Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (396)

Search Parameters:
Keywords = recyclable thermoplastics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13138 KB  
Article
Recycling and Reusing of Waste Aircraft Composites in Thermoplastic and Thermoset Matrices
by Paulina Latko-Durałek, Kamila Sałasińska, Bartłomiej Bereska, Agnieszka Bereska, Anna Czajka-Warowna, Paweł Durałek, Maria Kosarli, Alexia Koutrakou, Michał Sałaciński, Gaylord Booto and Sotirios Grammatikos
Materials 2026, 19(3), 534; https://doi.org/10.3390/ma19030534 - 29 Jan 2026
Viewed by 317
Abstract
Unlike typical fiber-reinforced polymers, aerospace composites consist of 90% carbon and 10% glass fabrics impregnated with thermosetting resin. Due to the strong bonding between fibers and the thermoset nature of the matrix, recycling these materials is particularly challenging. This study evaluates mechanical recycling [...] Read more.
Unlike typical fiber-reinforced polymers, aerospace composites consist of 90% carbon and 10% glass fabrics impregnated with thermosetting resin. Due to the strong bonding between fibers and the thermoset nature of the matrix, recycling these materials is particularly challenging. This study evaluates mechanical recycling of aircraft composite waste via industrial grinding and chemical recycling through a solvolysis process. Recovered fibrous fractions were integrated into an epoxy matrix at 50 wt% loading using hot-pressing and into polyamide 12 at 15 wt% via a twin-screw extrusion process. The mechanical results showed that chemically recycled fibers in epoxy reached a flexural modulus of 9.9 GPa and strength of 112 MPa, significantly outperforming mechanically recycled fillers (6.1 GPa and 98.0 MPa) compared to virgin carbon fibers (11.3 GPa and 132 MPa). In PA12, the addition of chemically recycled fibers yielded a 2.14 GPa modulus and a 67.7 MPa strength. Furthermore, life cycle assessment confirmed that both recycling routes drastically reduce global warming potential and aquatic ecotoxicity compared to landfilling. These findings indicate that while mechanical recycling is simpler, chemical solvolysis provides a superior pathway for the high-value circular reuse of complex aerospace waste in new thermoplastic and thermoset applications. Full article
Show Figures

Figure 1

33 pages, 4451 KB  
Article
Morphological and Performance Assessment of Commercial Menstrual and Incontinence Absorbent Hygiene Products
by Liesbeth Birchall, Millie Newmarch, Charles Cohen and Muhammad Tausif
Polymers 2026, 18(3), 318; https://doi.org/10.3390/polym18030318 - 24 Jan 2026
Viewed by 395
Abstract
Disposable absorbent hygiene products (AHPs) contain plastics that are challenging to recycle and not biodegradable, making a significant contribution to landfill. Decreasing the nonbiodegradable mass of products could reduce this burden. Despite this, public data on how AHP design and material selection relate [...] Read more.
Disposable absorbent hygiene products (AHPs) contain plastics that are challenging to recycle and not biodegradable, making a significant contribution to landfill. Decreasing the nonbiodegradable mass of products could reduce this burden. Despite this, public data on how AHP design and material selection relate to performance is limited. In this work, fifteen commercial AHPs were characterised using dimensional measurement, infrared spectroscopy, and imaging. Simulated urination, air permeability, and moisture management testing were used to assess expected leakage and user comfort. Sustainable materials currently in use were identified, and their performance compared to typical plastics, informing opportunities to replace or reduce nonbiodegradable materials. Polybutylene adipate terephthalate-based leakproof layers replaced polyolefins. Commercial alternatives to polyacrylate superabsorbent polymers (SAPs), with comparable absorption, were not seen. Although absorbency correlated with the mass of absorbants, SAPs reduced surface moisture after absorption and are known for high absorption capacity under pressure, preventing rewetting. Channels and side guards were observed to prevent side leakage and guide fluid distribution, potentially reducing the need for nonbiodegradable nonwoven and absorbant content by promoting efficient use of the full product mass. While synthetic nonwovens typically outperformed cellulosics, apertured and layered nonwovens were associated with improved moisture transport; polylactic acid rivalled typical thermoplastics as a bio-derived, compostable alternative. Although the need for biopolymer-based SAPs and foams remains, it is hoped that these findings will guide AHP design and promote research in sustainable materials. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

