Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = red-light crossing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2822 KiB  
Article
Accuracy and Reliability of Smartphone Versus Mirrorless Camera Images-Assisted Digital Shade Guides: An In Vitro Study
by Soo Teng Chew, Suet Yeo Soo, Mohd Zulkifli Kassim, Khai Yin Lim and In Meei Tew
Appl. Sci. 2025, 15(14), 8070; https://doi.org/10.3390/app15148070 - 20 Jul 2025
Viewed by 342
Abstract
Image-assisted digital shade guides are increasingly popular for shade matching; however, research on their accuracy remains limited. This study aimed to compare the accuracy and reliability of color coordination in image-assisted digital shade guides constructed using calibrated images of their shade tabs captured [...] Read more.
Image-assisted digital shade guides are increasingly popular for shade matching; however, research on their accuracy remains limited. This study aimed to compare the accuracy and reliability of color coordination in image-assisted digital shade guides constructed using calibrated images of their shade tabs captured by a mirrorless camera (Canon, Tokyo, Japan) (MC-DSG) and a smartphone camera (Samsung, Seoul, Korea) (SC-DSG), using a spectrophotometer as the reference standard. Twenty-nine VITA Linearguide 3D-Master shade tabs were photographed under controlled settings with both cameras equipped with cross-polarizing filters. Images were calibrated using Adobe Photoshop (Adobe Inc., San Jose, CA, USA). The L* (lightness), a* (red-green chromaticity), and b* (yellow-blue chromaticity) values, which represent the color attributes in the CIELAB color space, were computed at the middle third of each shade tab using Adobe Photoshop. Specifically, L* indicates the brightness of a color (ranging from black [0] to white [100]), a* denotes the position between red (+a*) and green (–a*), and b* represents the position between yellow (+b*) and blue (–b*). These values were used to quantify tooth shade and compare them to reference measurements obtained from a spectrophotometer (VITA Easyshade V, VITA Zahnfabrik, Bad Säckingen, Germany). Mean color differences (∆E00) between MC-DSG and SC-DSG, relative to the spectrophotometer, were compared using a independent t-test. The ∆E00 values were also evaluated against perceptibility (PT = 0.8) and acceptability (AT = 1.8) thresholds. Reliability was evaluated using intraclass correlation coefficients (ICC), and group differences were analyzed via one-way ANOVA and Bonferroni post hoc tests (α = 0.05). SC-DSG showed significantly lower ΔE00 deviations than MC-DSG (p < 0.001), falling within acceptable clinical AT. The L* values from MC-DSG were significantly higher than SC-DSG (p = 0.024). All methods showed excellent reliability (ICC > 0.9). The findings support the potential of smartphone image-assisted digital shade guides for accurate and reliable tooth shade assessment. Full article
(This article belongs to the Special Issue Advances in Dental Materials, Instruments, and Their New Applications)
Show Figures

Figure 1

20 pages, 5183 KiB  
Article
Unmanned Aerial Vehicle (UAV) Imagery for Plant Communities: Optimizing Visible Light Vegetation Index to Extract Multi-Species Coverage
by Meng Wang, Zhuoran Zhang, Rui Gao, Junyong Zhang and Wenjie Feng
Plants 2025, 14(11), 1677; https://doi.org/10.3390/plants14111677 - 30 May 2025
Viewed by 512
Abstract
Low-cost unmanned aerial vehicle (UAV) visible light remote sensing provides new opportunities for plant community monitoring, but its practical deployment in different ecosystems is still limited by the lack of standardized vegetation index (VI) optimization for multi-species coverage extraction. This study developed a [...] Read more.
Low-cost unmanned aerial vehicle (UAV) visible light remote sensing provides new opportunities for plant community monitoring, but its practical deployment in different ecosystems is still limited by the lack of standardized vegetation index (VI) optimization for multi-species coverage extraction. This study developed a universal method integrating four VIs—Excess Green Index (EXG), Visible Band Difference Vegetation Index (VDVI), Red-Green Ratio Index (RGRI), and Red-Green-Blue Vegetation Index (RGBVI)—to bridge UAV imagery with plant communities. By combining spectral separability analysis with machine learning (SVM), we established dynamic thresholds applicable to crops, trees, and shrubs, achieving cross-species compatibility without multispectral data. The results showed that all VIs achieved robust vegetation/non-vegetation discrimination (Kappa > 0.84), with VDVI being more suitable for distinguishing vegetation from non-vegetation. The overall classification accuracy for different vegetation types exceeded 92.68%, indicating that the accuracy is considerable. Crop coverage extraction showed a minimum segmentation error of 0.63, significantly lower than that of other vegetation types. These advances enable high-resolution vegetation monitoring, supporting biodiversity assessment and ecosystem service quantification. Our research findings track the impact of plant communities on the ecological environment and promote the application of UAVs in ecological restoration and precision agriculture. Full article
Show Figures

