Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = recycled fashion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1141 KB  
Review
The Protonic Brain: Nanoscale pH Dynamics, Proton Wires, and Acid–Base Information Coding in Neural Tissue
by Valentin Titus Grigorean, Catalina-Ioana Tataru, Cosmin Pantu, Felix-Mircea Brehar, Octavian Munteanu and George Pariza
Int. J. Mol. Sci. 2026, 27(2), 560; https://doi.org/10.3390/ijms27020560 - 6 Jan 2026
Viewed by 303
Abstract
Emerging research indicates that neuronal activity is maintained by an architectural system of protons in a multi-scale fashion. Proton architecture is formed when organelles (such as mitochondria, endoplasmic reticulum, lysosomes, synaptic vesicles, etc.) are coupled together to produce dynamic energy domains. Techniques have [...] Read more.
Emerging research indicates that neuronal activity is maintained by an architectural system of protons in a multi-scale fashion. Proton architecture is formed when organelles (such as mitochondria, endoplasmic reticulum, lysosomes, synaptic vesicles, etc.) are coupled together to produce dynamic energy domains. Techniques have been developed to visualize protons in neurons; recent advances include near-atomic structural imaging of organelle interfaces using cryo-tomography and nanoscale resolution imaging of organelle interfaces and proton tracking using ultra-fast spectroscopy. Results of these studies indicate that protons in neurons do not diffuse randomly throughout the neuron but instead exist in organized geometric configurations. The cristae of mitochondrial cells create oscillating proton micro-domains that are influenced by the curvature of the cristae, hydrogen bonding between molecules, and localized changes in dielectric properties that result in time-patterned proton signals that can be used to determine the metabolic load of the cell and the redox state of its mitochondria. These proton patterns also communicate to the rest of the cell via hydrated aligned proton-conductive pathways at the mitochon-dria-endoplasmic reticulum junctions, through acidic lipid regions, and through nano-tethered contact sites between mitochondria and other organelles, which are typically spaced approximately 10–25 nm apart. Other proton architectures exist in lysosomes, endosomes, and synaptic vesicles. In each of these organelles, the V-ATPase generates steep concentration gradients across their membranes, controlling the rate of cargo removal from the lumen of the organelle, recycling receptors from the surface of the membrane, and loading neurotransmitters into the vesicles. Recent super-resolution pH mapping has indicated that populations of synaptic vesicles contain significant heterogeneity in the amount of protons they contain, thereby influencing the amount of neurotransmitter released per vesicle, the probability of vesicle release, and the degree of post-synaptic receptor protonation. Additionally, proton gradients in each organelle interact with the cytoskeleton: the protonation status of actin and microtubules influences filament stiffness, protein–protein interactions, and organelle movement, resulting in the formation of localized spatial structures that may possess some type of computational significance. At multiple scales, it appears that neurons integrate the proton micro-domains with mechanical tension fields, dielectric nanodomains, and phase-state transitions to form distributed computing elements whose behavior is determined by the integration of energy flow, organelle geometry, and the organization of soft materials. Alterations to the proton landscape in neurons (e.g., due to alterations in cristae structure, drift in luminal pH, disruption in the hydration-structure of the cell, or imbalance in the protonation of cytoskeletal components) could disrupt the intracellular signaling network well before the onset of measurable electrical or biochemical pathologies. This article will summarize evidence indicating that proton–organelle interaction provides a previously unknown source of energetic substrate for neural computation. Using an integrated approach combining nanoscale proton energy, organelle interface geometry, cytoskeletal mechanics, and AI-based multiscale models, this article outlines current principles and unresolved questions related to the subject area as well as possible new approaches to early detection and precise intervention of pathological conditions related to altered intracellular energy flow. Full article
(This article belongs to the Special Issue Molecular Synapse: Diversity, Function and Signaling)
Show Figures