16 pages, 4603 KB  
Article
Modeling and Evaluation of Customizable Immobilization Masks for Precision Radiotherapy
by Diana Adlienė, Antonio Jreije, Paulius Griškevičius, Neringa Keršienė and Rūta Nedzinskienė
Polymers 2026, 18(2), 287; https://doi.org/10.3390/polym18020287 - 21 Jan 2026
Viewed by 171
Abstract
Accurate immobilization is critical in head and neck (H&N) radiotherapy to ensure precise dose delivery while minimizing irradiation of surrounding healthy tissues. However, conventional thermoplastic masks cannot secure 100% replicas of the patient’s surface and are often limited by mechanical weakness, patient discomfort, [...] Read more.
Accurate immobilization is critical in head and neck (H&N) radiotherapy to ensure precise dose delivery while minimizing irradiation of surrounding healthy tissues. However, conventional thermoplastic masks cannot secure 100% replicas of the patient’s surface and are often limited by mechanical weakness, patient discomfort, and workflow inefficiencies. Recently, the best replicas of the patient’s face have been obtained by exploring personal CT or MRI scans of patients that are used for manufacturing of immobilization masks. This study aimed to design and evaluate customizable immobilization masks using acrylonitrile butadiene styrene (ABS)-based composites reinforced with bismuth oxide (Bi2O3) and to compare their mechanical performance against commercial thermoplastic masks. ABS and ABS/Bi2O3 composite filaments (5, 10, and 20 wt%) were fabricated and characterized by tensile testing. A patient-specific virtual mask was modeled and subjected to finite element analysis (FEA) under clinically relevant loading scenarios, including neck flexion and lateral bending. Results were benchmarked against two commercial thermoplastic masks. ABS and ABS-based composites exhibited significantly higher stiffness (1.7–2.5 GPa) and yield strength (20–25 MPa) compared to commercial thermoplastics (0.25–0.3 GPa, ~7 MPa; p < 0.001). FEA simulations revealed markedly reduced displacement in ABS masks (1–5 mm at 2 mm thickness; <1 mm at 4 mm thickness) relative to commercial masks, which exceeded 20 mm under lateral load. Hybrid configurations with reinforced edges further optimized rigidity while limiting material usage. Customized ABS-based immobilization masks outperform conventional thermoplastics in mechanical stability and displacement control, with the potential to reduce planning margins and improve patient comfort. In addition, ABS-based masks can be recycled, and Bi2O3-filled composites can be reused for printing new immobilization masks, thus contributing to a reduced amount of plastic waste. These findings support their promise as next-generation immobilization devices for precision radiotherapy, warranting further clinical validation, workflow integration and sustainable implementation within a circular economy. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 3rd Edition)
Show Figures

Graphical abstract

51 pages, 4273 KB  
Review
Sustainable Polyurethane Systems: Integrating Green Synthesis and Closed-Loop Recovery
by Tae Hui Kim, Hyeong Seo Kim and Sang-Ho Lee
Polymers 2026, 18(2), 246; https://doi.org/10.3390/polym18020246 - 16 Jan 2026
Viewed by 350
Abstract
Polyurethanes (PUs) are indispensable polymeric materials widely employed across diverse industrial sectors due to their excellent thermal stability, chemical resistance, adhesion, and mechanical durability. However, the intrinsic three-dimensional crosslinked network that underpins their performance also presents a fundamental barrier to reprocessing and recycling. [...] Read more.
Polyurethanes (PUs) are indispensable polymeric materials widely employed across diverse industrial sectors due to their excellent thermal stability, chemical resistance, adhesion, and mechanical durability. However, the intrinsic three-dimensional crosslinked network that underpins their performance also presents a fundamental barrier to reprocessing and recycling. Consequently, most end-of-life PU waste is currently managed through landfilling or incineration, resulting in significant resource loss and environmental impact. To address these challenges, this review presents an integrated perspective on sustainable PU systems by unifying green synthesis strategies with closed-loop recovery approaches. First, recent advances in bio-based polyols and phosgene-free isocyanate synthesis derived from renewable resources—such as plant oils, carbohydrates, and lignin—are discussed as viable means to reduce dependence on petrochemical feedstocks and mitigate toxicity concerns. Next, emerging chemical recycling methodologies, including acidolysis and aminolysis, are reviewed with a focus on the selective recovery of high-purity monomers. Finally, PU vitrimers and dynamic covalent polymer networks (DCPNs) based on urethane bond exchange reactions are examined as reprocessable architectures that combine thermoplastic-like processability with the mechanical robustness of thermosets. By integrating synthesis, recovery, and reuse within a unified framework, this review aims to outline a coherent pathway toward establishing a sustainable circular economy for PU materials. Full article
(This article belongs to the Special Issue Advanced Cross-Linked Polymer Network)
Show Figures

