinability. Water Res. 2014, 52, 275–281. [Google Scholar] [CrossRef]
- Smotraiev, R.; Nehrii, A.; Koltsova, E.; Anohina, A.; Sorochkina, K.; Ratnaweera, H. Comparison of Wastewater Coagulation Efficiency of Pre-Polymerised Zirconium and Traditional Aluminium Coagulants. J. Water Process Eng. 2022, 47, 102827. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology Volume 2. The Chemistry of Wine Stabilization and Treatments, 2nd ed.; John Wiley & Sons, Ltd.: Bordeaux, France, 2006; Volume 1. [Google Scholar]
- Brugirard, A.; Flanzy, C. Aspects Pratiques Du Collage Des Moûts et Des Vins; Oenoplurimedia: Chaintré, France, 1997. [Google Scholar]
- Paetzold, M.; Glories, Y. Etude de Gélatines Utilisées En Oenologie Par Mesure de Leur Charge Macromoléculaire. OENO One 1990, 24, 79. [Google Scholar] [CrossRef]
- Lamadon, F.; Mediterranee, S.R.; Bastide, H.; Lecourt, X.; Brand, E. Acquisitions Récentes Sur Le Collage Des Boissons, Enjeux et Perspectives, Aspects Pratiques. Rev. Fr. D’oenologie 1997, 165, 33–43. [Google Scholar]
- Cosme, F.; Ricardo-da-Silva, J.M.; Laureano, O. Protein Finning Agents: Characterization and Red Wine Finning Assays. Ital. J. Food Sci. 2007, 19, 39–56. [Google Scholar]
- Evans, E.W. Use of Milk Proteins in Formulated Food. In Developments in Food Proteins—1; Applied Science Publishers: London, UK, 1982; p. 131. [Google Scholar]
- Junceda-Mena, I.; García-Junceda, E.; Revuelta, J. From the Problem to the Solution: Chitosan Valorization Cycle. Carbohydr. Polym. 2023, 309, 120674. [Google Scholar] [CrossRef]
- Iber, B.T.; Torsabo, D.; Chik, C.E.N.C.E.; Wahab, F.; Abdullah, S.R.S.; Hasan, H.A.; Kasan, N.A. Optimization of Chitosan Coagulant from Dry Legs of Giant Freshwater Prawn, Macrobrachium Rosenbergii in Aquaculture Wastewater Treatment Using Response Surface Methodology (RSM). J. Environ. Chem. Eng. 2023, 11, 109761. [Google Scholar] [CrossRef]
- Guerra, D.J.L.; Mello, I.; Resende, R.; Silva, R. Application as Absorbents of Natural and Functionalized Brazilian Bentonite in Pb2+ Adsorption: Equilibrium, Kinetic, PH, and Thermodynamic Effects. Water Resour. Ind. 2013, 4, 32–50. [Google Scholar] [CrossRef]
- Patel, H. Charcoal as an Adsorbent for Textile Wastewater Treatment. Sep. Sci. Technol. 2018, 53, 2797–2812. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Preliminary Nutritional Evaluation of Mucuna Seed Meal (Mucuna pruriens Var. Utilis) in Common Carp (Cyprinus carpio L.): An Assessment by Growth Performance and Feed Utilisation. Aquaculture 2001, 196, 105–123. [Google Scholar] [CrossRef]
- Richter, N.; Siddhuraju, P.; Becker, K. Evaluation of Nutritional Quality of Moringa (Moringa oleifera Lam.) Leaves as an Alternative Protein Source for Nile Tilapia (Oreochromis niloticus L.). Aquaculture 2003, 217, 599–611. [Google Scholar] [CrossRef]
- Olvera, N.M.A.; Martinez, P.C.A.; Galvan, C.R.; Chavez, S.C. The Use of Seed of the Leguminous Plant Sesbania grandiflora as a Partial Replacement for Fish Meal in Diets for Tilapia (Oreochromis mossambicus). Aquaculture 1988, 71, 51–60. [Google Scholar] [CrossRef]
- El-Sayed, A.-F.M. Alternative Dietary Protein Sources for Farmed Tilapia, Oreochromis spp. Aquaculture 1999, 179, 149–168. [Google Scholar] [CrossRef]
- Purwanti, I.F.; Kurniawan, S.B.; Izzati, I.N.; Imron, M.F.; Abdullah, S.R.S. Aluminium Removal and Recovery from Wastewater and Soil Using Isolated Indigenous Bacteria. J. Environ. Manag. 2019, 249, 109412. [Google Scholar] [CrossRef]
- Ahmad, A.; Kurniawan, S.B.; Abdullah, S.R.S.; Othman, A.R.; Hasan, H.A. Exploring the Extraction Methods for Plant-Based Coagulants and Their Future Approaches. Sci. Total Environ. 2022, 818, 151668. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Fernandes, L.; Afonso, S.; Oliveira, I.; Gonçalves, B.; Lucas, M.S.; Peres, J.A. Treatment of Winery Wastewater by Combined Almond Skin Coagulant and Sulfate Radicals: Assessment of HSO5− Activators. Int. J. Environ. Res. Public Health 2023, 20, 2486. [Google Scholar] [CrossRef]
- Zhang, X.; Han, H.; Chai, H.; Gao, P.; Wu, W.; Li, M.; Lv, Q.; Guo, X.; Meng, Q.; Liu, X.; et al. Pre-Treatment of Landfill Leachate via Coagulation-Flocculation: Optimization of Process Parameters Using Response Surface Methodology (RSM). J. Water Process Eng. 2023, 54, 103937. [Google Scholar] [CrossRef]
- Haddaji, C.; Rifi, S.K.; Digua, K.; Madinzi, A.; Chatoui, M.; Driouich, A.; Ettaloui, Z.; Kurniawan, T.A.; Anouzla, A.; Souabi, S. Optimization of the Coagulation-Flocculation Process Using Response Surface Methodology for Wastewater Pretreatment Generated by Vegetable Oil Refineries: A Path towards Environmental Sustainability. Environ. Nanotechnol. Monit. Manag. 2024, 22, 100973. [Google Scholar] [CrossRef]
- Shabanizadeh, H.; Taghavijeloudar, M. A sustainable approach for industrial wastewater treatment using pomegranate seeds in flocculation-coagulation process: Optimization of COD and turbidity removal by response surface methodology (RSM). J. Water Process Eng. 2023, 53, 103651. [Google Scholar] [CrossRef]
- Amuda, O.S.; Amoo, I.A. Coagulation/Flocculation Process and Sludge Conditioning in Beverage Industrial Wastewater Treatment. J. Hazard. Mater. 2007, 141, 778–783. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Lucas, M.S.; Peres, J.A. Agro-Industrial Wastewater Treatment with Acacia dealbata Coagulation/Flocculation and Photo-Fenton-Based Processes. Recycling 2022, 7, 54. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of Coagulation/Flocculation in Oily Wastewater Treatment: A Review. Sci. Total Environ. 2021, 765, 142795. [Google Scholar] [CrossRef]
- Cañizares, P.; Martínez, F.; Jiménez, C.; Sáez, C.; Rodrigo, M.A. Coagulation and Electrocoagulation of Oil-in-Water Emulsions. J. Hazard. Mater. 2008, 151, 44–51. [Google Scholar] [CrossRef]
- Dotto, J.; Fagundes-Klen, M.R.; Veit, M.T.; Palácio, S.M.; Bergamasco, R. Performance of Different Coagulants in the Coagulation/Flocculation Process of Textile Wastewater. J. Clean Prod. 2019, 208, 656–665. [Google Scholar] [CrossRef]
- Wei, H.; Gao, B.; Ren, J.; Li, A.; Yang, H. Coagulation/Flocculation in Dewatering of Sludge: A Review. Water Res. 2018, 143, 608–631. [Google Scholar] [CrossRef]
- Zhang, W.; Shang, Y.; Yuan, B.; Jiang, Y.; Lu, Y.; Qin, Z.; Chen, A.; Qian, X.; Yang, H.; Cheng, R. The Flocculating Properties of Chitosan-Graft-Polyacrylamide Flocculants (II)-Test in Pilot Scale. J. Appl. Polym. Sci. 2010, 117, 2016–2024. [Google Scholar] [CrossRef]
- Li, T.; Zhu, Z.; Wang, D.; Yao, C.; Tang, H. Characterization of Floc Size, Strength and Structure under Various Coagulation Mechanisms. Powder Technol. 2006, 168, 104–110. [Google Scholar] [CrossRef]
