Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (362)

Search Parameters:
Keywords = reclamation year

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3293 KiB  
Article
Does Beach Sand Nourishment Have a Negative Effect on Natural Recovery of a Posidonia oceanica Seagrass Fringing Reef? The Case of La Vieille Beach (Saint-Mandrier-sur-Mer) in the North-Western Mediterranean
by Dominique Calmet, Pierre Calmet and Charles-François Boudouresque
Water 2025, 17(15), 2287; https://doi.org/10.3390/w17152287 - 1 Aug 2025
Viewed by 281
Abstract
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th [...] Read more.
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th century, P. oceanica declined conspicuously in the vicinity of large ports and urbanized areas, particularly in the north-western Mediterranean. The main causes of decline are land reclamation, anchoring, bottom trawling, turbidity and pollution. Artificial sand nourishment of beaches has also been called into question, with sand flowing into the sea, burying and destroying neighbouring meadows. A fringing reef of P. oceanica, located at Saint-Mandrier-sur-Mer, near the port of Toulon (Provence, France), is severely degraded. Analysis of aerial photos shows that, since the beginning of the 2000s, it has remained stable in some parts or continued to decline in others. This contrasts with the trend towards recovery, observed in France, thanks to e.g., the legally protected status of P. oceanica, and the reduction of pollution and coastal developments. The sand nourishment of the study beach, renewed every year, with the sand being washed or blown very quickly (within a few months) from the beach into the sea, burying the P. oceanica meadow, seems the most likely explanation. Other factors, such as pollution, trampling by beachgoers and overgrazing, may also play a role in the decline. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

19 pages, 3923 KiB  
Article
Evaluative Potential for Reclaimed Mine Soils Under Four Revegetation Types Using Integrated Soil Quality Index and PLS-SEM
by Yan Mou, Bo Lu, Haoyu Wang, Xuan Wang, Xin Sui, Shijing Di and Jin Yuan
Sustainability 2025, 17(13), 6130; https://doi.org/10.3390/su17136130 - 4 Jul 2025
Viewed by 313
Abstract
Anthropogenic revegetation allows effective and timely soil development in mine restoration areas. The evaluation of soil quality is one of the most important criteria for measuring reclamation effectiveness, providing scientific reference for the subsequent management of ecological restoration projects. The aim of this [...] Read more.
Anthropogenic revegetation allows effective and timely soil development in mine restoration areas. The evaluation of soil quality is one of the most important criteria for measuring reclamation effectiveness, providing scientific reference for the subsequent management of ecological restoration projects. The aim of this research was to further investigate the influence of revegetation on mine-reclaimed soils in a semi-arid region. Thus, a coal-gangue dump within the afforestation chronosequence of 1 and 19 years in Shanxi Province, China, was selected as the study area. We assessed the physicochemical properties and nutrient stock of topsoils under four revegetation species, i.e., Pinus tabuliformis (PT), Medicago sativa (MS), Styphnolobium japonicum (SJ), and Robinia pseudoacaciaIdaho’ (RP). A two-way ANOVA revealed that reclamation age significantly affected SOC, TN, EC, moisture, and BD (p < 0.05), while the interaction effects of revegetation type and age were also significant for TN and moisture. In addition, SOC and TN stocks at 0–30 cm topsoil at the RP site performed the best among 19-year reclaimed sites, with an accumulation of 62.09 t ha−1 and 4.23 t ha−1, respectively. After one year of restoration, the MS site showed the highest level of SOC and TN accumulation, which increased by 186.8% and 88.5%, respectively, compared to bare soil in the 0–30 cm interval, but exhibited declining stocks during the 19-year restoration, possibly due to species invasion and water stress. In addition, an integrated soil quality index (ISQI) and the partial least squares structural equation model (PLS-SEM) were used to estimate comprehensive soil quality along with the interrelationship among influencing factors. The reclaimed sites with an ISQI value > 0 were 19-RP (3.906) and 19-SJ (0.165). In conclusion, the restoration effect of the PR site after 19 years of remediation was the most pronounced, with soil quality approaching that of the undisturbed site, especially in terms of soil carbon and nitrogen accumulation. These findings clearly revealed the soil dynamics after afforestation, further providing a scientific basis for choosing mining reclamation species in the semi-arid regions. Full article
Show Figures