Figure 1

15 pages, 2487 KiB  
Article
Selenium-Containing Multi-Resonance Thermally Activated Delayed Fluorescence Host Material for Green and Red Phosphorescent OLEDs
by Hyukmin Kwon, Seokwoo Kang, Sangwook Park, Saeyoung Oh, Sang-Tae Kim, Kiho Lee, Hayoon Lee and Jongwook Park
Materials 2025, 18(9), 2040; https://doi.org/10.3390/ma18092040 - 29 Apr 2025
Viewed by 669
Abstract
We report the molecular design and synthesis of a novel selenium-containing multi-resonance thermally activated delayed fluorescence (MR-TADF) host material, 3,6-di-tert-butyl-9,16-dioxa-15-selena-4b-boraindeno[2,1-a]naphtho[3,2,1-de]anthracene (TDBA-SePh), for green and red phosphorescent organic light-emitting diodes (PhOLEDs). By incorporating selenium into the DOBNA-based MR-TADF backbone, the reverse intersystem crossing (RISC) [...] Read more.
We report the molecular design and synthesis of a novel selenium-containing multi-resonance thermally activated delayed fluorescence (MR-TADF) host material, 3,6-di-tert-butyl-9,16-dioxa-15-selena-4b-boraindeno[2,1-a]naphtho[3,2,1-de]anthracene (TDBA-SePh), for green and red phosphorescent organic light-emitting diodes (PhOLEDs). By incorporating selenium into the DOBNA-based MR-TADF backbone, the reverse intersystem crossing (RISC) process was effectively activated, leading to enhanced utilization of triplet excitons. The corresponding RISC rate was determined to be 3.91 × 104 s−1. When applied to PhOLED devices, TDBA-SePh-based green and red OLEDs exhibited higher external quantum efficiency (EQE) and reduced efficiency roll-off compared to conventional mCP-based host materials. At a luminance of 1000 cd m−2, the green and red devices exhibited roll-off values of 2.5% and 4.3%, respectively. This improvement is attributed to the incorporation of selenium as a heteroatom, which accelerates the RISC process, thereby suppressing triplet-triplet annihilation (TTA). These results suggest that adopting a similar molecular design strategy can not only reduce efficiency roll-off but also enhance device efficiency and operational stability, offering significant potential for future OLED applications. Full article
Show Figures