Figure 1

27 pages, 1180 KB  
Perspective
Perspectives on Energy, Environmental and Economic Benefits from Collaborative Interactions of Circular Start-Ups and Large Companies—A Case Study in the Textile District of Prato, Tuscany Region (Italy)
by Patrizia Ghisellini, Ivana Quinto, Renato Passaro and Sergio Ulgiati
Energies 2026, 19(1), 184; https://doi.org/10.3390/en19010184 - 29 Dec 2025
Viewed by 395
Abstract
This study investigates the transition to the circular economy (CE) model and its increasing application in industrial companies. The research context is the textile district of Prato, Tuscany region, that relies on a long historical tradition of CE application. Some industrial companies have [...] Read more.
This study investigates the transition to the circular economy (CE) model and its increasing application in industrial companies. The research context is the textile district of Prato, Tuscany region, that relies on a long historical tradition of CE application. Some industrial companies have been contacted, and their Administrators and CEOs have been interviewed, focusing on their understanding of the role of circular start-ups (CSUs) in the collaboration and relationships with large companies. The results show that this collaboration started for commercial purposes, since the companies interviewed in this study are producers of recycled yarns used by their customers, including CSUs, for the manufacturing of their garments. Over time, the collaboration further advanced, adding new types of interactions, characterized by environmentally and socially positive outcomes. This study shows that the collaboration between the small CSU Rifò and two of the largest companies of the Prato district as well as the outcomes in terms of environmental, energy and social benefits well extend over the micro, meso and macro levels of the CE model and reveal that the circular and sustainability performances of the selected CSU and its large partners are aligned with the goals of the district and the city of Prato towards consolidating themselves as a reference center of a CE and a circular city, respectively. This is an important result compared to the previous literature that encourages further future research to provide more generalizable results. Further, the case study of the Rifò regenerative circular business model shows the current “limits” of recycling and the need to thoroughly consider the CE model by implementing all CE principles and promoting a timeless and responsible fashion, conveying the emotional, environmental and social values behind garments. Full article
Show Figures

Figure 1

16 pages, 1791 KB  
Article
A Method for Mitigating Degradation Effects on Polyamide Textile Yarn During Mechanical Recycling
by Petra Drohsler, Martina Pummerova, Dominika Hanusova, Daniel Sanetrnik, Dagmar Foldynova, Jan Marek, Lenka Martinkova and Vladimir Sedlarik
Polymers 2025, 17(24), 3243; https://doi.org/10.3390/polym17243243 - 5 Dec 2025
Viewed by 470
Abstract
The phenomenon of fast fashion has resulted in high yarn consumption and growing textile waste from both manufacturing and consumers. Rising environmental awareness and evolving legislation, including landfill restrictions, have prompted the search for sustainable recycling methods to manage textile end-of-life. This study [...] Read more.
The phenomenon of fast fashion has resulted in high yarn consumption and growing textile waste from both manufacturing and consumers. Rising environmental awareness and evolving legislation, including landfill restrictions, have prompted the search for sustainable recycling methods to manage textile end-of-life. This study investigates the mechanical recycling of polyamide 6.6 (PA66) yarn using a chain extender (Joncryl) and antioxidant (Irganox). Thermogravimetric analysis (TGA) confirmed that thermal stability in recycled PA66 was maintained compared to the original yarn, and the presence of Joncryl further enhanced this stability. Oxidative-onset temperature (OOT), measured by differential scanning calorimetry (DSC), supported these improvements. Gas chromatography–mass spectrometry (GC/MS) identified key degradation products, which were correlated with changes in the polymer matrix. Mechanical testing showed a 31% decrease in Young’s modulus after initial recycling, which was reversed with further processing. This behavior suggests the formation of shortened semi-crystalline chains and new linkages promoted by Joncryl. Viscosity and limiting viscosity number increased by up to 50%, depending on both additive concentrations. Overall, Joncryl and Irganox enhanced viscosity, mechanical strength, and notably thermal stability, confirming their suitability for recyclable textile-grade PA66 yarns. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