Graphical abstract

33 pages, 405 KB  
Review
Contemporary Use of Polymers in Dentistry: A Narrative Review
by Svetla Ivanova, Zlatina Tomova, Angelina Vlahova, Iliyana L. Stoeva, Elena Vasileva, Yordanka Uzunova, Magdalina Urumova, Desislav Tomov and Atanas Chonin
Polymers 2026, 18(1), 138; https://doi.org/10.3390/polym18010138 - 2 Jan 2026
Viewed by 909
Abstract
This narrative review examines contemporary applications of polymeric materials in dentistry from 2020 to 2025, spanning prosthodontics, restorative dentistry, orthodontics, endodontics, implantology, diagnostics, and emerging technologies. We searched PubMed, Scopus, Web of Science, and Embase for peer reviewed English language articles and synthesized [...] Read more.
This narrative review examines contemporary applications of polymeric materials in dentistry from 2020 to 2025, spanning prosthodontics, restorative dentistry, orthodontics, endodontics, implantology, diagnostics, and emerging technologies. We searched PubMed, Scopus, Web of Science, and Embase for peer reviewed English language articles and synthesized evidence on polymer classes, processing routes, mechanical and chemical behavior, and clinical performance. Approximately 116 articles were included. Polymers remain central to clinical practice: poly methyl methacrylate (PMMA) is still widely used for dentures, high performance systems such as polyether ether ketone (PEEK) are expanding framework and implant-related indications, and resin composites and adhesives continue to evolve through nanofillers and bioactive formulations aimed at improved durability and reduced secondary caries. Thermoplastic polyurethane and copolyester systems drive clear aligner therapy, while polymer-based obturation materials and fiber-reinforced posts support endodontic rehabilitation. Additive manufacturing and computer aided design computer aided manufacturing (CAD CAM) enable customized prostheses and surgical guides, and sustainability trends are accelerating interest in biodegradable or recyclable dental polymers. Across domains, evidence remains heterogeneous and clinical translation depends on balancing strength, esthetics, biocompatibility, aging behavior, and workflow constraints. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
16 pages, 9772 KB  
Article
Structural Adhesive Bonding of Vacuum-Infused Acrylic-Based Thermoplastic Fibre-Reinforced Laminates
by Nils Xavier Bohlmann, Pedro Henrique Evangelista Fernandes, Morten Voß, Sebastian Veller, Christof Nagel, Katharina Arnaut and Vinicius Carrillo Beber
J. Compos. Sci. 2026, 10(1), 6; https://doi.org/10.3390/jcs10010006 - 1 Jan 2026
Viewed by 332
Abstract
Driven by regulatory and environmental demands, composite structures must combine high structural performance, recyclability, and resource efficiency. Here, an investigation on the structural adhesive bonding of glass-fibre-reinforced thermoplastic Elium© composite laminates is undertaken. Substrates are manufactured using vacuum infusion. Evaluation is performed on [...] Read more.
Driven by regulatory and environmental demands, composite structures must combine high structural performance, recyclability, and resource efficiency. Here, an investigation on the structural adhesive bonding of glass-fibre-reinforced thermoplastic Elium© composite laminates is undertaken. Substrates are manufactured using vacuum infusion. Evaluation is performed on the following three commercial two-component adhesives cured at RT: an epoxy (EP), a polyurethane (PU), and an acrylate system (AC). Based on Dynamic Mechanical Analysis, the glass transition temperatures of the EP, PU, and AC adhesives are 56.5, 102.9, and 111.9 °C, respectively. The AC adhesive exhibits the highest shear strength and displacement at failure, reflecting a superior load-bearing capacity. Fractographic analysis further