- Domínguez, J.R.; González, T.; García, H.M.; Sánchez-Lavado, F.; Beltrán de Heredia, J. Aluminium Sulfate as Coagulant for Highly Polluted Cork Processing Wastewaters: Removal of Organic Matter. J. Hazard. Mater. 2007, 148, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Amor, C.; Lucas, M.S.; Pirra, A.J.; Peres, J.A. Treatment of Concentrated Fruit Juice Wastewater by the Combination of Biological and Chemical Processes. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2012, 47, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Maruyama, T. Removal of Suspended Solids by Coagulation and Foam Separation Using Surface-Active Protein. Water Res. 2002, 36, 2195–2204. [Google Scholar] [CrossRef]
- Jorge, N.; Amor, C.; Teixeira, A.R.; Marchão, L.; Lucas, M.S.; Peres, J.A. Combination of Coagulation-Flocculation-Decantation with Sulfate Radicals for Agro-Industrial Wastewater Treatment. Eng. Proc. 2022, 19, 19. [Google Scholar] [CrossRef]
- Ndabigengesere, A.; Narasiah, K.S. Use of Moringa oleifera Seeds as a Primary Coagulant in Wastewater Treatment. Environ. Technol. 1998, 19, 789–800. [Google Scholar] [CrossRef]
- Ishak, A.R.; Hamid, F.S.; Mohamad, S.; Tay, K.S. Stabilized Landfill Leachate Treatment by Coagulation-Flocculation Coupled with UV-Based Sulfate Radical Oxidation Process. Waste Manag. 2018, 76, 575–581. [Google Scholar] [CrossRef]
- Ginos, A.; Manios, T.; Mantzavinos, D. Treatment of Olive Mill Effluents by Coagulation-Flocculation-Hydrogen Peroxide Oxidation and Effect on Phytotoxicity. J. Hazard. Mater. 2006, 133, 135–142. [Google Scholar] [CrossRef]
- Purnawan, I.; Angputra, D.; Debora, S.C.; Karamah, E.F.; Febriasari, A.; Kartohardjono, S. Polyvinylidene Fluoride Membrane with a Polyvinylpyrrolidone Additive for Tofu Industrial Wastewater Treatment in Combination with the Coagulation–Flocculation Process. Membranes 2021, 11, 948. [Google Scholar] [CrossRef]
- Xilei, D.; Tingzhi, L.; Weijiang, D.; Huiren, H. Adsorption and Coagulation Tertiary Treatment of Pulp and Paper Mills Wastewater. In Proceedings of the 2010 4th International Conferences on Biomedical and Bioinformatics Engineering, Chengdu, China, 18–20 June 2010; ISBN 9781424447138. [Google Scholar]
- Ihaddaden, S.; Aberkane, D.; Boukerroui, A.; Robert, D. Removal of Methylene Blue (Basic Dye) by Coagulation-Flocculation with Biomaterials (Bentonite and Opuntia ficus indica). J. Water Process Eng. 2022, 49, 102952. [Google Scholar] [CrossRef]
- Kushwaha, A.K.; Gupta, N.; Chattopadhyaya, M.C. Removal of Cationic Methylene Blue and Malachite Green Dyes from Aqueous Solution by Waste Materials of Daucus carota. J. Saudi Chem. Soc. 2014, 18, 200–207. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Marchão, L.; Goufo, P.; Lucas, M.S.; Peres, J.A. Application of NaCl Plant Extracts to Decrease the Costs of Microfiltration for Winery Wastewater Treatment. Chem. Proc. 2022, 10, 35. [Google Scholar]
- Gar Alalm, M.; Tawfik, A.; Ookawara, S. Comparison of Solar TiO2 Photocatalysis and Solar Photo-Fenton for Treatment of Pesticides Industry Wastewater: Operational Conditions, Kinetics, and Costs. J. Water Process Eng. 2015, 8, 55–63. [Google Scholar] [CrossRef]
- Munoz, M.; de Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J. Preparation of Magnetite-Based Catalysts and Their Application in Heterogeneous Fenton Oxidation—A Review. Appl. Catal. B 2015, 176–177, 249–265. [Google Scholar] [CrossRef]
- Barb, W.G.; Baxendale, J.H.; George, P.; Hargrave, K.R. Reactions of Ferrous and Ferric Ions with Hydrogen Peroxide. Part I.—The Ferrous Ion Reaction. Trans. Faraday Soc. 1951, 47, 462–500. [Google Scholar] [CrossRef]
- Barb, W.G.; Baxendale, J.H.; George, P.; Hargrave, K.R. Reactions of Ferrous and Ferric Ions with Hydrogen Peroxide. Part II.—The Ferric Ion Reaction. Trans. Faraday Soc. 1951, 47, 591–616. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Oliveros, E.; MacKay, A. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Crit. Rev. Environ. Sci. Technol. 2006, 36, 1–84. [Google Scholar] [CrossRef]
- Faust, B.C.; Hoigné, J. Photolysis of Fe (III)-Hydroxy Complexes as Sources of OH Radicals in Clouds, Fog and Rain. Atmos. Environ. Part A Gen. Top. 1990, 24, 79–89. [Google Scholar] [CrossRef]
- Rahim Pouran, S.; Abdul Aziz, A.R.; Wan Daud, W.M.A. Review on the Main Advances in Photo-Fenton Oxidation System for Recalcitrant Wastewaters. J. Ind. Eng. Chem. 2015, 21, 53–69. [Google Scholar] [CrossRef]
- Lucas, M.S.; Peres, J.A. Degradation of Reactive Black 5 by Fenton/UV-C and Ferrioxalate/H2O2/Solar Light Processes. Dye. Pigment. 2007, 74, 622–629. [Google Scholar] [CrossRef]
- Di Cesare, A.; De Carluccio, M.; Eckert, E.M.; Fontaneto, D.; Fiorentino, A.; Corno, G.; Prete, P.; Cucciniello, R.; Proto, A.; Rizzo, L. Combination of Flow Cytometry and Molecular Analysis to Monitor the Effect of UVC/H2O2 vs UVC/H2O2/Cu-IDS Processes on Pathogens and Antibiotic Resistant Genes in Secondary Wastewater Effluents. Water Res. 2020, 184, 116194. [Google Scholar] [CrossRef] [PubMed]
- Kanafin, Y.N.; Makhatova, A.; Meiramkulova, K.; Poulopoulos, S.G. Treatment of a Poultry Slaughterhouse Wastewater Using Advanced Oxidation Processes. J. Water Process Eng. 2022, 47, 102694. [Google Scholar] [CrossRef]
- Martín-Sómer, M.; Pablos, C.; van Grieken, R.; Marugán, J. Influence of Light Distribution on the Performance of Photocatalytic Reactors: LED vs Mercury Lamps. Appl. Catal. B 2017, 215, 1–7. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Marchão, L.; Lucas, M.S.; Peres, J.A. Application of Combined Coagulation–Flocculation–Decantation/Photo-Fenton/Adsorption Process for Winery Wastewater Treatment. Eng. Proc. 2022, 19, 22. [Google Scholar] [CrossRef]
- Bensaibi, F.; Chabani, M.; Bouafia, S.; Djelal, H. Doxycycline Removal by Solar Photo-Fenton on a Pilot-Scale Composite Parabolic Collector (CPC) Reactor. Processes 2023, 11, 2363. [Google Scholar] [CrossRef]
- Foteinis, S.; Monteagudo, J.M.; Durán, A.; Chatzisymeon, E. Environmental Sustainability of the Solar Photo-Fenton Process for Wastewater Treatment and Pharmaceuticals Mineralization at Semi-Industrial Scale. Sci. Total Environ. 2018, 612, 605–612. [Google Scholar] [CrossRef]
- Durán, A.; Monteagudo, J.M.; Gil, J.; Expósito, A.J.; San Martín, I. Solar-Photo-Fenton Treatment of Wastewater from the Beverage Industry: Intensification with Ferrioxalate. Chem. Eng. J. 2015, 270, 612–620. [Google Scholar] [CrossRef]
- Lucas, M.S.; Mosteo, R.; Maldonado, M.I.; Malato, S.; Peres, J.A. Solar Photochemical Treatment of Winery Wastewater in a CPC Reactor. J. Agric. Food Chem. 2009, 57, 11242–11248. [Google Scholar] [CrossRef]