21 pages, 3521 KB  
Article
Valorisation of Recycled Cotton as Reinforcement in Recycled Polypropylene Composites
by Mariana Ichim, Emil Ioan Muresan, Gabriela Lisa, Florin Ciolacu and Adrian Cătălin Puițel
Textiles 2025, 5(4), 57; https://doi.org/10.3390/textiles5040057 - 11 Nov 2025
Viewed by 944
Abstract
The continuous rise in textile waste, driven by global population growth and the proliferation of fast fashion, has raised concerns about its efficient recycling and sustainable management. This study aims to assess the feasibility of recycling textile waste by incorporating recycled cotton fibres [...] Read more.
The continuous rise in textile waste, driven by global population growth and the proliferation of fast fashion, has raised concerns about its efficient recycling and sustainable management. This study aims to assess the feasibility of recycling textile waste by incorporating recycled cotton fibres as reinforcement in polypropylene-based composites. Specifically, it examines the mechanical, thermal, and chemical properties of composites composed of 50% recycled polypropylene and 50% reinforcing fibres (either virgin or recycled cotton), with and without the addition of 5% maleic anhydride-grafted polypropylene as a compatibilizer to enhance fibre-matrix adhesion. Although the use of recycled cotton as reinforcement reduced the mechanical properties of the composite material, the addition of 5% compatibilizer improved these properties to levels comparable to those of composite reinforced with virgin cotton. Full article
Show Figures

Figure 1

15 pages, 5245 KB  
Article
Development and Evaluation of Yarns Made from Mechanically Recycled Textiles
by Kendall Ludwig, Sophia Gupman, Michelle Yatvitskiy, Huantian Cao and Kelly Cobb
Textiles 2025, 5(4), 56; https://doi.org/10.3390/textiles5040056 - 11 Nov 2025
Cited by 1 | Viewed by 836
Abstract
Mechanical textile recycling presents a sustainable alternative to linear “take–make–waste” models in the fashion industry. This study intended to develop yarns using textile-to-fiber mechanically recycled fibers. ReSpool mechanically recycled wool, cotton, polyester, silk, and rayon fibers from pre-consumer and post-consumer textiles were acquired [...] Read more.
Mechanical textile recycling presents a sustainable alternative to linear “take–make–waste” models in the fashion industry. This study intended to develop yarns using textile-to-fiber mechanically recycled fibers. ReSpool mechanically recycled wool, cotton, polyester, silk, and rayon fibers from pre-consumer and post-consumer textiles were acquired and blended with new fibers at varying ratios (100% ReSpool fibers, 85% ReSpool fibers, and 65% ReSpool fibers) to make batts, which were spun into yarns. The yarns’ size (Tex), strength (breaking force and tenacity), elongation, and moisture regain were evaluated. ReSpool recycled fibers from both pre-consumer and post-consumer textiles can be used to produce yarns that have appropriate strength for weaving and knitting. It was possible to produce yarns from 100% ReSpool recycled wool, polyester, and silk fibers, but ReSpool recycled cotton and rayon fibers must be blended with new fibers to produce yarns. There was no significant difference among the percentage of ReSpool recycled polyester and cotton fibers in the yarns on the strength and elongation of the yarn. It is recommended to use the higher percentage of ReSpool recycled fibers in yarn development to maximize recycled material utilization. Full article
Show Figures

Figure 1

22 pages, 3033 KB  
Article
Unveiling Silver Catalysis to Access 5-Substituted Tetrazole Through [3+2]Cycloaddition Reaction, Utilizing Novel Silver Supramolecular Coordination Polymer-Based Catalyst: A New Green Horizon
by Mohamed M. El-bendary, Abdullah Akhdhar, Bambar Davaasuren, Abdullah S. Al-Bogami and Tamer S. Saleh
Catalysts 2025, 15(10), 969; https://doi.org/10.3390/catal15100969 - 10 Oct 2025
Viewed by 745
Abstract
A novel Ag(I) coordination polymer, [Ag2(bipy)(btca)]n, (SCP 1) was synthesized using 4,4′-bipyridyl (bipy) and 1,2,4,5-benzene-tetracarboxylic acid (H4BTC). Characterization by FT-IR, 1H/13C NMR, and single-crystal X-ray diffraction confirmed its 3D network structure. The [...] Read more.
A novel Ag(I) coordination polymer, [Ag2(bipy)(btca)]n, (SCP 1) was synthesized using 4,4′-bipyridyl (bipy) and 1,2,4,5-benzene-tetracarboxylic acid (H4BTC). Characterization by FT-IR, 1H/13C NMR, and single-crystal X-ray diffraction confirmed its 3D network structure. The structure of SCP 1 consists of two chains arranged in …ABAB… fashion. Chain A is one-dimensional, containing [Ag(4,4′-bipy)]n chain, while chain B is free, containing uncoordinated 1,2,4,5-benzene tetracarboxylate and water molecules. The stacking and argentophilic interactions extend the chain A of [Ag(4,4′-bipy)]n into a two-dimensional layer. In contrast, chain B of uncoordinated 1,2,4,5-benzene tetracarboxylate and water molecules form a 1-D chain through extensive hydrogen bonds between water molecules and BTC ions and between water molecules themselves. Chains A and B are connected through extensive hydrogen bonds, generating a three-dimensional network structure. This Silver I supramolecular coordination polymer (SCP 1) demonstrated high catalytic activity as a recyclable heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles via [3+2] cycloaddition of NaN3 and terminal nitriles under solvent-free conditions in a Q-tube pressure reactor (yields: 94–99%). A mechanistic proposal involving cooperative Lewis acidic Ag(I) sites and Brønsted acidic -COOH groups facilitates the cycloaddition and protonation steps. SCP 1 catalyst exhibits reusability up to 4 cycles without significant loss of activity. The structural stability of the SCP 1 catalyst was assessed based on PXRD and FTIR analyses of the catalyst after usage, confirming its integrity during the recycling process. Full article
Show Figures