Figure 1

17 pages, 1687 KiB  
Article
A Comparison of the Physicochemical Properties and Sensory Attributes of Ricotta Cheeses Purchased from Retail Outlets in Poland
by Iwona Chwastowska-Siwiecka, Agnieszka Kaca and Jan Miciński
Foods 2025, 14(8), 1413; https://doi.org/10.3390/foods14081413 - 19 Apr 2025
Viewed by 643
Abstract
The aim of this study was to compare selected physicochemical properties and sensory attributes of ricotta cheeses supplied by different producers and purchased from retail outlets in Poland. The experiment was performed on 40 fresh, unripened ricotta cheeses purchased from hypermarkets in the [...] Read more.
The aim of this study was to compare selected physicochemical properties and sensory attributes of ricotta cheeses supplied by different producers and purchased from retail outlets in Poland. The experiment was performed on 40 fresh, unripened ricotta cheeses purchased from hypermarkets in the city of Olsztyn, Poland. The cheeses were supplied by four producers. To preserve the producers’ anonymity, the cheeses were divided into four experimental groups marked with the letters A, B, C, and D. Each group consisted of 10 cheeses supplied by the same producer. Immediately after purchase, the cheeses were transported to a laboratory for quantitative and qualitative analyses to determine their moisture contents, active and titratable acidity, shear force, color parameters (L*, a*, b*), chroma (C*), hue angles (h°), whiteness indexes (WIs), yellowness indexes (YIs), and sensory quality. The analyses revealed that the cheeses supplied by producers C and D were characterized by the highest moisture contents and the lowest titratable acidity and shear force values. The ricottas supplied by producer A were characterized by the highest values for lightness on the surface, whereas the group B cheeses were characterized by the highest contribution of redness and yellowness, as well as the highest color saturation (chroma). The contributions of redness and yellowness, chroma, and YI values were highest at the cross-sections of the group B cheeses. The cheeses supplied by producer D were characterized by visible spaces between grains, cracks, and a brittle, crumbly consistency, and they received the lowest scores for appearance at the cross-section for structure and consistency. Full article
Show Figures

Figure 1

18 pages, 2288 KiB  
Article
Impact of Underwater Aging on the Volatile and Phenolic Compounds of Campania Wine-Based Liqueurs “Elixir Falernum”
by Andrea Balivo, Giovanni D’Auria, Pasquale Ferranti, Alessia Cepollaro, Salvatore Velotto, Raffaele Sacchi and Alessandro Genovese
Beverages 2025, 11(2), 43; https://doi.org/10.3390/beverages11020043 - 24 Mar 2025
Viewed by 949
Abstract
Underwater aging of alcoholic beverages has gained growing interest in recent years as a novel strategy for product differentiation. This study investigated the effects of 12 months of underwater aging at 13 m depth on the chemical, volatile, and phenolic profiles of wine-based [...] Read more.
Underwater aging of alcoholic beverages has gained growing interest in recent years as a novel strategy for product differentiation. This study investigated the effects of 12 months of underwater aging at 13 m depth on the chemical, volatile, and phenolic profiles of wine-based liqueurs, compared to traditional cellar aging. Individual bottles were analysed using an E-nose, achieving 96% correct classification in the cross-validated confusion matrix. Chemical analysis revealed no significant differences in pH, ethanol content, total and volatile acidity. Although total phenolic content did not differ significantly, underwater-aged liquors exhibited higher levels of anthocyanins, suggesting reduced degradation of phenolic compounds in the anaerobic underwater environment. This was supported by higher levels of free alpha-amino nitrogen and total proteins, suggesting slower oxidation. As a result, underwater-aged liquors showed a lower b* index (yellowness), likely due to the reduced oxidation of red colour compounds. Underwater aging induced some changes in the volatile profile, with a significant increase in certain furanones and pyranones, such as 5-hydroxymethylfurfural, 4-hydroxydihydro-2-(3H)-furanone and 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one, responsible for strawberry, toasted, and caramel notes. This increased production could be attributed to the unique underwater environment, characterised by oscillating vibrations, blue-green light, lower and more constant temperatures and reduced oxygen levels. Full article
(This article belongs to the Section Wine, Spirits and Oenological Products)
Show Figures