Figure 1

23 pages, 4515 KiB  
Article
Impact of Coastal Beach Reclamation on Seasonal Greenhouse Gas Emissions: A Study of Diversified Saline–Alkaline Land Use Patterns
by Jiayi Xie, Ye Yuan, Xiaoqing Wang, Rui Zhang, Rui Zhong, Jiahao Zhai, Yumeng Lu, Jiawei Tao, Lijie Pu and Sihua Huang
Agriculture 2025, 15(13), 1403; https://doi.org/10.3390/agriculture15131403 - 29 Jun 2025
Viewed by 380
Abstract
Reclaiming coastal wetlands for agricultural purposes has led to intensified farming activities, which are anticipated to affect greenhouse gas (GHG) flux processes within coastal wetland ecosystems. However, how greenhouse gas exchanges respond to variations in agricultural reclamation activities across different years remains uncertain. [...] Read more.
Reclaiming coastal wetlands for agricultural purposes has led to intensified farming activities, which are anticipated to affect greenhouse gas (GHG) flux processes within coastal wetland ecosystems. However, how greenhouse gas exchanges respond to variations in agricultural reclamation activities across different years remains uncertain. To address this knowledge gap, this study characterized dynamic exchanges within the soil–plant–atmosphere continuum by employing continuous monitoring across four representative coastal wetland soil–vegetation systems in Jiangsu, China. The results show the carbon dioxide (CO2) and nitrous oxide (N2O) flux exchanges between the system and the atmosphere and soil–vegetation carbon pools, which revealed the drivers of carbon dynamics in the coastal wetland system. The four study sites, converted from coastal wetlands to agricultural lands at different times (years), generally act as CO2 sinks and N2O sources. Higher levels of CO2 sequestration occur as the age of reclamation rises. In terms of time scale, crops lands were found to be CO2 sinks during the growing period but became CO2 sources during the crop fallow period. Although the temporal trend of the N2O flux was generally smooth, reclaimed farmlands acted as net sources of N2O, particularly during the crop-growing period. The RDA and PLS-PM models illustrate that soil salinity, acidity, and hydrothermal conditions were the key drivers affecting the magnitude of the GHG flux exchanges under reclamation. This study demonstrates that GHG emissions from reclaimed wetlands can be effectively regulated through science-based land management, calling for prioritized attention to post-development practices rather than blanket restrictions on coastal exploitation. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

22 pages, 7753 KiB  
Article
A Full-Life-Cycle Modeling Framework for Cropland Abandonment Detection Based on Dense Time Series of Landsat-Derived Vegetation and Soil Fractions
by Qiangqiang Sun, Zhijun You, Ping Zhang, Hao Wu, Zhonghai Yu and Lu Wang
Remote Sens. 2025, 17(13), 2193; https://doi.org/10.3390/rs17132193 - 25 Jun 2025
Viewed by 337
Abstract
Remotely sensed cropland abandonment monitoring is crucial for providing spatially explicit references for maintaining sustainable agricultural practices and ensuring food security. However, abandoned cropland is commonly detected based on multi-date classification or the dynamics of a single vegetation index, with the interactions between [...] Read more.
Remotely sensed cropland abandonment monitoring is crucial for providing spatially explicit references for maintaining sustainable agricultural practices and ensuring food security. However, abandoned cropland is commonly detected based on multi-date classification or the dynamics of a single vegetation index, with the interactions between vegetation and soil time series often being neglected, leading to a failure to understand its full-life-cycle succession processes. To fill this gap, we propose a new full-life-cycle modeling framework based on the interactive trajectories of vegetation–soil-related endmembers to identify abandoned and reclaimed cropland in Jinan from 2000 to 2022. In this framework, highly accurate annual fractional vegetation- and soil-related endmember time series are generated for Jinan City for the 2000–2022 period using spectral mixture models. These are then used to integrally reconstruct temporal trajectories for complex scenarios (e.g., abandonment, weed invasion, reclamation, and fallow) using logistic and double-logistic models. The parameters of the optimization model (fitting type, change magnitude, start timing, and change duration) are subsequently integrated to develop a rule-based hierarchical identification scheme for cropland abandonment based on these complex scenarios. After applying this scheme, we observed a significant decline in green vegetation (a slope of −0.40% per year) and an increase in the soil fraction (a rate of 0.53% per year). These pathways are mostly linked to a duration between 8 and 15 years, with the beginning of the change trend around 2010. Finally, the results show that our framework can effectively separate abandoned cropland from reclamation dynamics and other classes with satisfactory precision, as indicated by an overall accuracy of 86.02%. Compared to the traditional yearly land cover-based approach (with an overall accuracy of 77.39%), this algorithm can overcome the propagation of classification errors (with product accuracy from 74.47% to 85.11%), especially in terms of improving the ability to capture changes at finer spatial scales. Furthermore, it also provides a better understanding of the whole abandonment process under the influence of multi-factor interactions in the context of specific climatic backgrounds and human disturbances, thus helping to inform adaptive abandonment management and sustainable agricultural policies. Full article
Show Figures