- Mendoza, J.L.; Granados, M.R.; de Godos, I.; Acién, F.G.; Molina, E.; Heaven, S.; Banks, C.J. Oxygen Transfer and Evolution in Microalgal Culture in Open Raceways. Bioresour. Technol. 2013, 137, 188–195. [Google Scholar] [CrossRef]
- Fiorentino, A.; Soriano-Molina, P.; Abeledo-Lameiro, M.J.; De La Obra, I.; Proto, A.; Polo-López, M.I.; Pérez, J.A.S.; Rizzo, L. Neutral (Fe3+-NTA) and Acidic (Fe2+) PH Solar Photo-Fenton Vs Chlorination: Effective Urban Wastewater Disinfection Does Not Mean Control of Antibiotic Resistance. J. Environ. Chem. Eng. 2022, 10, 108777. [Google Scholar] [CrossRef]
- Maniakova, G.; Salmerón, I.; Aliste, M.; Inmaculada Polo-López, M.; Oller, I.; Malato, S.; Rizzo, L. Solar Photo-Fenton at Circumneutral pH Using Fe(III)-EDDS Compared to Ozonation for Tertiary Treatment of Urban Wastewater: Contaminants of Emerging Concern Removal and Toxicity Assessment. Chem. Eng. J. 2022, 431, 133474. [Google Scholar] [CrossRef]
- Spiniello, I.; De Carluccio, M.; Castiglione, S.; Amineva, E.; Kostryukova, N.; Cicatelli, A.; Rizzo, L.; Guarino, F. Landfill Leachate Treatment by a Combination of a Multiple Plant Hybrid Constructed Wetland System with a Solar PhotoFenton Process in a Raceway Pond Reactor. J. Environ. Manag. 2023, 331, 117211. [Google Scholar] [CrossRef] [PubMed]
- Brink, A.; Sheridan, C.; Harding, K. Combined Biological and Advance Oxidation Processes for Paper and Pulp Effluent Treatment. S. Afr. J. Chem. Eng. 2018, 25, 116–122. [Google Scholar] [CrossRef]
- Guimarães, V.; Teixeira, A.R.; Lucas, M.S.; Silva, A.M.T.; Peres, J.A. Pillared Interlayered Natural Clays as Heterogeneous Photocatalysts for H2O2-Assisted Treatment of a Winery Wastewater. Sep. Purif. Technol. 2019, 228, 115768. [Google Scholar] [CrossRef]
- Papoutsakis, S.; Brites-Nóbrega, F.F.; Pulgarin, C.; Malato, S. Benefits and Limitations of Using Fe(III)-EDDS for the Treatment of Highly Contaminated Water at near-Neutral PH. J. Photochem. Photobiol. A Chem. 2015, 303–304, 1–7. [Google Scholar] [CrossRef]
- Oviedo, C.; Rodríguez, J. EDTA: The Chelating Agent under Environmental Scrutiny. Quim. Nova 2003, 26, 901–905. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; He, J.; Liu, T.; Zhang, K.; Huang, X.; Kong, L.; Liu, J. EDTA-Fe(III) Fenton-like Oxidation for the Degradation of Malachite Green. J. Environ. Manag. 2018, 226, 256–263. [Google Scholar] [CrossRef]
- Takahashi, R.; Fujimoto, N.; Suzuki, M.; Endo, T. Biodegradabilities of Ethylenediamine-N,N’-Disuccinic Acid (EDDS) and Other Chelating Agents. Biosci. Biotechnol. Biochem. 1997, 61, 1957–1959. [Google Scholar] [CrossRef]
- Ye, Z.; Brillas, E.; Centellas, F.; Cabot, P.L.; Sirés, I. Expanding the Application of Photoelectro-Fenton Treatment to Urban Wastewater Using the Fe(III)-EDDS Complex. Water Res. 2020, 169, 115219. [Google Scholar] [CrossRef]
- Sýkora, V.; Pitter, P.; Bittnerová, I.; Lederer, T. Biodegradability of Ethylenediamine-Based Complexing Agents. Water Res. 2001, 35, 2010–2016. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Long, J.; Li, K.; Chen, Y.; Jiang, J.; Chen, X.; Zhang, P. Oxidation and Removal of Thallium and Organics from Wastewater Using a Zero-Valent-Iron-Based Fenton-like Technique. J. Clean Prod. 2019, 221, 89–97. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, G.; Wei, Z.; Zhang, L.; He, Q.; Wu, Q.; Qian, T. Mixed Chelators of EDTA, GLDA, and Citric Acid as Washing Agent Effectively Remove Cd, Zn, Pb, and Cu from Soils. J. Soils Sediments 2018, 18, 835–844. [Google Scholar] [CrossRef]
- Almubarak, T.; Ng, J.H.; Ramanathan, R.; Nasr-El-Din, H.A. Chelating Agents for Oilfield Stimulation: Lessons Learned and Future Outlook. J. Pet. Sci. Eng. 2021, 205, 108832. [Google Scholar] [CrossRef]
- Motekaitis, R.J.; Cox III, X.B.; Taylor, P.; Martell, A.E.; Miles, B.; Tvedt, T.J., Jr. Thermal Degradation of EDTA Chelates in Aqueous Solution. Can. J. Chem. 1982, 60, 1207–1213. [Google Scholar] [CrossRef]
- Seraghni, N.; Belattar, S.; Mameri, Y.; Debbache, N.; Sehili, T. Fe(III)-Citrate-Complex-Induced Photooxidation of 3-Methylphenol in Aqueous Solution. Int. J. Photoenergy 2012, 2012, 630425. [Google Scholar] [CrossRef]
- Serna-Galvis, E.A.; Cáceres-Peña, A.C.; Torres-Palma, R.A. Elimination of Representative Fluoroquinolones, Penicillins, and Cephalosporins by Solar Photo-Fenton: Degradation Routes, Primary Transformations, Degradation Improvement by Citric Acid Addition, and Antimicrobial Activity Evolution. Environ. Sci. Pollut. Res. 2020, 27, 41381–41393. [Google Scholar] [CrossRef]
- Ahile, U.J.; Wuana, R.A.; Itodo, A.U.; Sha’Ato, R.; Dantas, R.F. A Review on the Use of Chelating Agents as an Alternative to Promote Photo-Fenton at Neutral pH: Current Trends, Knowledge Gap and Future Studies. Sci. Total Environ. 2020, 710, 134872. [Google Scholar] [CrossRef]
- Giménez, B.N.; Conte, L.O.; Duarte, S.A.; Schenone, A.V. Improvement of Ferrioxalate Assisted Fenton and Photo-Fenton Processes for Paracetamol Degradation by Hydrogen Peroxide Dosage. Environ. Sci. Pollut. Res. 2024, 31, 13489–13500. [Google Scholar] [CrossRef]
- Teixeira, A.R.; Jorge, N.; Lucas, M.S.; Peres, J.A. Winery and Olive Mill Wastewaters Treatment Using Nitrilotriacetic Acid/UV-C/Fenton Process: Batch and Semi-Continuous Mode. Environ. Res. 2024, 240, 117545. [Google Scholar] [CrossRef]
- Meijide, J.; Lama, G.; Pazos, M.; Sanromán, M.A.; Dunlop, P.S.M. Ultraviolet-Based Heterogeneous Advanced Oxidation Processes as Technologies to Remove Pharmaceuticals from Wastewater: An Overview. J. Environ. Chem. Eng. 2022, 10, 107630. [Google Scholar] [CrossRef]
- Pawar, S.N.; Edgar, K.J. Alginate Derivatization: A Review of Chemistry, Properties and Applications. Biomaterials 2012, 33, 3279–3305. [Google Scholar] [CrossRef] [PubMed]
- Tummino, M.L.; Magnacca, G.; Cimino, D.; Laurenti, E.; Nisticò, R. The Innovation Comes from the Sea: Chitosan and Alginate Hybrid Gels and Films as Sustainable Materials for Wastewater Remediation. Int. J. Mol. Sci. 2020, 21, 550. [Google Scholar] [CrossRef]
- Zeidman, A.B.; Rodriguez-Narvaez, O.M.; Moon, J.; Bandala, E.R. Removal of Antibiotics in Aqueous Phase Using Silica-Based Immobilized Nanomaterials: A Review. Environ. Technol. Innov. 2020, 20, 101030. [Google Scholar] [CrossRef]
- Gopinath, A.; Pisharody, L.; Popat, A.; Nidheesh, P.V. Supported Catalysts for Heterogeneous Electro-Fenton Processes: Recent Trends and Future Directions. Curr. Opin. Solid State Mater. Sci. 2022, 26, 100981. [Google Scholar] [CrossRef]