Graphical abstract

15 pages, 8753 KiB  
Article
Dielectric Passivation Treatment of InGaN MESA on Si Substrates for Red Micro-LED Application
by Hongyu Qin, Shuhan Zhang, Qian Fan, Xianfeng Ni, Li Tao and Xing Gu
Crystals 2025, 15(3), 267; https://doi.org/10.3390/cryst15030267 - 13 Mar 2025
Viewed by 1056
Abstract
The emergence of GaN-based micro-LEDs has revolutionized display technologies due to their superior brightness, energy efficiency, and thermal stability compared to traditional counterparts. However, the development of red-emitting micro-LEDs on silicon substrates (GaN-on-Si) faces significant challenges, among them including hydrogen-induced deactivation of p-GaN [...] Read more.
The emergence of GaN-based micro-LEDs has revolutionized display technologies due to their superior brightness, energy efficiency, and thermal stability compared to traditional counterparts. However, the development of red-emitting micro-LEDs on silicon substrates (GaN-on-Si) faces significant challenges, among them including hydrogen-induced deactivation of p-GaN caused by hydrogen species generated from SiH4 decomposition during SiO2 passivation layer growth, which degrades device performance. This study systematically investigates the use of high-density metal-oxide dielectric passivation layers deposited by atomic layer deposition (ALD), specifically Al2O3 and HfO2, to mitigate these effects and enhance device reliability. The passivation layers effectively suppress hydrogen diffusion and preserve p-GaN activation, ensuring improved ohmic contact formation and reduced forward voltage, which is measured by the probe station. The properties of the epitaxial layer and the cross-section morphology of the dielectric layer were characterized by photoluminescence (PL) and scanning electron microscopy (SEM), respectively. Experimental results reveal that Al2O3 exhibits superior thermal stability and lower current leakage under high-temperature annealing, while HfO2 achieves higher light-output power (LOP) and efficiency under increased current densities. Electroluminescence (EL) measurements confirm that the passivation strategy maintains the intrinsic optical properties of the epitaxial wafer with minimal impact on Wp and FWHM across varying process conditions. The findings demonstrate the efficacy of metal-oxide dielectric passivation in addressing critical challenges in InGaN red micro-LED on silicon substrate fabrication, contributing to accelerating scalable and efficient next-generation display technologies. Full article
Show Figures

Figure 1

20 pages, 3755 KiB  
Article
Tracing the Source of Red Coral in Xinjiang: Evidence from the Western Han Dynasty Shengjindian Site in Turpan
by Yiheng Xian, Lifei Sun, Hao Ai, Jingwen Guo, Yuchen Tan, Francesca Monteith, Zekun Li, Jian Ma and Chun Yu
Minerals 2025, 15(3), 248; https://doi.org/10.3390/min15030248 - 27 Feb 2025
Viewed by 928
Abstract
This study sheds light on the origin and trade routes of early red coral artifacts found in Xinjiang, primarily dating to the Han and Jin dynasties. The red coral relics examined, excavated from the Shengjindian cemetery of the Western Han Dynasty in Turpan, [...] Read more.
This study sheds light on the origin and trade routes of early red coral artifacts found in Xinjiang, primarily dating to the Han and Jin dynasties. The red coral relics examined, excavated from the Shengjindian cemetery of the Western Han Dynasty in Turpan, offer critical insights into the material’s provenance and its introduction to this pivotal region along the ancient Silk Road. Advanced gemological, mineralogical, and geochemical analyses—utilizing computed tomography (CT), laser Raman spectroscopy, and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)—has revealed distinctive features. These include red coloration, a waxy luster, concentric ring structures in cross-section, and calcareous composition, identifying the coral as Sardinian (Corallium rubrum), likely originating from the western Mediterranean region. The findings carry significant archaeological implications. Red coral first appears in the archaeological record in Xinjiang during the Western Han period, facilitated by the thriving Silk Road trade and the expanding influence of Buddhist culture. This study not only confirms the Mediterranean origin of these artifacts but also highlights their integration into the cultural and economic networks of ancient Xinjiang, underscoring the significance of early long-distance trade and cultural exchange. Full article
Show Figures