supports these findings: AC joints show a mixed substrate/cohesive failure mode, while EP samples fail exclusively by adhesion failure and PU samples predominantly by a mixture of special cohesion, adhesion and substrate failure. Regarding processing, the EP samples show the highest pot life, followed by PU and then AC. Nonetheless, the pot life of the AC adhesive does not limit its range of application.. The results highlight the advantages of adhesive bonding of Elium© in enabling lightweight and more circular composites. RT-cured adhesives eliminate the need for drilling and energy-intensive thermal curing, allowing design flexibility and reductions in CO2 footprint within composite production. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 2934 KB  
Article
Tribological Assessment of FFF-Printed TPU Under Dry Sliding Conditions for Sustainable Mobility Components
by Patricia Isabela Brăileanu, Marius-Teodor Mocanu and Nicoleta Elisabeta Pascu
Future Transp. 2025, 5(4), 184; https://doi.org/10.3390/futuretransp5040184 - 2 Dec 2025
Viewed by 470
Abstract
We are witnessing a global commitment to sustainable mobility that requires advanced materials and manufacturing techniques, such as fused filament fabrication (FFF), to create lightweight, durable, and recyclable machine components. Acknowledging that friction and wear significantly contribute to energy loss globally, developing high-performance [...] Read more.
We are witnessing a global commitment to sustainable mobility that requires advanced materials and manufacturing techniques, such as fused filament fabrication (FFF), to create lightweight, durable, and recyclable machine components. Acknowledging that friction and wear significantly contribute to energy loss globally, developing high-performance polymeric materials with customizable properties is essential for greener mechanical systems. FFF inherently drives resource efficiency and offers the geometric freedom necessary to engineer complex internal structures, such as the gyroid pattern, enabling substantial mass reduction. This study evaluates the tribological performance of FFF-printed thermoplastic polyurethane (TPU 82A) specimens fabricated with three distinct gyroid infill densities (10%, 50%, and 100%). Ball-on-disc testing was conducted under dry sliding conditions against a 100Cr6 spherical ball, with a constant normal load of 5 N, resulting in an initial maximum theoretical Hertz contact pressure of 231 MPa, over a total sliding distance of 300 m. Shore A hardness and surface roughness (Ra) were also measured to correlate mechanical and structural characteristics with frictional response. Results reveal a non-monotonic relationship between infill density and friction, with a particular absence of quantifiable mass loss across all samples. The intermediate 50% infill (75.9 ± 1.80 Shore A) exhibited the peak mean friction coefficient of μ¯=1.002 (μmax=1.057), which can be attributed to its balanced structural stiffness that promotes localized surface indentation and an increased real contact area during sliding. By contrast, the rigid 100% infill (86.3 ± 1.92 Shore A) yielded the lowest mean friction (μ¯ = 0.465), while the highly compliant 10% infill (44.3 ± 1.94 Shore A) demonstrated viscoelastic energy damping, stabilizing at μ¯ = 0.504. This work highlights the novelty of using FFF gyroid architectures to precisely tune TPU 82A’s tribological behavior, offering design pathways for sustainable mobility. The ability to tailor components for low-friction operations (e.g., μ ≈ 0.465 for bushings) or high-grip requirements (e.g., μ ≈ 1.002 for anti-slip systems) provides eco-efficient solutions for automotive, railway, and micromobility applications, while the exceptional wear resistance supports extended service life and material circularity. Full article
Show Figures