Figure 1

19 pages, 1201 KB  
Article
Sustainable Fashion in Slovenia: Circular Economy Strategies, Design Processes, and Regional Innovation
by Tanja Devetak and Alenka Pavko Čuden
Sustainability 2025, 17(19), 8890; https://doi.org/10.3390/su17198890 - 6 Oct 2025
Cited by 1 | Viewed by 1381
Abstract
This study investigates sustainability-oriented design and production practices in Slovenia, focusing on brand-led approaches grounded in local innovation, cultural heritage and community engagement. Through mapping of Slovenian fashion enterprises, the research identifies and analyzes core sustainability and circularity strategies including zero- and low-waste [...] Read more.
This study investigates sustainability-oriented design and production practices in Slovenia, focusing on brand-led approaches grounded in local innovation, cultural heritage and community engagement. Through mapping of Slovenian fashion enterprises, the research identifies and analyzes core sustainability and circularity strategies including zero- and low-waste design, recycling, upcycling and the development of adaptable, long-lasting garments. Further attention is given to participatory design methods involving consumers, the strategic social media use for community building and service-based circular economy models such as lifetime garment repair. Technological and production innovations, localized supply chains and small-scale production models are assessed for their role in reducing environmental impact and advancing sustainable supply chain management. The study also analyzes initiatives to shorten the fashion loop, including dematerialization and production minimization, as pathways to reduce resource consumption. Methodologically, the study combines empirical fieldwork, participant observation and literature review to deliver a comprehensive analysis of Slovenia’s sustainable fashion sector. The findings contribute to the global discourse on regional and place-based sustainability in fashion demonstrating how design-driven, small- and medium-sized enterprises can integrate circular economy principles, cultural continuity and collaborative innovation to foster environmentally responsible and socially embedded fashion. Full article
(This article belongs to the Special Issue Sustainable Product Design, Manufacturing and Management)
Show Figures

Figure 1

20 pages, 1573 KB  
Review
A Brief Review of Mechanical Recycling of Textile Waste
by Md Mayedul Islam, Rong Yin and Andre West
Textiles 2025, 5(4), 41; https://doi.org/10.3390/textiles5040041 - 27 Sep 2025
Cited by 1 | Viewed by 6179
Abstract
The fast fashion industry has significantly increased global textile demand, driving a surge in fiber production. However, only a minimal portion of this fiber comes from recycled sources. In the United States alone, a vast amount of textile waste is generated annually, with [...] Read more.
The fast fashion industry has significantly increased global textile demand, driving a surge in fiber production. However, only a minimal portion of this fiber comes from recycled sources. In the United States alone, a vast amount of textile waste is generated annually, with over half ending up in landfills, contributing to environmental degradation and global warming. These developments underscore the urgent need for scalable and efficient textile recycling solutions to address both economic and ecological challenges in the fashion industry. Among recycling methods, mechanical recycling stands out for its low cost and simplicity, making it suitable for processing various types of textile waste. This article reviews current knowledge, identifies key research gaps, and provides direction for future studies in mechanical textile recycling. Despite progress, significant challenges remain in improving the quality and efficiency of recycled fiber. This study shows the importance of advancing pretreatment methods and sorting technologies, and highlights understanding regarding shredding, opening processes, and fabric structural properties. Full article
(This article belongs to the Collection Feature Reviews for Advanced Textiles)
Show Figures