Figure 1

15 pages, 9743 KiB  
Article
QTL Identification of Hull Color for Foxtail Millet [Setaria italica (L.) P. Beauv.] Through Four Phenotype Identification Strategies in a RIL Population
by Zhixiu Ma, Shaohua Chai, Yongjiang Wu, Yujie Li, Huibing Han, Hui Song, Jinfeng Gao, Baili Feng and Pu Yang
Seeds 2025, 4(1), 10; https://doi.org/10.3390/seeds4010010 - 19 Feb 2025
Viewed by 723
Abstract
The foxtail millet exhibits a diverse range of hull colors, which are crucial indicators for assessing its nutritional and economic value. However, the molecular regulatory mechanisms that govern the hull color of foxtail millet are largely unknown at present. This gap in knowledge [...] Read more.
The foxtail millet exhibits a diverse range of hull colors, which are crucial indicators for assessing its nutritional and economic value. However, the molecular regulatory mechanisms that govern the hull color of foxtail millet are largely unknown at present. This gap in knowledge significantly impedes efforts to enhance the quality traits of foxtail millet. This study utilized a population of 250 F6 recombinant inbred lines (RILs) generated from a cross between two foxtail millet varieties: Yugu18 (with light yellow seeds) and Hongjiugu19 (with red seeds). Four methods, the visual grouping method (I), the visual colorimetric method (II), the Lab determination method (III), and the RGB determination method (IV), were employed to determine the hull color of each line across four environments and QTL identification were conducted subsequently. It showed that there were 10, 12, 69 and 56 QTLs were detected for hull color through four methods, and these QTLs were integrated into 4, 6, 27 and 25 unique QTLs, respectively. There were three, four, four and four major QTLs. Of which, three major QTLs (qHC1.1, qHC1.2 and qHC9.3) on chromosomes 1 and 9 could be detected by all 4 methods. qHC9.1 was detected by all four methods except for method I. There were also one, one, seven and four minor identity QTLs identified across the 4 methods. Four minor QTLs (qHC3.1, qHC3.3, qHC4.1 and qHC5.1) can be stably detected only in method III, and two minor QTLs (qHC8.2 and qHC9.2) can be stably detected only in method IV. Generally, method I is fast, efficient and cost-effective, which is suitable for the rapid detection of hull color. Method II is also low-cost; however, it can detect more QTL for hull color, making it suitable for identifying major QTL loci in large populations. Methods III and IV can map more minor QTL and are more accurate in hull color characterization. This study identified four important hull color QTL for foxtail millet, which largely align with those reported in previous research. These findings establish a foundation for characterizing hull color indices and further advancing QTL mapping for grain color. Full article
Show Figures

Figure 1

32 pages, 16584 KiB  
Article
Sustainable Strategies for Improving Humanitarian Construction Through BIM and Climate Analysis
by Mwikilwa Mukamba Gladdys, Bigirimana Gentil and Ping Cao
Sustainability 2025, 17(4), 1556; https://doi.org/10.3390/su17041556 - 13 Feb 2025
Viewed by 1103
Abstract
The growing need for effective and sustainable solutions in humanitarian construction has prompted scholars and practitioners to explore technical approaches that address the challenges of natural disasters, health emergencies, armed conflicts and migratory flows. These solutions often encompass temporary shelters, durable shelters and [...] Read more.
The growing need for effective and sustainable solutions in humanitarian construction has prompted scholars and practitioners to explore technical approaches that address the challenges of natural disasters, health emergencies, armed conflicts and migratory flows. These solutions often encompass temporary shelters, durable shelters and multifunctional buildings designed to balance rapid deployment, cultural sensitivity and environmental sustainability. However, the assessment of sustainability in humanitarian construction remains insufficiently defined due to the complexities of crises, the variability of local materials and the impact of local climatic conditions. This study aims to bridge this gap by integrating Building Information Modeling (BIM) and simulation tools such as COMSOL Multiphysics 6.0 to study sustainable strategies for humanitarian housing. Using case studies aligned with IFRC, UNHCR and CRL (Red Cross of Luxembourg) family shelter standards, the research assessed a Climate and Local Skill-Centered Design (CLCD) by examining the performance of key design elements, including wall material emissivity and reflectance, natural lighting, and energy efficiency within the context of indoor thermal comfort. Simulation results revealed that wall finishing material reflectance significantly influences average daylight factors (D), with variations of 2% to 5% linked to lower reflectance values and changes in the window-to-floor ratio (WFR). Conversely, thermal comfort metrics indicated minimal variations in heat discomfort hours, maintaining indoor temperatures between 19 °C and 25 °C, consistent with ASHRAE Standard 55 thermal comfort criteria. This paper underscores the importance of integrating advanced IT tools and green local techniques and materials to optimize humanitarian housing for health, comfort and environmental performance, offering actionable insights for future humanitarian sustainable designs. Full article
Show Figures