- Castañeda-Juárez, M.; Linares-Hernández, I.; Martínez-Miranda, V.; Teutli-Sequeira, E.A.; de los Ángeles Mier-Quiroga, M.; Castillo-Suárez, L.A. Commercial Dexamethasone Degradation by Heterogeneous Sono/Photo-Fenton Process Using Iron Zeolite Catalyst by an Electrodeposition Method. Environ. Technol. 2024, 46, 2376–2393. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, O.; Meijide, J.; Bocos, E.; Sanromán, M.Á.; Pazos, M. New Approaches on Heterogeneous Electro-Fenton Treatment of Winery Wastewater. Electrochim. Acta 2015, 169, 134–141. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, Y.; Niu, Q.; Zeng, G.; Lai, C.; Liu, S.; Huang, D.; Qin, L.; Liu, X.; Li, B.; et al. New Notion of Biochar: A Review on the Mechanism of Biochar Applications in Advannced Oxidation Processes. Chem. Eng. J. 2021, 416, 129027. [Google Scholar] [CrossRef]
- Pinedo-Hernández, S.; Diaz-Nava, M.C. Heterogeneous Photo-Fenton Using Sustainable Catalysts for the Decolorization of Red Dye 6. Int. J. Environ. Sci. Technol. 2024, 21, 7881–7896. [Google Scholar] [CrossRef]
- Lucas, M.S.; Mouta, M.; Pirra, A.; Peres, J.A. Winery Wastewater Treatment by a Combined Process: Long Term Aerated Storage and Fenton’s Reagent. Water Sci. Technol. 2009, 60, 1089–1095. [Google Scholar] [CrossRef]
- Ormad, M.P.; Mosteo, R.; Ibarz, C.; Ovelleiro, J.L. Multivariate Approach to the Photo-Fenton Process Applied to the Degradation of Winery Wastewaters. Appl. Catal. B 2006, 66, 58–63. [Google Scholar] [CrossRef]
- Primo, O.; Rivero, M.J.; Ortiz, I. Photo-Fenton Process as an Efficient Alternative to the Treatment of Landfill Leachates. J. Hazard. Mater. 2008, 153, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, V.; Lucas, M.S.; Peres, J.A. Combination of Adsorption and Heterogeneous Photo-Fenton Processes for the Treatment of Winery Wastewater. Environ. Sci. Pollut. Res. 2019, 26, 31000–31013. [Google Scholar] [CrossRef] [PubMed]
- Campos, S.; Lorca, J.; Vidal, J.; Calzadilla, W.; Toledo-Neira, C.; Aranda, M.; Miralles-Cuevas, S.; Cabrera-Reina, A.; Salazar, R. Removal of Contaminants of Emerging Concern by Solar Photo Electro-Fenton Process in a Solar Electrochemical Raceway Pond Reactor. Process Saf. Environ. Prot. 2023, 169, 660–670. [Google Scholar] [CrossRef]
- Salazar, R.; Campos, S.; Martínez, J.; Luna, F.; Thiam, A.; Aranda, M.; Calzadilla, W.; Miralles-Cuevas, S.; Cabrera-Reina, A. New Development of a Solar Electrochemical Raceway Pond Reactor for Industrial Wastewater Treatment. Environ. Res. 2022, 212, 113553. [Google Scholar] [CrossRef]
- Belachqer-El Attar, S.; Soriano-Molina, P.; de la Obra, I.; Sánchez Pérez, J.A. A New Solar Photo-Fenton Strategy for Wastewater Reclamation Based on Simultaneous Supply of H2O2 and NaOCl. Sci. Total Environ. 2022, 834, 155273. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Lucas, M.S.; Peres, J.A. Enhancement of EDDS-Photo-Fenton Process with Plant-Based Coagulants for Winery Wastewater Management. Environ. Res. 2023, 229, 116021. [Google Scholar] [CrossRef]
- Kösem, E.; Ersöz, Ö.N.; Yılmaz, R.N.; Babaoğlu, D.; Yazici Guvenc, S.; Can-Güven, E.; Varank, G. Sequential Electrocoagulation and Fenton/Photo-Fenton Processes for the Treatment of Membrane Bioreactor Effluent of Landfill Leachate. Colloids Surf. A Physicochem. Eng. Asp. 2024, 689, 133740. [Google Scholar] [CrossRef]
- Lucas, M.S.; Peres, J.A. Decolorization of the Azo Dye Reactive Black 5 by Fenton and Photo-Fenton Oxidation. Dye. Pigment. 2006, 71, 236–244. [Google Scholar] [CrossRef]
- Amor, C.; Lucas, M.S.; García, J.; Dominguez, J.R.; De Heredia, J.B.; Peres, J.A. Combined Treatment of Olive Mill Wastewater by Fenton’s Reagent and Anaerobic Biological Process. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2015, 50, 161–168. [Google Scholar] [CrossRef]
- De la Cruz, N.; Esquius, L.; Grandjean, D.; Magnet, A.; Tungler, A.; de Alencastro, L.F.; Pulgarín, C. Degradation of Emergent Contaminants by UV, UV/H2O2 and Neutral Photo-Fenton at Pilot Scale in a Domestic Wastewater Treatment Plant. Water Res. 2013, 47, 5836–5845. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Fernandes, J.R.; Oliveira, I.; Lucas, M.S.; Peres, J.A. Degradation of Agro-Industrial Wastewater Model Compound by UV-A-Fenton Process: Batch vs. Continuous Mode. Int. J. Environ. Res. Public Health 2023, 20, 1276. [Google Scholar] [CrossRef] [PubMed]
- Dobrosz-Gómez, I.; Quintero-Arias, J.-D.; Gómez-García, M.-Á. Coagulation-Flocculation—Fenton-Neutralization Sequential Process for the Treatment of Industrial Effluent Polluted with AB194 Dye. Case Stud. Chem. Environ. Eng. 2024, 9, 100720. [Google Scholar] [CrossRef]
- Belkodia, K.; El Mersly, L.; Edaala, M.A.; Achtak, H.; Alaoui Tahiri, A.; Briche, S.; Rafqah, S. Cheese Wastewater Treatment through Combined Coagulation-Flocculation and Photo-Fenton-like Advanced Oxidation Processes for Reuse in Irrigation: Effect of Operational Parameters and Phytotoxicity Assessment. Environ. Sci. Pollut. Res. 2024, 31, 11801–11814. [Google Scholar] [CrossRef] [PubMed]
- Jorge, N.; Teixeira, A.R.; Lucas, M.S.; Peres, J.A. Combination of Adsorption in Natural Clays and Photo-Catalytic Processes for Winery Wastewater Treatment. In Advances in Science, Technology and Innovation; Springer Nature: Cham, Switzerland, 2021; pp. 291–294. [Google Scholar]
- Sum, O.S.N.; Feng, J.; Hu, X.; Yue, P.L. Pillared Laponite Clay-Based Fe Nanocomposites as Heterogeneous Catalysts for Photo-Fenton Degradation of Acid Black. Chem. Eng. Sci. 2004, 59, 5269–5275. [Google Scholar]
- Solís, R.R.; Rivas, F.J.; Ferreira, L.C.; Pirra, A.; Peres, J.A. Integrated Aerobic Biological–Chemical Treatment of Winery Wastewater Diluted with Urban Wastewater. LED-Based Photocatalysis in the Presence of Monoperoxysulfate. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2018, 53, 124–131. [Google Scholar] [CrossRef]
- Siegrist, R.L.; Crimi, M.; Simpkin, T.J. Situ Chemical Oxidation for Groundwater Remediation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 3, ISBN 1441978267. [Google Scholar]
- Wang, J.; Wang, S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Flanagan, J.; Griffith, W.P.; Skapski, A.C. The Active Principle of Caro’s Acid, HSO5−: X-Ray Crystal Structure of KHSO5.H2O. J. Chem. Soc. Chem. Commun. 1984, 23, 1574–1575. [Google Scholar] [CrossRef]
- Kolthoff, I.M.; Miller, I.K. The Chemistry of Persulfate. I. The Kinetics and Mechanism of the Decomposition of the Persulfate Ion in Aqueous Medium. J. Am. Chem. Soc. 1951, 73, 3055–3059. [Google Scholar] [CrossRef]
- Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R. Degradation Efficiencies of Azo Dye Acid Orange 7 by the Interaction of Heat, UV and Anions with Common Oxidants: Persulfate, Peroxymonosulfate and Hydrogen Peroxide. J. Hazard. Mater. 2010, 179, 552–558. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Amor, C.; Silva, T.; Dionysiou, D.D.; Li Puma, G.; Lucas, M.S.; Peres, J.A. Treatment of Winery Wastewater by Sulphate Radicals: HSO5−/Transition Metal/UV-A LEDs. Chem. Eng. J. 2017, 310, 473–483. [Google Scholar] [CrossRef]