Figure 1

35 pages, 7678 KB  
Review
Mechanical and Durability Characteristics of Particulate-Filled Recycled Thermoplastic Composites (RTCs): A Comprehensive Review
by Md Sabbrojjaman, Allan Manalo, Wahid Ferdous and Omar Alajarmeh
Polymers 2025, 17(23), 3161; https://doi.org/10.3390/polym17233161 - 27 Nov 2025
Cited by 1 | Viewed by 1081
Abstract
Globally, over 350 million tonnes of thermoplastic waste are generated annually, with more than 60% either landfilled or mismanaged. This attracts innovative pathways to increase their recyclability, among which particulate-filled recycled thermoplastic composites (RTCs) are emerging as a potential waste reuse strategy for [...] Read more.
Globally, over 350 million tonnes of thermoplastic waste are generated annually, with more than 60% either landfilled or mismanaged. This attracts innovative pathways to increase their recyclability, among which particulate-filled recycled thermoplastic composites (RTCs) are emerging as a potential waste reuse strategy for diverse civil and industrial applications. This review systematically analyses the current understanding of the physical, mechanical, and durability performance of RTCs, focusing on how various particulate filler types, content, and interfacial compatibility influence key properties. Reported studies show that incorporating particulate organic or inorganic fillers such as waste glass, sand, wood flour, etc., can increase density by 10–45%, tensile and flexural moduli by 30–120%, and thermal stability by up to 40%, though strength and ductility often decrease by 15–50% due to poor filler–matrix adhesion. This review further evaluates durability enhancements under prolonged exposure to water, thermal, and UV radiation, where filler addition reduces water absorption and UV degradation by 20–60%. Despite these advancements, challenges remain in optimising interfacial bonding, long-term performance modelling, and scalability for civil infrastructure. This review also outlines research directions to advance high-performance, sustainable RTCs through a structured review approach using defined keywords on recycled thermoplastics, fillers, and durability. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Graphical abstract

19 pages, 4114 KB  
Article
The Effect of the Recycling Process on the Performance of Thermoplastic Vulcanizates Containing Recycled Rubber from End-of-Life Tires
by Maialen Narvaez-Fagoaga, Marina M. Escrivá, Zenen Zepeda-Rodríguez, Laura Diñeiro, Fernando M. Salamanca, Ángel Marcos-Fernández and Juan L. Valentín
Polymers 2025, 17(22), 2992; https://doi.org/10.3390/polym17222992 - 11 Nov 2025
Viewed by 662
Abstract
End-of-life tires (ELTs) are an important source of energy and materials, with ELT powder (ELTp) being a secondary raw material of increasing industrial interest. However, the complex structure and composition of ELTp rubber pose technological difficulties and scientific challenges in some high-performance applications [...] Read more.
End-of-life tires (ELTs) are an important source of energy and materials, with ELT powder (ELTp) being a secondary raw material of increasing industrial interest. However, the complex structure and composition of ELTp rubber pose technological difficulties and scientific challenges in some high-performance applications in the rubber industry. The mechanical recycling of ELTp produces ground tire rubber (GTR) powder, which is used, among other applications in the rubber field, to prepare thermoplastic vulcanizates (TPVs) due to the interest in these materials in the automotive and construction sectors. Over the last few decades, different approaches have been explored to minimize the limitations of these TPVs, including their large particle size and poor compatibility with GTR powder in other polymer matrices. This study applies different recycling procedures to GTR powder, based on thermal, chemical and mechanical methods, and combinations thereof, to minimize interfacial issues with other matrices used in TPV preparation. The effect of the different rubber recycling processes on the performance of the resulting TPVs was evaluated, optimizing the fraction of recycled rubber from ELTp and the vulcanization system to enhance the mechanical properties and obtain industrially competitive products. Full article
(This article belongs to the Special Issue Advances in Rubber Composites and Recovered Waste Rubber)
Show Figures