Figure 1

17 pages, 897 KB  
Article
Towards a Circular Fashion Future: A Textile Revalorization Model Combining Public and Expert Insights from Chile
by Cristian D. Palma and Priscilla Cabello-Avilez
Sustainability 2025, 17(19), 8670; https://doi.org/10.3390/su17198670 - 26 Sep 2025
Viewed by 1845
Abstract
The global textile industry has a significant environmental impact, driven by fast fashion and rising consumption, which leads to large amounts of waste. In Chile, this problem is especially visible, with thousands of tons of discarded clothing accumulating in open areas and landfills. [...] Read more.
The global textile industry has a significant environmental impact, driven by fast fashion and rising consumption, which leads to large amounts of waste. In Chile, this problem is especially visible, with thousands of tons of discarded clothing accumulating in open areas and landfills. This study explores how to design a practical textile revalorization system grounded in local reality. We used a qualitative mixed-methods approach, combining semi-structured interviews with six experts in textile circularity and an online survey completed by 328 people. Thematic analysis revealed low public awareness of textile recycling, limited consumer participation, and major structural barriers, including scarce infrastructure and unclear regulations. Experts emphasized the importance of coordinated action among government, industry, and grassroots recyclers, while survey respondents highlighted the need for education and easier recycling options. Based on these insights, we propose an integrated framework that combines education campaigns, better recycling systems, and formal recognition of informal recyclers’ work. While centered on Chile, the study offers ideas that could support textile circularity efforts in other countries facing similar challenges. By merging expert knowledge with everyday public perspectives, the approach helps design more realistic and socially grounded solutions for textile waste management. As with many exploratory frameworks, external validation remains a necessary step for future research to strengthen its robustness and applicability. Full article
Show Figures

Figure 1

17 pages, 877 KB  
Article
Assessing the Sustainable Circular Fashion Supply Chain as a Model for Achieving Economic Growth in the Global Market
by Andrew P. Burnstine and Raouf Ghattas
Sustainability 2025, 17(19), 8558; https://doi.org/10.3390/su17198558 - 24 Sep 2025
Viewed by 3320
Abstract
The fashion industry faces a critical sustainability crisis, contributing up to 10% of global carbon emissions and generating 92 million tons of textile waste annually. The study highlights the complex interplay of material flows, business models, power structures, and cultural mindsets, presenting a [...] Read more.
The fashion industry faces a critical sustainability crisis, contributing up to 10% of global carbon emissions and generating 92 million tons of textile waste annually. The study highlights the complex interplay of material flows, business models, power structures, and cultural mindsets, presenting a multi-scaled framework for advancing cleaner production and circularity in one of the world’s most resource-intensive sectors. This study proposes a transformative model for circular bioeconomy in fashion, integrating systems-change theory, degrowth economics, and emotional durability. Through case studies, including Patagonia, Eileen Fisher, and EU policy frameworks, the paper demonstrates how circular strategies can reduce waste, extend product lifecycles, and promote ethical labor practices. Notably, brands implementing take-back programs and recycled materials have diverted over 1.5 million garments from landfills and achieved up to 70% recycled content. The study critically addresses challenges such as technological solutionism, systemic greenwashing, and waste colonialism, concluding that incremental changes are insufficient. A paradigm shift in business models, consumer culture, and policy is essential for a regenerative and just fashion future. Full article
(This article belongs to the Special Issue Advancing Towards Smart and Sustainable Supply Chain Management)
Show Figures