- Liang, C.J.; Bruell, C.J.; Marley, M.C.; Sperry, K.L. Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1-Trichloroethane (TCA) in Aqueous Systems and Soil Slurries. Soil Sediment Contam. Int. J. 2003, 12, 207–228. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Sun, K.; Lin, C.; Ma, J.; He, M.; Ouyang, W. Persulfate-Based Advanced Oxidation Processes (AOPs) for Organic-Contaminated Soil Remediation: A Review. Chem. Eng. J. 2019, 372, 836–851. [Google Scholar] [CrossRef]
- Boczkaj, G.; Fernandes, A. Wastewater Treatment by Means of Advanced Oxidation Processes at Basic pH Conditions: A Review. Chem. Eng. J. 2017, 320, 608–633. [Google Scholar] [CrossRef]
- Domingues, E.; Silva, M.J.; Vaz, T.; Gomes, J.; Martins, R.C. Sulfate Radical Based Advanced Oxidation Processes for Agro-Industrial Effluents Treatment: A Comparative Review with Fenton’s Peroxidation. Sci. Total Environ. 2022, 832, 155029. [Google Scholar] [CrossRef]
- Hu, P.; Long, M. Cobalt-Catalyzed Sulfate Radical-Based Advanced Oxidation: A Review on Heterogeneous Catalysts and Applications. Appl. Catal. B 2016, 181, 103–117. [Google Scholar] [CrossRef]
- Devi, P.; Das, U.; Dalai, A.K. In-Situ Chemical Oxidation: Principle and Applications of Peroxide and Persulfate Treatments in Wastewater Systems. Sci. Total Environ. 2016, 571, 643–657. [Google Scholar] [CrossRef]
- Liang, C.; Su, H.W. Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate. Ind. Eng. Chem. Res. 2009, 48, 5558–5562. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Chen, F.; Yao, F.; Sun, J.; Wang, S.; Yi, K.; Hou, L.; Li, X.; Wang, D. Recent Advances in Photo-Activated Sulfate Radical-Advanced Oxidation Process (SR-AOP) for Refractory Organic Pollutants Removal in Water. Chem. Eng. J. 2019, 378, 122149. [Google Scholar] [CrossRef]
- Furman, O.S.; Teel, A.L.; Watts, R.J. Mechanism of Base Activation of Persulfate. Environ. Sci. Technol. 2010, 44, 6423–6428. [Google Scholar] [CrossRef]
- Qi, C.; Liu, X.; Ma, J.; Lin, C.; Li, X.; Zhang, H. Activation of Peroxymonosulfate by Base: Implications for the Degradation of Organic Pollutants. Chemosphere 2016, 151, 280–288. [Google Scholar] [CrossRef]
- Herrmann, H. On the Photolysis of Simple Anions and Neutral Molecules as Sources of O−/OH, SOx− and Cl in Aqueous Solution. Phys. Chem. Chem. Phys. 2007, 9, 3935–3964. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, F.; Moradi, M. Application of Peroxymonosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Daware, G.B.; Pangarkar, B.L.; Kayande, U.P.; Shinde, P.R.; Kolhe, M.J.; Dabhade, G.B.; Rajesh, Y.; Joshi, P.P. Intensified Removal of 4-Methylpyridine by Ultrasonication in Presence of Advanced Oxidants. J. Indian Chem. Soc. 2023, 100, 100810. [Google Scholar] [CrossRef]
- Chen, S.; He, Z. Sonoelectrochemical Activation of Peroxymonosulfate: Influencing Factors and Mechanism of FA Degradation, and Application on Landfill Leachate Treatment. Chemosphere 2022, 296, 133365. [Google Scholar] [CrossRef]
- Matzek, L.W.; Carter, K.E. Activated Persulfate for Organic Chemical Degradation: A Review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef]
- Rastogi, A.; Al-Abed, S.R.; Dionysiou, D.D. Sulfate Radical-Based Ferrous-Peroxymonosulfate Oxidative System for PCBs Degradation in Aqueous and Sediment Systems. Appl. Catal. B 2009, 85, 171–179. [Google Scholar] [CrossRef]
- Zou, J.; Ma, J.; Chen, L.; Li, X.; Guan, Y.; Xie, P.; Pan, C. Rapid Acceleration of Ferrous Iron/Peroxymonosulfate Oxidation of Organic Pollutants by Promoting Fe(III)/Fe(II) Cycle with Hydroxylamine. Environ. Sci. Technol. 2013, 47, 11685–11691. [Google Scholar] [CrossRef]
- Rodriguez, S.; Vasquez, L.; Costa, D.; Romero, A.; Santos, A. Oxidation of Orange G by Persulfate Activated by Fe(II), Fe(III) and Zero Valent Iron (ZVI). Chemosphere 2014, 101, 86–92. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Amor, C.; Mota, J.; Lucas, M.S.; Peres, J.A. Oxidation of Winery Wastewater by Sulphate Radicals: Catalytic and Solar Photocatalytic Activations. Environ. Sci. Pollut. Res. 2017, 24, 22414–22426. [Google Scholar] [CrossRef]
- Li, J.; Lin, H.; Yang, L.; Zhang, H. Copper-Spent Activated Carbon as a Heterogeneous Peroxydisulfate Catalyst for the Degradation of Acid Orange 7 in an Electrochemical Reactor. Water Sci. Technol. 2016, 73, 1802–1808. [Google Scholar] [CrossRef]
- Dbira, S.; Bensalah, N.; Zagho, M.M.; Ennahaoui, M.; Bedoui, A. Oxidative Degradation of Tannic Acid in Aqueous Solution by UV/S2O82− and UV/H2O2/Fe2+ Processes: A Comparative Study. Appl. Sci. 2019, 9, 156. [Google Scholar] [CrossRef]
- Michael, I.; Panagi, A.; Ioannou, L.A.; Frontistis, Z.; Fatta-Kassinos, D. Utilizing Solar Energy for the Purification of Olive Mill Wastewater Using a Pilot-Scale Photocatalytic Reactor after Coagulation-Flocculation. Water Res. 2014, 60, 28–40. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Laski, E.; García-Cañibano, C.; Martín de Vidales, M.J.; Encinas; Kuch, B.; Marugán, J. Micropollutants Removal by Full-Scale UV-C/Sulfate Radical Based Advanced Oxidation Processes. Sci. Total Environ. 2018, 630, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Sbardella, L.; Gala, I.V.; Comas, J.; Carbonell, S.M.; Rodríguez-Roda, I.; Gernjak, W. Integrated Assessment of Sulfate-Based AOPs for Pharmaceutical Active Compound Removal from Wastewater. J. Clean Prod. 2020, 260, 121014. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Guimarães, V.; Lucas, M.S.; Peres, J.A. Treatment of Winery Wastewater with a Combination of Adsorption and Thermocatalytic Processes. Processes 2022, 10, 75. [Google Scholar] [CrossRef]
- Khavari Kashani, M.R.; Wang, Q.; Khatebasreh, M.; Li, X.; Sheikh Asadi, A.M.; Boczkaj, G.; Ghanbari, F. Sequential Treatment of Landfill Leachate by Electrocoagulation/Aeration, PMS/ZVI/UV and Electro-Fenton: Performance, Biodegradability and Toxicity Studies. J. Environ. Manag. 2023, 338, 117781. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Murshid, A.; Chanikya, P. Combination of Electrochemically Activated Persulfate Process and Electro-Coagulation for the Treatment of Municipal Landfill Leachate with Low Biodegradability. Chemosphere 2023, 338, 139449. [Google Scholar] [CrossRef]
- Tang, H.; Dai, Z.; Xie, X.; Wen, Z.; Chen, R. Promotion of Peroxydisulfate Activation over Cu0.84Bi2.08O4 for Visible Light Induced Photodegradation of Ciprofloxacin in Water Matrix. Chem. Eng. J. 2019, 356, 472–482. [Google Scholar] [CrossRef]
- Mohamadiyan, J.; Shams-Khoramabadi, G.; Mussavi, S.A.; Kamarehie, B.; Dadban Shahamat, Y.; Godini, H. Aniline Degradation Using Advanced Oxidation Process by UV/Peroxy Disulfate from Aqueous Solution. Int. J. Eng. Trans. B Appl. 2017, 30, 684–690. [Google Scholar]