Figure 1

18 pages, 4550 KB  
Article
Effect of Annealing on High Temperature Tensile Performance of 3D Printed Polyamide Carbon Fiber: A Comparative Study
by Theodor Florian Zach and Mircea Cristian Dudescu
J. Compos. Sci. 2025, 9(11), 624; https://doi.org/10.3390/jcs9110624 - 10 Nov 2025
Viewed by 1285
Abstract
Fused filament fabrication of thermoplastic composites, despite its recyclability, increased strength, and efficiency, faces structural limitations under elevated temperatures. The literature on heat treatments for improving the thermal resilience of accessible 3D printed composites is limited. Therefore, this study comprehensively presents the efficacy [...] Read more.
Fused filament fabrication of thermoplastic composites, despite its recyclability, increased strength, and efficiency, faces structural limitations under elevated temperatures. The literature on heat treatments for improving the thermal resilience of accessible 3D printed composites is limited. Therefore, this study comprehensively presents the efficacy of annealing on carbon fiber reinforced polyamide (PAHT-CF). The methodology includes uniaxial tensile testing of 200 samples across a wide temperature range (25–150 °C) and five different infill orientations, annealed as per the Technical Data Sheet (80 °C, 12 h). Scanning electron microscopy (SEM) of the fracture surfaces revealed the microstructural changes responsible for the improved properties after annealing. At 25 °C, annealing led to a 50% strength increase (63.88 MPa) and a 70% lower strain (2.65%). At 150 °C, the material maintained a 17.5% strength advantage (23.62 MPa) and a 17.5% reduction in strain (12.67%). The 0°, 90°, and 0/90° orientations exhibited the highest improvements, while the remainder displayed lower strengths and higher deformation beyond the glass transition temperature (70 °C). Overall, annealed PAHT-CF demonstrates high-temperature resilience, comparable to previously analyzed materials like carbon fiber reinforced polyether–ether–ketone (PEEK-CF). This makes it a potentially accessible alternative for the aerospace and automotive sectors. However, practical applications must consider the trade-off between its enhanced mechanical properties and the increased lead time from annealing. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

15 pages, 1897 KB  
Article
Enabling Industrial Re-Use of Large-Format Additive Manufacturing Molding and Tooling
by Matthew Korey, Amber M. Hubbard, Gregory Haye, Robert Bedsole, Zachary Skelton, Neeki Meshkat, Ashish L. S. Anilal, Kathryn Slavny, Katie Copenhaver, Tyler Corum, Don X. Bones, William M. Gramlich, Chad Duty and Soydan Ozcan
Polymers 2025, 17(22), 2981; https://doi.org/10.3390/polym17222981 - 10 Nov 2025
Cited by 1 | Viewed by 1170
Abstract
Large-format additive manufacturing (LFAM) is an enabling manufacturing technology capable of producing large parts with highly complex geometries for a wide variety of applications, including automotive, infrastructure/construction, and aerospace mold and tooling. In the past decade, the LFAM industry has seen widespread use [...] Read more.
Large-format additive manufacturing (LFAM) is an enabling manufacturing technology capable of producing large parts with highly complex geometries for a wide variety of applications, including automotive, infrastructure/construction, and aerospace mold and tooling. In the past decade, the LFAM industry has seen widespread use of bio-based, glass, and/or carbon fiber reinforced thermoplastic composites which, when printed, serve as a lower-cost alternative to metallic parts. One of the highest-volume materials utilized by the industry is carbon fiber (CF)-filled polycarbonate (PC), which in out-of-autoclave applications can achieve comparable mechanical performance to metal at a significantly lower cost. Previous work has shown that if this material is recovered at various points throughout the manufacturing process for both the lab and pilot scale, it can be mechanically recycled with minimal impacts on the functional performance and printability of the material while significantly reducing the feedstock costs. End-of-life (EOL) CF-PC components were processed through industrial shredding, melt compounding, and LFAM equipment, followed by evaluation of the second-life material properties. Experimental assessments included quantitative analysis of fiber length attrition, polymer molecular weight degradation using gel permeation chromatography (GPC), density changes via pycnometry, thermal performance using dynamic mechanical analysis (DMA), and mechanical performance (tensile properties) in both the X- and Z-directions. Results demonstrated a 24.6% reduction in average fiber length compared to virgin prints, accompanied by a 21% decrease in X-direction tensile strength and a 39% reduction in tensile modulus. Despite these reductions, Z-direction tensile modulus improved by 4%, density increased by 6.8%, and heat deflection temperature (HDT) under high stress retained over 97% of its original value. These findings underscore the potential for integrating mechanically recycled CF-PC into industrial LFAM applications while highlighting the need for technological innovations to mitigate fiber degradation and enhance material performance for broader adoption. This critical step toward circular material practices in LFAM offers a pathway to reducing feedstock costs and environmental impact while maintaining functional performance in industrial applications. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymer Based Materials)
Show Figures