Figure 1

17 pages, 6472 KiB  
Article
A Method for Estimating Fluorescence Emission Spectra from the Image Data of Plant Grain and Leaves Without a Spectrometer
by Shoji Tominaga, Shogo Nishi, Ryo Ohtera and Hideaki Sakai
J. Imaging 2025, 11(2), 30; https://doi.org/10.3390/jimaging11020030 - 21 Jan 2025
Viewed by 1842
Abstract
This study proposes a method for estimating the spectral images of fluorescence spectral distributions emitted from plant grains and leaves without using a spectrometer. We construct two types of multiband imaging systems with six channels, using ordinary off-the-shelf cameras and a UV light. [...] Read more.
This study proposes a method for estimating the spectral images of fluorescence spectral distributions emitted from plant grains and leaves without using a spectrometer. We construct two types of multiband imaging systems with six channels, using ordinary off-the-shelf cameras and a UV light. A mobile phone camera is used to detect the fluorescence emission in the blue wavelength region of rice grains. For plant leaves, a small monochrome camera is used with additional optical filters to detect chlorophyll fluorescence in the red-to-far-red wavelength region. A ridge regression approach is used to obtain a reliable estimate of the spectral distribution of the fluorescence emission at each pixel point from the acquired image data. The spectral distributions can be estimated by optimally selecting the ridge parameter without statistically analyzing the fluorescence spectra. An algorithm for optimal parameter selection is developed using a cross-validation technique. In experiments using real rice grains and green leaves, the estimated fluorescence emission spectral distributions by the proposed method are compared to the direct measurements obtained with a spectroradiometer and the estimates obtained using the minimum norm estimation method. The estimated images of fluorescence emissions are presented for rice grains and green leaves. The reliability of the proposed estimation method is demonstrated. Full article
(This article belongs to the Special Issue Color in Image Processing and Computer Vision)
Show Figures

Figure 1

13 pages, 918 KiB  
Article
Color, Structure, and Thermal Stability of Alginate Films with Raspberry and/or Black Currant Seed Oils
by Jolanta Kowalonek, Bogna Łukomska and Aleksandra Szydłowska-Czerniak
Molecules 2025, 30(2), 245; https://doi.org/10.3390/molecules30020245 - 9 Jan 2025
Cited by 1 | Viewed by 1109
Abstract
In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and [...] Read more.
In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and black currant seed oil (BCSO) indicated differences in bioactive compounds, such as tocopherols, phenolic compounds, carotenoids, chlorophyll, and oxidative status (amounts of dienes, trienes, and tetraenes) of active components added to alginate films. The study encompassed the color, structure, and thermal stability analysis of sodium alginate films incorporated with RSO and BCSO and their mixtures. The color of alginate films before and after the addition of oils from both fruit seeds was evaluated by measuring color coordinates in the CIELab color space: L* (lightness), a* (red-green), and b* (yellow-blue). The lightness values ranged between 94.21 and 95.08, and the redness values varied from −2.20 to −2.65, slightly decreasing for the films enriched with oils. In contrast, yellowness values ranged between 2.93 and 5.80 for the obtained active materials, significantly increasing compared to the control alginate film (L* = 95.48, a* = −1.92, and b* = −0.14). Changes in the structure and morphology of the alginate films after incorporating bioactive-rich oils were observed using scanning electron microscopy (SEM). Films with RSO and oil mixtures had more developed surfaces than films with BCSO. Moreover, the cross-sections of the films with RSO showed holes evenly distributed inside the films, indicating traces of volatile compounds. Thermal decomposition of the alginate films loaded with oils showed five separate stages (to 125 °C, 125–300 °C, 310–410 °C, 410–510 °C, and 750–1000 °C, respectively) related to the oil and surfactant decomposition. The shape of the thermogravimetric curves did not depend on the oil type. The added oils reduced the efficiency of alginate decomposition in the first stage. The obtained results showed that new functional and thermally stable food packaging films based on sodium alginate with a visual appearance acceptable to consumers could be produced by utilizing oils from fruit seed residues. Full article
Show Figures