- Epold, I.; Dulova, N. Oxidative Degradation of Levofloxacin in Aqueous Solution by S2O82−/Fe2+, S2O82−/H2O2 and S2O82−/OH- Processes: A Comparative Study. J. Environ. Chem. Eng. 2015, 3, 1207–1214. [Google Scholar] [CrossRef]
- Norzaee, S.; Taghavi, M.; Djahed, B.; Kord Mostafapour, F. Degradation of Penicillin G by Heat Activated Persulfate in Aqueous Solution. J. Environ. Manag. 2018, 215, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wang, Y.; Li, Z.; Zheng, C.; Li, H.; Zhang, H.; Zhu, Z. Persulfate Activated by Cu46Zr44.5Al7.5Y2 Metallic Glasses for Efficient Treatment of High Concentration Organic Wastewater. J. Phys. Chem. Solids 2024, 191, 112056. [Google Scholar] [CrossRef]
- Nikitin, D.; Preis, S.; Dulova, N. Degradation of Imidazolium-Based Ionic Liquids by UV Photolysis and Pulsed Corona Discharge: The Effect of Persulfates Addition. Sep. Purif. Technol. 2024, 344, 127235. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Pan, T.; Zhang, X.; Zheng, H.; Feng, L. Electrocatalytically Enhanced Cu(II)/Peroxymonosulfate (PMS) Oxidation: Focus on Electrically-Induced Sustained Cu(II)/Cu(I)/Cu(III) Cycling and Suppression of Singlet Oxygen (1O2) Production. Sep. Purif. Technol. 2024, 342, 127093. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, S.; Wang, J.; Chen, H.; Zhou, Y. Degradation and Mineralization of 2-Chlorobiphenyl by Gamma Radiation-Activated Persulfate System. Radiat. Phys. Chem. 2024, 222, 111815. [Google Scholar] [CrossRef]
- Ge, Y.; Li, X.; Zheng, Z.; Ke, J.; Zhao, H.; Liu, Y.; Guo, R.; Chen, J. Simultaneous Removal of Sulfamethazine and Sulfate via Electrochemical Oxidation and Capacitive Deionization: Mechanisms of in-Situ Activation and Strategies of the Hybrid System. Sep. Purif. Technol. 2024, 344, 127202. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, K.; Liu, M.; Liu, X.; Li, Y.; Ma, N.; Duan, L.; Zhao, X.; Zhang, J. Enhanced Electrochemical Harmless Removal of Ammonia Nitrogen and Simultaneously Recovery of Phosphorus with Peroxydisulfate Activated by Fe Inductive Electrode. Sep Purif Technol 2024, 343, 126918. [Google Scholar] [CrossRef]
- Rivas, F.J.; Beltrán, F.J.; Gimeno, O. Table Olive Manufacturing Wastewater Treatment Using the Peroxymonosulfate/Fe(III) System. Catalysts 2024, 14, 121. [Google Scholar] [CrossRef]
- Kang, J.; Choi, J.; Lee, D.; Son, Y. UV/Persulfate Processes for the Removal of Total Organic Carbon from Coagulation-Treated Industrial Wastewaters. Chemosphere 2024, 346, 140609. [Google Scholar] [CrossRef]
- Mordecai, B. Rubin the History of Ozone. The Schönbein Period, 1839–1868. Bull. Hist. Chem. 2001, 26, 40–56. [Google Scholar]
- Rice, R.G.; Michael Robson, C.; Wade Miller, G.; Archibald, G. Hill Uses of Ozone in Drinking Water Treatment. Am. Water Work. Assoc. 1981, 73, 44–57. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic Ozonation for Water and Wastewater Treatment: Recent Advances and Perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, H.; Wang, F.; Xiong, X.; Tian, K.; Sun, Y.; Yu, T. Application of Heterogeneous Catalytic Ozonation for Refractory Organics in Wastewater. Catalysts 2019, 9, 241. [Google Scholar] [CrossRef]
- Lucas, M.S.; Peres, J.A.; Li Puma, G. Treatment of Winery Wastewater by Ozone-Based Advanced Oxidation Processes (O3, O3/UV and O3/UV/H2O2) in a Pilot-Scale Bubble Column Reactor and Process Economics. Sep. Purif. Technol. 2010, 72, 235–241. [Google Scholar] [CrossRef]
- Wang, J.L.; Xu, L.J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325. [Google Scholar] [CrossRef]
- von Sonntag, C.; von Gunten, U. Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications; IWA Publishing: London, UK, 2012; ISBN 9781780400839. [Google Scholar]
- Huang, X.; Xu, Y.; Shan, C.; Li, X.; Zhang, W.; Pan, B. Coupled Cu(II)-EDTA Degradation and Cu(II) Removal from Acidic Wastewater by Ozonation: Performance, Products and Pathways. Chem. Eng. J. 2016, 299, 23–29. [Google Scholar] [CrossRef]
- Jamali, G.A.; Devrajani, S.K.; Memon, S.A.; Qureshi, S.S.; Anbuchezhiyan, G.; Mubarak, N.M.; Shamshuddin, S.Z.M.; Siddiqui, M.T.H. Holistic Insight Mechanism of Ozone-Based Oxidation Process for Wastewater Treatment. Chemosphere 2024, 359, 142303. [Google Scholar] [CrossRef]
- Beltrán, F.J.; Rivas, F.J.; Montero-de-Espinosa, R. Ozone-Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. 1. Homogeneous Catalytic Ozonation. Ind. Eng. Chem. Res. 2003, 42, 3210–3217. [Google Scholar] [CrossRef]
- Merényi, G.; Lind, J.; Naumov, S.; Sonntag, C. Von The Reaction of Ozone with the Hydroxide Ion: Mechanistic Considerations Based on Thermokinetic and Quantum Chemical Calculations and the Role of HO4− in Superoxide Dismutation. Chem.—A Eur. J. 2010, 16, 1372–1377. [Google Scholar] [CrossRef]
- Karlinskii, B.Y.; Altshuler, H.N. Ozonolysis of Isoquinoline in a Polystyrene-Based Sulfonate Cation Exchanger. Coke Chem. 2017, 60, 42–45. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Ziółek, M.; Nawrocki, J. Catalytic Ozonation and Methods of Enhancing Molecular Ozone Reactions in Water Treatment. Appl. Catal. B 2003, 46, 639–669. [Google Scholar] [CrossRef]
- Fischbacher, A.; Von Sonntag, J.; Von Sonntag, C.; Schmidt, T.C. The •OH Radical Yield in the H2O2 + O3 (Peroxone) Reaction. Environ. Sci. Technol. 2013, 47, 9959–9964. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Demeestere, K.; Hulle, S. Van Comparison and Performance Assessment of Ozone-Based AOPs in View of Trace Organic Contaminants Abatement in Water and Wastewater: A Review. J. Environ. Chem. Eng. 2021, 9, 105599. [Google Scholar] [CrossRef]
- Zeng, Z.; Zou, H.; Li, X.; Sun, B.; Chen, J.; Shao, L. Ozonation of Phenol with O3/Fe(II) in Acidic Environment in a Rotating Packed Bed. Ind. Eng. Chem. Res. 2012, 51, 10509–10516. [Google Scholar] [CrossRef]
- Oyama, S.T. Chemical and Catalytic Properties of Ozone. Catal. Rev. Sci. Eng. 2000, 42, 279–322. [Google Scholar] [CrossRef]
- Trapido, M.; Veressinina, Y.; Munter, R.; Kallas, J. Catalytic Ozonation of M-Dinitrobenzene. Ozone Sci. Eng. 2005, 27, 359–363. [Google Scholar] [CrossRef]
- Ncanana, Z.S.; Rajasekhar Pullabhotla, V.S.R. Oxidative Degradation of M-Cresol Using Ozone in the Presence of Pure γ-Al2O3, SiO2 and V2O5 Catalysts. J. Environ. Chem. Eng. 2019, 7, 103072. [Google Scholar] [CrossRef]
- Chen, J.; Xu, S.; Yang, H.; Au, C.; Tian, S.; Xiong, Y. Ozonation Inactivation of Escherichia coli in Aqueous Solution over MgO Nanocrystals: Modelling and Mechanism. J. Chem. Technol. Biotechnol. 2018, 93, 1648–1654. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Covalent Organic Frameworks (COFs) for Environmental Applications. Coord. Chem. Rev. 2019, 400, 213046. [Google Scholar] [CrossRef]