Figure 1

31 pages, 3898 KB  
Review
Composite Polymeric Sucker Rod Guides: State-of-Practice, Causes of Failure, and Circular Economy Opportunities
by Chundu Gyem Tamang, Allan Manalo, Paulomi (Polly) Burey, Wahid Ferdous, Tristan Shelley, Mayur Patel and Tony Chapman
Polymers 2025, 17(21), 2932; https://doi.org/10.3390/polym17212932 - 31 Oct 2025
Viewed by 1357
Abstract
The oil and gas industry generates substantial amounts of polymeric waste each year, including sucker rod guides manufactured from premium thermoplastics such as Polyphenylene Sulphide (PPS), Polyacrylamide (PAA), Polyamide (PA), and Polyether ether ketone (PEEK). It is estimated that, annually, approximately 18,600 metric [...] Read more.
The oil and gas industry generates substantial amounts of polymeric waste each year, including sucker rod guides manufactured from premium thermoplastics such as Polyphenylene Sulphide (PPS), Polyacrylamide (PAA), Polyamide (PA), and Polyether ether ketone (PEEK). It is estimated that, annually, approximately 18,600 metric tonnes of polymeric sucker rod guides are discarded worldwide, contributing significantly to landfill accumulation. This paper critically reviews the behaviour of polymeric rod guides when exposed to downhole environments where high temperature, pressure, contamination, and severe mechanical stresses act simultaneously. These components are essential in maintaining system reliability, yet research and development on polymeric rod guides remain limited, and investigations into their degradation and failure mechanisms are non-existent. In addition, there are currently no established approaches for recycling or reusing worn polymeric guides, which restricts progress toward sustainability and contributes to the increased accumulation of polymer waste in landfills. This review highlights these gaps and discusses future research directions that could improve the performance and service life of glass-fibre-reinforced polymeric components, while also creating opportunities for recycling and circular economy. Full article
(This article belongs to the Special Issue Recyclable and Sustainable Polymers: Toward a Circular Economy)
Show Figures

Graphical abstract

28 pages, 6992 KB  
Article
Analysis of Thermally Induced Residual Stress in Resistance Welded PC/CF Composite to Aluminum
by Marcin Praski, Piotr Kowalczyk, Karolina Stankiewicz, Radosław Szumowski, Piotr Synaszko and Andrzej Leski
Materials 2025, 18(21), 4962; https://doi.org/10.3390/ma18214962 - 30 Oct 2025
Viewed by 734
Abstract
Thermoplastic composites are growing in popularity in the aerospace and automotive industries; they enable weldable and recyclable structures. Resistance welded hybrid thermoplastic and metal joints are attractive for rapid assembly, but the thermal mismatch between metals and polymers introduces residual stresses, which can [...] Read more.
Thermoplastic composites are growing in popularity in the aerospace and automotive industries; they enable weldable and recyclable structures. Resistance welded hybrid thermoplastic and metal joints are attractive for rapid assembly, but the thermal mismatch between metals and polymers introduces residual stresses, which can drive edge debonding and compromise durability. This study presents fabricated single-lap PC/CF–Al7075 coupons with measured mid-span bow resulting from welding, evaluated bond quality by step-heating thermography, and an evaluated framework for residual stress prediction using Ansys complemented by a bimetal analytical check. Three thermal cycles were examined with different temperature gradients (200, 220, 240 °C): the measured bow was 16.5 mm and remained constant, whereas analytical calculation increased with ΔT similarly to the FEM prediction. The current FEM under predicted the bow (Mean Absolute Percentage Error is 21%), showing stress contours that decay with distance from the bond and revealing pronounced peaks in both σxx and σzz components at weld edges, consistent with shear-lag theory. FEM returned edge-peaked peel rising from 43 to −64 MPa and σxx was up to 12% more compressive than analytical calculation; an effective CF/PC CTE of 1.5 × 10−6 K−1 reconciled curvature with test better than catalogue values. The temperature insensitive bow is attributed to polycarbonate flow/viscoelastic relaxation above Tg and hot relaxation in aluminum, with effects not represented in the elastic models. Edge peel and shear govern initiation risk. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