Figure 1

23 pages, 1876 KiB  
Article
An Examination of Pedestrian Crossing Behaviors at Signalized Intersections with Bus Priority Routes
by Victoria Gitelman and Assaf Sharon
Sustainability 2025, 17(2), 457; https://doi.org/10.3390/su17020457 - 9 Jan 2025
Viewed by 1330
Abstract
Public transport is an integral part of sustainable urban development when its use is promoted by setting bus priority routes (BPRs). BPRs provide clear mobility benefits, but they raise pedestrian safety concerns. In this study, observations were conducted at signalized intersections with two [...] Read more.
Public transport is an integral part of sustainable urban development when its use is promoted by setting bus priority routes (BPRs). BPRs provide clear mobility benefits, but they raise pedestrian safety concerns. In this study, observations were conducted at signalized intersections with two types of BPRs, center-lane and curbside, aiming to characterize pedestrian crossing behaviors, with a particular focus on red-light crossings. We found that at intersections with center-lane BPRs, 30% of pedestrians crossed at least one crosswalk on red, while at another type, 11% crossed on red. Multivariate analyses showed that the risk of crossing on red was substantially higher at intersections with center-lane vs. curbside BPRs; it was also higher among pedestrians crossing to/from the bus stop, males, and young people but lower under the presence of other waiting pedestrians. Furthermore, among pedestrians crossing on red at center-lane BPRs, over 10% did not check the traffic before crossing and another 10% checked the traffic in the wrong direction, thus further increasing the risk. At center-lane BPRs, infrastructure solutions are needed to reduce pedestrian intention to cross on red. Additionally, education and awareness programs for pedestrians should be promoted to emphasize the heightened risk of red-light crossing at intersections with BPRs. Full article
Show Figures

Figure 1

23 pages, 3834 KiB  
Article
Investigation of the Ultrasonic Treatment-Assisted Soaking Process of Different Red Kidney Beans and Compositional Analysis of the Soaking Water by NIR Spectroscopy
by Matyas Lukacs, Tamás Somogyi, Barasa Mercy Mukite, Flóra Vitális, Zoltan Kovacs, Ágnes Rédey, Tamás Stefaniga, Tamás Zsom, Gabriella Kiskó and Viktória Zsom-Muha
Sensors 2025, 25(2), 313; https://doi.org/10.3390/s25020313 - 7 Jan 2025
Viewed by 1153
Abstract
The processing of beans begins with a particularly time-consuming procedure, the hydration of the seeds. Ultrasonic treatment (US) represents a potential environmentally friendly method for process acceleration, while near-infrared spectroscopy (NIR) is a proposedly suitable non-invasive monitoring tool to assess compositional changes. Our [...] Read more.
The processing of beans begins with a particularly time-consuming procedure, the hydration of the seeds. Ultrasonic treatment (US) represents a potential environmentally friendly method for process acceleration, while near-infrared spectroscopy (NIR) is a proposedly suitable non-invasive monitoring tool to assess compositional changes. Our aim was to examine the hydration process of red kidney beans of varying sizes and origins. Despite the varying surface areas, the beans’ soaking times of 13–15, 15–17, and 17–19 mm did not reveal significant differences between any of the groups (control; low power: 180 W, 20 kHz; high power: 300 W, 40 kHz). US treatment was observed to result in the release of greater quantities of water-soluble components from the beans. This was evidenced by the darkening of the soaking water’s color, the increase in the a* color parameter, and the rise in the dry matter value. NIRs, in combination with chemometric tools, are an effective tool for predicting the characteristics of bean-soaking water. The PLSR- and SVR-based modelling for dry matter content and light color parameters demonstrated robust model fits with cross and test set-validated R2 values (>0.95), suggesting that these techniques can effectively capture the chemical information of the samples. Full article
(This article belongs to the Collection Next Generation MEMS: Design, Development, and Application)
Show Figures