- Chávez, A.M.; Gimeno, O.; Rey, A.; Pliego, G.; Oropesa, A.L.; Álvarez, P.M.; Beltrán, F.J. Treatment of Highly Polluted Industrial Wastewater by Means of Sequential Aerobic Biological Oxidation-Ozone Based AOPs. Chem. Eng. J. 2019, 361, 89–98. [Google Scholar] [CrossRef]
- Ling, Y.; Liu, H.; Li, B.; Zhang, B.; Wu, Y.; Hu, H.; Yu, D.; Huang, S. Efficient Photocatalytic Ozonation of Azithromycin by Three-Dimensional g-C3N4 Nanosheet Loaded Magnetic Fe-MCM-48 under Simulated Solar Light. Appl. Catal. B 2023, 324, 122208. [Google Scholar] [CrossRef]
- Wang, S.; Ma, J.; Li, H.; Li, G.; Zhou, L.; Cao, X.; Yun, J. Mineralization of High Concentration of Aniline and Other Organics in Wastewater by Catalytic Ozonation on CaMn2O4. J. Water Process Eng. 2024, 60, 105160. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Matos, C.C.; Lucas, M.S.; Peres, J.A. Combination of Coagulation–Flocculation–Decantation and Ozonation Processes for Winery Wastewater Treatment. Int. J. Environ. Res. Public Health 2021, 18, 8882. [Google Scholar] [CrossRef]
- Asaithambi, P.; Busier Yesuf, M.; Milargh Dagmiaw, S.; Mekonin Desta, W.; Hussen, M.; Beyene, D.; Sampath, S.; Ahmed, M.Z.; Sakthivel, P.; Thirumurugan, A.; et al. Ozone Assisted Alternating Current-Electrocoagulation Technique for Color and COD Removal with Determination of Electrical Energy from Industrial Wastewater. Sep. Purif. Technol. 2024, 350, 127958. [Google Scholar] [CrossRef]
- Gimeno, O.; Rivas, F.J.; Beltrán, F.J.; Carbajo, M. Photocatalytic Ozonation of Winery Wastewaters. J. Agric. Food Chem. 2007, 55, 9944–9950. [Google Scholar] [CrossRef]
- Scandelai, A.P.J.; Sloboda Rigobello, E.; de Oliveira, B.L.C.; Tavares, C.R.G. Identification of Organic Compounds in Landfill Leachate Treated by Advanced Oxidation Processes. Environ. Technol. 2019, 40, 730–741. [Google Scholar] [CrossRef]
- Piera, E.; Calpe, J.C.; Brillas, E.; Domènech, X.; Peral, J. 2,4-Dichlorophenoxyacetic Acid Degradation by Catalyzed Ozonation: TiO2/UVA/O3 and Fe(II)/UVA/O3 Systems. Appl. Catal. B Environ. 2000, 27, 169–177. [Google Scholar] [CrossRef]
- Rivas, J.; Rodríguez, E.; Beltrán, F.J.; García-Araya, J.F.; Alvarez, P. Homogeneous Catalyzed Ozonation of Simazine. Effect of Mn(II) and Fe(II). J. Environ. Sci. Health B 2001, 36, 317–330. [Google Scholar] [CrossRef]
- Cong, J.; Wen, G.; Huang, T.; Deng, L.; Ma, J. Study on Enhanced Ozonation Degradation of para-Chlorobenzoic Acid by Peroxymonosulfate in Aqueous Solution. Chem. Eng. J. 2015, 264, 399–403. [Google Scholar] [CrossRef]
- Canton, C.; Esplugas, S.; Casado, J. Mineralization of Phenol in Aqueous Solution by Ozonation Using Iron or Copper Salts and Light. Appl. Catal. B Environ. 2003, 43, 139–149. [Google Scholar] [CrossRef]
- Gao, X.X.; Wang, Y.W.; An, Y.C.; Ren, R.Y.; Lin, Y.H.; Wang, N.; Wang, Y.F.; Han, J.L.; Hao, Z.N.; Liu, J.F.; et al. Molecular Insights into the Dissolved Organic Matter of Leather Wastewater in Leather Industrial Park Wastewater Treatment Plant. Sci. Total Environ. 2023, 882, 163174. [Google Scholar] [CrossRef]
- Luo, K.; Zhao, S.X.; Wang, Y.F.; Zhao, S.J.; Zhang, X.H. Synthesis of Petal-like δ-MnO2 and Its Catalytic Ozonation Performance. N. J. Chem. 2018, 42, 6770–6777. [Google Scholar] [CrossRef]
- Nawaz, F.; Cao, H.; Xie, Y.; Xiao, J.; Chen, Y.; Ghazi, Z.A. Selection of Active Phase of MnO2 for Catalytic Ozonation of 4-Nitrophenol. Chemosphere 2017, 168, 1457–1466. [Google Scholar] [CrossRef]
- Huangfu, Z.; Ju, W.; Jia, Y.; Ren, R.; Wang, Z.; Li, C.; Shang, X.; Li, Y.; Liu, H.; Wang, Y.; et al. A Novel Insight of Degradation Ibuprofen in Aqueous by Catalytic Ozonation with Supported Catalyst: Supports Effect on Ozone Mass Transfer. J. Environ. Sci. 2024, 145, 216–231. [Google Scholar] [CrossRef]
- Centurião, A.P.S.L.; Baldissarelli, V.Z.; Scaratti, G.; de Amorim, S.M.; Moreira, R.F.P.M. Enhanced Ozonation Degradation of Petroleum Refinery Wastewater in the Presence of Oxide Nanocatalysts. Environ. Technol. 2019, 40, 1239–1249. [Google Scholar] [CrossRef]
- Mao, L.; Chen, Z.; Wu, X.; Tang, X.; Yao, S.; Zhang, X.; Jiang, B.; Han, J.; Wu, Z.; Lu, H.; et al. Plasma-Catalyst Hybrid Reactor with CeO2/Γ-Al2O3 for Benzene Decomposition with Synergetic Effect and Nano Particle by-Product Reduction. J. Hazard. Mater. 2018, 347, 150–159. [Google Scholar] [CrossRef]
- Feng, J.; Xing, B.; Chen, H. Catalytic Ozonation of Humic Acid in Water with Modified Activated Carbon: Enhancement and Restoration of the Activity of an Activated Carbon Catalyst. J. Environ. Manag. 2019, 237, 114–118. [Google Scholar] [CrossRef]
- Jothinathan, L.; Hu, J. Kinetic Evaluation of Graphene Oxide Based Heterogenous Catalytic Ozonation for the Removal of Ibuprofen. Water Res. 2018, 134, 63–73. [Google Scholar] [CrossRef]
- Güneş, E.; Güneş, Y.; Hanedar, A.; Kaykioğlu, G.; Çelik, A. Treatment of Dairy Industry Wastewater by Variations of Coagulation-Flocculation and Ozonation. Sigma J. Eng. Nat. Sci. 2022, 40, 755–761. [Google Scholar] [CrossRef]
- Wei, S.; Xu, H.; Li, G.; Zhang, Y.; Yang, M. Coagulation and Ozonation Treatment of Biologically Treated Wastewater from Recycled Paper Pulping Industry: Effect on the Change of Organic Compounds. Environ. Sci. Pollut. Res. 2023, 30, 92482–92494. [Google Scholar] [CrossRef]
Industrial Wastewater | COD (mg O2/L) | BOD5 (mg O2/L) | Total Polyphenols (mg Gallic Acid/L) | pH | BOD5/COD | References |
---|---|---|---|---|---|---|
Landfill leachate | 25,000–60,000 | 4000–15,000 | >7.5 | <0.1 | [11,12,13] | |
Pharmaceutical | 7893–32,500 | 1692–6000 | 4.0–9.2 | 0.09–0.59 | [14,15] | |
Pulp and paper | 1500–380 | 560–1200 | 190–220 | 8–10 | <0.2 | [16] |
Textile | 300–12,000 | 188–550 | 2–13.5 | <0.39 | [17] | |
Winery | 1880–15,550 | 550–8860 | 10–700 | 4.0–5.3 | <0.3 | [18,19] |
Olive mill | 595–220,000 | 3400–100,000 | 12,600–21,700 | 4.4–5.2 | 0.19–0.49 | [20,21] |
Olive washing | 990–4580 | 200–550 | 88–1027 | 4.1–7.5 | 0.16–0.43 | [22,23] |
Dairy | 790–6000 | 410–4480 | 8.6–12 | >0.5 | [24,25] | |
Municipal | 500–1000 | 250–500 | 7.2–8.4 | >0.5 | [1,26] |
Coagulant | Advantages | Disadvantages | References |
---|---|---|---|
Aluminum sulfate (Al2(SO4)3) | A 1% solution of aluminum sulfate corresponds to a pH of approximately 3.5. It is available at low cost and easy to apply. | In excess, it generates residual metal in treated water; the sludge produced by metal salts is often porous, non-compact, and hard to dewater as it has a high moisture content (99–99.7%). | [54] |
Ferric chloride (FeCl3) | The iron composites have floc characteristics and pH ranges similar to aluminum sulfate. | The iron compounds are corrosive, of difficult dissolution, and application leads to high soluble iron concentrations in wastewaters. | [55] |