34 pages, 1257 KB  
Review
Emerging Materials for Durable and Sustainable Design of Aeronautic Structures
by Pedro Carvalho, João Aguiar-Branco and Rui Miranda Guedes
Materials 2025, 18(21), 4922; https://doi.org/10.3390/ma18214922 - 28 Oct 2025
Cited by 2 | Viewed by 2197
Abstract
Sustainable and durable materials are in increasing demand as the aerospace sector seeks to reduce its environmental footprint while enhancing performance and safety. Biocomposites, recycled materials, nanomaterials, and advanced composites are being explored as alternatives to conventional aircraft materials. This work analyses the [...] Read more.
Sustainable and durable materials are in increasing demand as the aerospace sector seeks to reduce its environmental footprint while enhancing performance and safety. Biocomposites, recycled materials, nanomaterials, and advanced composites are being explored as alternatives to conventional aircraft materials. This work analyses the available options by comparing the mechanical properties, environmental impact, and lifecycle costs of these materials, as well as the associated manufacturing and implementation challenges. There are a few examples of next-generation materials being used in the aircraft industry. Furthermore, regulatory and technical barriers to implementation emphasize the importance of certification processes and scalability considerations. The final part explores the next generation of recyclable and sustainable composite materials, which could potentially reduce the aerospace sector’s impact on greenhouse gas emissions. These comprise future research pathways in advanced aerospace materials that will help lead the industry towards sustainability. Full article
Show Figures

Figure 1

20 pages, 5540 KB  
Article
Processing Stability of Carbon Nanofiber-Reinforced Glass Fiber/Polypropylene Composites Under Repeated Extrusion for Mechanical Recycling
by Tetsuo Takayama, Daisuke Shimizu and Shunsuke Kobayashi
Materials 2025, 18(20), 4777; https://doi.org/10.3390/ma18204777 - 19 Oct 2025
Viewed by 825
Abstract
Glass fiber-reinforced polypropylene (PP/GF) is used widely in lightweight automotive applications, but it is affected adversely by fiber breakage and matrix degradation during recycling. This study investigates the effects of carbon nanofiber (CBNF) addition on the recyclability of PP/GF composites subjected to repeated [...] Read more.
Glass fiber-reinforced polypropylene (PP/GF) is used widely in lightweight automotive applications, but it is affected adversely by fiber breakage and matrix degradation during recycling. This study investigates the effects of carbon nanofiber (CBNF) addition on the recyclability of PP/GF composites subjected to repeated extrusion. Homo-type PP was compounded with GF and CBNFs and was processed for up to nine extrusion cycles. Melt viscosity, fiber morphology, flexural properties, interfacial shear strength, and notched Charpy impact strength were evaluated. Neat PP showed a pronounced increase in the melt volume-flow rate (MVR) with cumulative cycles, indicating molecular degradation. By contrast, CBNF-containing composites exhibited superior viscosity stability, with MVR increasing only 2.9-fold after nine cycles compared with 5.4-fold for GF-only systems. Fiber length was well maintained (96–98% retention). The flexural strength and modulus were preserved, respectively, as greater than 92% and 95%. The interfacial shear strength remained stable, whereas the impact strength decreased moderately but retained 84% of its initial value. These results underscore that a slight addition of CBNFs (5 wt%) suppresses viscosity loss effectively and stabilizes mechanical performance, offering a viable strategy for sustainable recycling of PP/GF composites in transportation applications. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

Back to TopTop