Figure 1

21 pages, 7150 KiB  
Article
Development of Lettuce Growth Monitoring Model Based on Three-Dimensional Reconstruction Technology
by Jun Ju, Minggui Zhang, Yingjun Zhang, Qi Chen, Yiting Gao, Yangyue Yu, Zhiqiang Wu, Youzhi Hu, Xiaojuan Liu, Jiali Song and Houcheng Liu
Agronomy 2025, 15(1), 29; https://doi.org/10.3390/agronomy15010029 - 26 Dec 2024
Cited by 1 | Viewed by 1354
Abstract
Crop monitoring can promptly reflect the growth status of crops. However, conventional methods of growth monitoring, although simple and direct, have limitations such as destructive sampling, reliance on human experience, and slow detection speed. This study estimated the fresh weight of lettuce ( [...] Read more.
Crop monitoring can promptly reflect the growth status of crops. However, conventional methods of growth monitoring, although simple and direct, have limitations such as destructive sampling, reliance on human experience, and slow detection speed. This study estimated the fresh weight of lettuce (Lactuca sativa L.) in a plant factory with artificial light based on three-dimensional (3D) reconstruction technology. Data from different growth stages of lettuce were collected as the training dataset, while data from different plant forms of lettuce were used as the validation dataset. The partial least squares regression (PLSR) method was utilized for modeling, and K-fold cross-validation was performed to evaluate the model. The testing dataset of this model achieved a coefficient of determination (R2) of 0.9693, with root mean square error (RMSE) and mean absolute error (MAE) values of 3.3599 and 2.5232, respectively. Based on the performance of the validation set, an adaptation was made to develop a fresh weight estimation model for lettuce under far-red light conditions. To simplify the estimation model, reduce estimation costs, enhance estimation efficiency, and improve the lettuce growth monitoring method in plant factories, the plant height and canopy width data of lettuce were extracted to estimate the fresh weight of lettuce in addition. The testing dataset of the new model achieved an R2 value of 0.8970, with RMSE and MAE values of 3.1206 and 2.4576. Full article
Show Figures

Figure 1

18 pages, 7644 KiB  
Article
The Effect of Ice-Binding Protein from Leucosporidium sp. AY30 (LeIBP) on the Physicochemical Quality and Microstructure of Largemouth Bass During Freeze–Thaw Cycles
by Junde Ren, Maninder Meenu, Lihui Hu, Tao Song, Ying Liu, Hosahalli S. Ramaswamy and Yong Yu
Foods 2024, 13(24), 4038; https://doi.org/10.3390/foods13244038 - 13 Dec 2024
Viewed by 1227
Abstract
This study investigated the effect of various concentrations (0.01%, 0.05%, 0.1%, 0.2%, 0.5%) of ice-binding protein from Leucosporidium sp. AY30 (LeIBP) on the freezing efficiency, microstructure, and physicochemical quality of largemouth bass during freeze–thaw cycles and demonstrated the optimal addition conditions of LeIBP. [...] Read more.
This study investigated the effect of various concentrations (0.01%, 0.05%, 0.1%, 0.2%, 0.5%) of ice-binding protein from Leucosporidium sp. AY30 (LeIBP) on the freezing efficiency, microstructure, and physicochemical quality of largemouth bass during freeze–thaw cycles and demonstrated the optimal addition conditions of LeIBP. This study found that LeIBP could effectively lower the freezing point of fish without altering the phase transition time significantly. LeIBP can significantly reduce the cross-sectional area and diameter of ice crystals and inhibit recrystallization. LeIBP was found to maintain the stability of protein secondary structure and prevented protein denaturation by increasing the proportion of α-helix. The inclusion of LeIBP retained the water-holding capacity of fish effectively. Furthermore, LeIBP treatment could partially prevent the degradation of fish meat texture. The lightness and whiteness values of fish treated with LeIBP were increased, while the redness and yellowness values were decreased. At the end of freeze–thaw cycle, the LeIBP-treated group presented pH values similar to fresh fish. Overall, 0.05% LeIBP was observed to be the most effective concentration to inhibit ice crystal growth, thereby maintaining the quality of the fish. Full article
Show Figures

Graphical abstract

Back to TopTop