Figure 1

33 pages, 877 KB  
Article
Sustainability Index in Apparel: A Multicriteria Model Covering Environmental Footprint, Social Impacts, and Durability
by Anabela Gonçalves, Bárbara R. Leite and Carla Silva
Sustainability 2025, 17(17), 8004; https://doi.org/10.3390/su17178004 - 5 Sep 2025
Cited by 1 | Viewed by 2015
Abstract
Consumers are increasingly willing to choose more sustainable products, driven by affordability and sustainability considerations. However, they often face difficulties in understanding the multitude of product certifications and identifying “greenwashing” marketing claims. This highlights the need for a clear and harmonized sustainability scoring [...] Read more.
Consumers are increasingly willing to choose more sustainable products, driven by affordability and sustainability considerations. However, they often face difficulties in understanding the multitude of product certifications and identifying “greenwashing” marketing claims. This highlights the need for a clear and harmonized sustainability scoring system that allows consumers to benchmark products. Sustainability encompasses three key pillars: environmental, social, and economic. Accurately scoring a product’s sustainability requires addressing a wide range of criteria within these pillars, introducing significant complexity. This study proposes a multicriteria methodology for scoring the sustainability of apparel products into an A to E label. The approach combines a life cycle assessment covering environmental impacts from “farm-to-gate”, with a social evaluation based on country-level social key performance indicators (KPIs) and factory-specific data aligned with the International Labour Organization (ILO). Additionally, the sustainability score incorporates the impact of product durability, as longer-lasting products can reduce environmental footprint and costs for consumers. The methodology is defined and validated through a case study of a white T-shirt produced with 50% recycled cotton and 50% organic cotton. The results demonstrate the comprehensive assessment of the T-shirt’s environmental and social impacts, providing a detailed sustainability score, highlighting the role of recyclability. This comprehensive sustainability scoring system aims to provide consumers with a clear, harmonized, and reliable assessment of product sustainability, empowering everyone to make informed purchasing decisions aligned with their values. It will also enable brands and retailers to calculate the sustainability score of their products, including in the scope of digital product passport, provided they can ensure traceability and transparency along the supply chain. Full article
(This article belongs to the Special Issue Smart Technologies Toward Sustainable Eco-Friendly Industry)
Show Figures

Figure 1

11 pages, 1209 KB  
Communication
Upcycling Leather Waste Through Zero-Waste Hydrolysis for Versatile 3D Printable Composites
by Giovanni Venturelli, Luca Guida and Marinella Levi
Polymers 2025, 17(17), 2366; https://doi.org/10.3390/polym17172366 - 30 Aug 2025
Viewed by 1678
Abstract
The leather industry produces a substantial amount of solid waste, which is frequently disposed of via incineration or landfilling. While hydrolysis offers a valuable and sustainable method to chemically recycle leather waste, both acidic and alkaline processes present challenges due to the salts [...] Read more.
The leather industry produces a substantial amount of solid waste, which is frequently disposed of via incineration or landfilling. While hydrolysis offers a valuable and sustainable method to chemically recycle leather waste, both acidic and alkaline processes present challenges due to the salts produced during neutralization. This study aims to upcycle leather scraps through hydrolysis, producing a powdered filler for versatile composites suitable for both LCD vat photopolymerization and Direct Ink Writing 3D printing technologies. A zero-waste hydrolysis process was adopted using sulfuric acid neutralized with calcium hydroxide, achieving a yield of 91.3%. The composites featured a matrix composed of polyethylene-glycol-diacrylate and glycerol dimethacrylate, with embedded leather hydrolysate powder at concentrations up to 20% w/wmatrix. Tensile tests conducted on neat resin and composites demonstrated the strengthening effect of leather hydrolysate filler. Additionally, rheological tests displayed a viscoelastic behavior suitable for the adopted 3D printing technologies. The composites were successfully 3D-printed using both Direct Ink Writing and vat photopolymerization techniques, showing promising printing accuracy. This work demonstrates the potential of valorizing leather waste, upcycled via a hydrolysis method, to produce composites suitable for additive manufacturing to advance the sustainability and the circularity of the fashion sector. Full article
Show Figures