Figure 1

15 pages, 1803 KiB  
Article
Vegetation-Driven Changes in Soil Salinity Ions and Microbial Communities Across Tidal Flat Reclamation
by Shumei Cai, Sixin Xu, Deshan Zhang, Yun Liang and Haitao Zhu
Microorganisms 2025, 13(6), 1184; https://doi.org/10.3390/microorganisms13061184 - 22 May 2025
Viewed by 406
Abstract
Soil microbes play a vital role in tidal flat ecosystems but are highly susceptible to disturbances from land reclamation. This study investigated the dynamics of bacterial communities and their environmental drivers across a 50-year reclamation chronosequence under three vegetation types (bare flats, reed [...] Read more.
Soil microbes play a vital role in tidal flat ecosystems but are highly susceptible to disturbances from land reclamation. This study investigated the dynamics of bacterial communities and their environmental drivers across a 50-year reclamation chronosequence under three vegetation types (bare flats, reed beds, and rice fields). The results showed that, after 50 years of reclamation, total dissolved salts decreased significantly in vegetated zones, particularly in rice fields, where Cl dropped by 54.71% and nutrients (SOC, TN, TP) increased substantially. Key ions, including HCO3, Cl, and K+, were the primary drivers of microbial community structure, exerting more influence than total salinity (TDS) or pH. Bacterial abundance and diversity increased over time, with rice fields showing the highest values after 50 years. Actinobacteriota and Proteobacteria were positively correlated with HCO3 and K+, while Cl negatively affected Acidobacteriota. Genus-level analyses revealed that specific taxa, such as Sphingomonas and Gaiella, exhibited ion responses diverging from broader phylum-level patterns, exemplifying niche-specific adaptations to salinity regimes. These findings underscore the pivotal role of vegetation type and individual salinity ions in driving microbial succession during tidal flat reclamation. A phased vegetation strategy, starting with reed colonization and followed by rice cultivation, can enhance soil quality and microbial diversity. This research provides important insights for optimizing vegetation management and ion monitoring in sustainable tidal flat reclamation. Full article
Show Figures

Figure 1

29 pages, 4457 KiB  
Article
The Implementation Path for a Policy Balancing Cultivated Land Occupation and Reclamation Based on Land-Type Classification—A Case Study in Heilongjiang Province
by Yanan Liu, Wei Zou, Kening Wu, Xiao Li, Xiaoliang Li and Rui Zhao
Agriculture 2025, 15(10), 1105; https://doi.org/10.3390/agriculture15101105 - 20 May 2025
Viewed by 456
Abstract
Food security is a fundamental issue that has long been of great concern, and cultivated land resources are the core elements of food security. In recent years, the problem of “non-agriculturalization” and “non-grain” conversion of cultivated land has become prominent. The need for [...] Read more.
Food security is a fundamental issue that has long been of great concern, and cultivated land resources are the core elements of food security. In recent years, the problem of “non-agriculturalization” and “non-grain” conversion of cultivated land has become prominent. The need for further strict control of cultivated land use has gained significant attention from the government and academia. Recently, it has been proposed in China that all forms of cultivated land occupation should be integrated into the management policy for balancing cultivated land occupation and reclamation. In this study, the concept of provincial-level land-type classification, along with agricultural land potential productivity evaluation, is adopted to determine the optimal scheme for balancing cultivated land occupation and reclamation. Thus, an analysis of the optimization scheme for implementing the cultivated land occupation and reclamation balance policy in Heilongjiang, along with a macro-level layout of this balance scheme, is carried out at the provincial level. The results show that the land-type classification system constructed from five dimensions—climatic conditions, geomorphic conditions, geological conditions, edaphic conditions, and hydrologic conditions—as well as the agricultural land potential productivity evaluation system constructed based on land types, can effectively identify the potential cultivated land utilization space in Heilongjiang Province. Based on the zoning of land suitable for farming, the cultivated land in unsuitable farming areas in Heilongjiang should be transferred out (403.01 km2) and, according to the principle of the balancing cultivated land occupation and reclamation policy, the non-cultivated land in highly and moderately suitable farming areas should be transferred in (249.80 km2 and 163.39 km2, respectively) to achieve balance. The results can provide reference for the implementation of the cultivated land occupation and reclamation policy at the provincial level, as well as for promoting the implementation of the strategy of “storing grain in the land”. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