Calcium hydroxide (Ca(HO)2, lime) | It is a cheap coagulant, easy to apply. It can reduce wastewater components such as polyphenols, oil and grease, total solids, and COD. | Rapid increase in the pH to alkaline levels | [56] |
Polyaluminum chloride | A higher efficiency in particle removal is observed, resulting in a smaller pH reduction in the treated water, which reduces the chemical consumption for pH adjustment. | Aluminum salts have been associated with potential health concerns, including a possible link to Alzheimer’s disease and other neurological conditions such as presenile dementia. | [57] |
Coagulant | Type | Characteristics | References |
---|---|---|---|
Gelatins | Animal-based | Manufacture of gelatins is achieved by near complete hydrolysis of collagen of pig skins and animal bones. The main elements are glycine, proline, hydroxyproline, and glutamic acid. Regarding the electric charge, gelatins are electropositive at acidic pH, and the isoelectric point varies between 7.5 and 9.5. | [58,60] |
Isinglass | Animal-based | Isinglass is a raw product generated by the swim bladder of fish, such as sturgeon. The surface charge density ranges from 0.32 to 0.83 meq/g, and the isoelectric point oscillates between 4.20 and 6.48. | [61,62] |
Egg albumin | Animal-based | Egg albumin involves many proteins and represents 12.5% of the weight of fresh egg white. It has an isoelectric point of 4.6, and surface charge density ranges from 0.22 to 0.96 meq/g. | [61] |
Casein | Animal-based | Casein is heteroprotein holding phosphorus. The manufacture consists of coagulating skimmed milk. It has an isoelectric point of 4.6, and surface charge density estimated at pH 7 is near 0.5 meq/g. | [63] |
Chitin | Animal-based | Chitin is a linear polymer composed of N-acetyl-D-glucosamine units linked by β(1–4)-glycosidic bonds, synthetized by a large number of living organisms such as insects, algae, or fungi, among others. Chitosan is derived from chitin (the second most abundant polymeric material of biological origin aside from cellulose in the league of polysaccharides). | [64,65] |
Sodium alginate | Plant-based | Sodium alginate is an alginic acid salt. The manufacture involves extraction from various Phaeophyceae algae, especially kelp, applying alkaline digestion and purification. Mixture of water with sodium alginate generates a viscous solution with pH between 6 and 8. | [58] |
Polyvinylpoly-pyrrolidone (PVPP) | Synthetic polymer | Polymerization of vinylpyrrolidone generates water-soluble polyvinylpyrrolidone (PVP). However, in polymerization occurring in the presence of an alkali solution, the pyrrolidone cycle is broken, producing insoluble polyvinylpolypyrrolidone (PVPP), with high polyphenols affinity. | [58] |
Bentonite | Mineral-based | Bentonites are hydrated aluminum silicates, with montmorillonites of simplified formulae, e.g., Al2O3, SiO2. The main smectite minerals are sodium, calcium montmorillonite, saponite (magnesium montmorillonite), nontronite (iron montmorillonite), hectorite (lithium montmorillonite), and beidellite (aluminum montmorillonite). Smectite minerals composition encompasses two silica tetrahedral sheets with a central octahedral sheet, 2:1 layer (central octahedral sheet), with water molecules and cations occupying the space between the layers. | [66] |
Charcoal | Mineral-based | Charcoal is prepared by pyrolysis, which involves heating the raw materials at high temperatures (600–900 °C), eliminating non-carbon constituents like hydrogen, nitrogen, oxygen, and sulfur as volatile gaseous products, and the residual carbon atoms are rearranged as condensed sheets of aromatic rings with a cross-linked structure in a random manner. | [67] |
Materials | Characteristics | References |
---|---|---|
Alginate | Alginate is a biopolymer acquired by brown algae and bacteria. It is composed of mannuronic and guluronic acid residues and blocks of these ranged alternately. | [136] |
Chitosan | Chitosan is a biopolymer generated by living organisms. Chitosan is biodegradable, non-toxic, and easily available. | [137] |
Silica | Silica exists both crystalline and amorphous forms. The advantages of using silica to produce iron-based catalysts lie in the properties of the material, like pore volume and diameter, structural stability, and large surface area. | [138] |
Zeolite and perlite | Zeolites are crystalline hydrated aluminosilicates, built upon cations, alkali pieces, or alkali earth metals. They have well-defined porous structure with micropores distributed in molecular dimensions. Perlite is amorphous, glassy volcanic rock that can expand to beyond original volume (20 times) in the presence of high temperatures (700–1100 °C). | [139,140] |
Activated carbon | Activated carbon is a material that can be produced from raw agriculture by-products, like coconut shells, sugarcane bagasse, or rice husk, among others. It is characterized by high surface area, porosity, and stability. | [141] |
Biochar | Biochar is characterized by a high porosity and surface area. It is an excellent material for iron-based catalysts because (1) it can be used raw agro-waste to produce biochar, and (2) the porosity, surface area, and functional groups can be enhanced. | [142] |
Clay minerals | Clay minerals are a group of hydrous aluminum phyllosilicates. Their small dimensions and sizable proportion of surface area to volume gives them a set of significant properties, namely, high cation-exchange capacity (CEC), catalytic properties, and plastic behavior when wet. Furthermore, clay minerals are cheap, abundant, and environmentally friendly. | [119,143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucas, M.S.; Teixeira, A.R.; Jorge, N.; Peres, J.A. Industrial Wastewater Treatment by Coagulation–Flocculation and Advanced Oxidation Processes: A Review. Water 2025, 17, 1934. https://doi.org/10.3390/w17131934
Lucas MS, Teixeira AR, Jorge N, Peres JA. Industrial Wastewater Treatment by Coagulation–Flocculation and Advanced Oxidation Processes: A Review. Water. 2025; 17(13):1934. https://doi.org/10.3390/w17131934
Chicago/Turabian StyleLucas, Marco S., Ana R. Teixeira, Nuno Jorge, and José A. Peres. 2025. "Industrial Wastewater Treatment by Coagulation–Flocculation and Advanced Oxidation Processes: A Review" Water 17, no. 13: 1934. https://doi.org/10.3390/w17131934
APA StyleLucas, M. S., Teixeira, A. R., Jorge, N., & Peres, J. A. (2025). Industrial Wastewater Treatment by Coagulation–Flocculation and Advanced Oxidation Processes: A Review. Water, 17(13), 1934. https://doi.org/10.3390/w17131934