Graphical abstract

22 pages, 895 KB  
Article
Platform-Driven Sustainability in E-Commerce: Consumer Behavior Toward Recycled Fashion
by Eleni Sardianou and Maria Briana
Recycling 2025, 10(4), 161; https://doi.org/10.3390/recycling10040161 - 11 Aug 2025
Viewed by 7618
Abstract
Digital platforms in fashion e-commerce are progressively shaping sustainable consumption practices. This research explores the interplay between consumer behaviors toward recycled and second-hand fashion, and the adoption of digital platform-driven innovations. The analysis is based on a structured questionnaire and an online survey [...] Read more.
Digital platforms in fashion e-commerce are progressively shaping sustainable consumption practices. This research explores the interplay between consumer behaviors toward recycled and second-hand fashion, and the adoption of digital platform-driven innovations. The analysis is based on a structured questionnaire and an online survey of 1000 consumers conducted in 2025, employing a combination of descriptive and inferential statistical techniques, including both cluster and factor analysis. The findings suggests that demographic factors—particularly age, education, and gender—significantly shape consumer attitudes toward digital innovations in fashion e-commerce apps. The analysis also confirms that the perceived effectiveness of AI and AR tools is significantly correlated with an increased interest in circular fashion options, including second-hand marketplaces and recycled clothing. The study emphasizes the strategic importance of platform features in fostering conscious fashion choices, thereby offering practical insights for retailers aiming to harmonize technological innovation with sustainability goals. Full article
Show Figures

Figure 1

27 pages, 3568 KB  
Review
Impact of Chemicals and Processing Treatments on Thermo-Mechanical Recycling of Polyester Textiles
by Zara Standring, Lisa Macintyre, Gigi Jiang, David Bucknall and Valeria Arrighi
Molecules 2025, 30(13), 2758; https://doi.org/10.3390/molecules30132758 - 26 Jun 2025
Cited by 1 | Viewed by 2368
Abstract
The textile industry is among the world’s largest, producing an estimated 124 million tonnes of fibres in 2023, with more than half of these being made from virgin polyester. Less than 0.1% of polyester fibres are recycled into new textiles at the end [...] Read more.
The textile industry is among the world’s largest, producing an estimated 124 million tonnes of fibres in 2023, with more than half of these being made from virgin polyester. Less than 0.1% of polyester fibres are recycled into new textiles at the end of their lives. Mechanical, thermo-mechanical, and chemical textile-to-textile polyester recycling are all technically possible, but thermo-mechanical recycling is reported to provide the most promising compromise between cost and quality. Myriad chemicals are used in polyester production, and this paper is the first to review the related academic literature to better understand their impact on recyclability. It has been demonstrated that chemicals used during the production and processing of polyester textiles can either provide resistance to, or catalyse, the degradation of polyester during thermo-mechanical recycling processes. However, the effect of combinations of these chemicals on recycling is largely unknown. Limiting, standardising, and transparently reporting the chemicals used during textile production would simplify research and could lead to better quality products after recycling. Full article
(This article belongs to the Special Issue Macromolecular Chemistry in Europe, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 7118 KB  
Article
A Sustainable Framework for Realism Evaluation and Optimization of Virtual Fabric Drape Effect
by Rulin Wang, Fang Fang and Qiaoqiao Chen
Sustainability 2025, 17(12), 5550; https://doi.org/10.3390/su17125550 - 17 Jun 2025
Viewed by 1450
Abstract
As awareness of the negative environmental impact of fashion grows, most companies are choosing to innovate in areas such as recycling and digital transformation. In the context of the rising digital economy and the ongoing development of 3D simulation software, there has been [...] Read more.
As awareness of the negative environmental impact of fashion grows, most companies are choosing to innovate in areas such as recycling and digital transformation. In the context of the rising digital economy and the ongoing development of 3D simulation software, there has been a notable increase in the demand for realistic 3D virtual-fitting effects. However, no standardized evaluation method exists for the realism of virtual fabric drape. This study proposes a systematic approach to enhance the objective evaluation and rapid optimization of virtual fabric drape realism. The research is structured in four stages. First, virtual drape testing conditions are established by referencing real-world fabric drape tests. Second, fuzzy classification is employed to categorize the realism of virtual drape effects into six levels. Third, subjective evaluations of representative fabrics are conducted to define the grading thresholds and reveal differences among the fabric types. Finally, a backpropagation (BP) neural network is used to construct three rapid evaluation models and one optimization model, which are validated through practical application. The proposed method supports accurate assessment and optimization of virtual simulations, contributes to a refined virtual fabric database, and offers insights for improving other 3D fitting software. Full article
Show Figures

Figure 1

Back to TopTop