17 pages, 4187 KiB  
Article
Optimization of Subsurface Drainage Parameters in Saline–Alkali Soils to Improve Salt Leaching Efficiency in Farmland in Southern Xinjiang
by Han Guo, Guangning Wang, Zhenliang Song, Pengfei Xu, Xia Li and Liang Ma
Agronomy 2025, 15(5), 1222; https://doi.org/10.3390/agronomy15051222 - 17 May 2025
Viewed by 625
Abstract
In arid regions, soil salinization and inefficient water use are major challenges to sustainable agricultural development. Optimizing subsurface drainage system layouts is critical for improving saline soil reclamation efficiency. This study conducted field experiments from 2023 to 2024 to evaluate the effects of [...] Read more.
In arid regions, soil salinization and inefficient water use are major challenges to sustainable agricultural development. Optimizing subsurface drainage system layouts is critical for improving saline soil reclamation efficiency. This study conducted field experiments from 2023 to 2024 to evaluate the effects of varying subsurface drainage configurations—specifically, burial depths (1.0–1.5 m) and pipe spacings (20–40 m)—on drainage and salt removal efficiency in silty loam soils of southern Xinjiang, aiming to develop an optimized scheme balancing water conservation and desalination. Five treatments (A1–A5) were established to measure evaporation, drainage, and salt discharge during both spring and winter irrigation. These variables were analyzed using a water balance model and multifactorial ANOVA to quantify the interactive effects of drainage depth and spacing. The results indicated that treatment A5 (1.5 m depth, 20 m spacing) outperformed all the others in terms of both the drainage-to-irrigation ratio (Rd/i) and the drainage salt efficiency coefficient (DSEC), with a two-year average Rd/i of 32.35% across two spring and two winter irrigation events, and a mean DSEC of 3.28 kg·m−3. The 1.5 m burial depth significantly improved salt leaching efficiency by increasing the salt control volume and reducing capillary rise. The main effect of burial depth on both Rd/i and DSEC was highly significant (p < 0.01), whereas the effect of spacing was not statistically significant (p > 0.05). Although the limited experimental duration and the use of a single soil type may affect the generalizability of the findings, the recommended configuration (1.5 m burial depth, 20 m spacing) shows strong potential for broader application in silty loam regions of southern Xinjiang and provides technical support for subsurface drainage projects aimed at reclaiming saline soils in arid regions. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

26 pages, 7883 KiB  
Article
Technosol Micromorphology Reveals the Early Pedogenesis of Abandoned Rare Earth Element Mining Sites Undergoing Reclamation in South China
by Françoise Watteau, Jean Louis Morel, Chang Liu, Yetao Tang and Hermine Huot
Minerals 2025, 15(5), 514; https://doi.org/10.3390/min15050514 - 14 May 2025
Cited by 1 | Viewed by 472
Abstract
The process of anthropogenic pedogenesis has necessarily become an important aspect of the study of today’s soils. The sustainable reclamation or remediation of soils degraded by industrial or mining activities is currently of great interest worldwide. In this field, the study of thin [...] Read more.
The process of anthropogenic pedogenesis has necessarily become an important aspect of the study of today’s soils. The sustainable reclamation or remediation of soils degraded by industrial or mining activities is currently of great interest worldwide. In this field, the study of thin soil sections can provide relevant answers, particularly to questions concerning the evolution of these soils under the impact of reclamation practices. Here, we describe an experiment to reclaim former rare earth element mining sites in China using organic soil amendments and plantations of a local fiber plant, Boehmeria nivea. Two years after the start of the experiment, a study of soil structure, considered as an indicator of soil biofunctioning, was carried out on the different plots, supplemented by monitoring of physico-chemical properties. Morphological (light microscopy) and analytical (SEM-EDX, µ-XRF) characterization of thin sections allowed us to pinpoint some pedological processes as aggregation with particular reference to the contribution of biological factors and mineral species, highlighting the impact of the practices implemented. Using a soil micromorphology approach enabled us to track the rapid evolution of the early stages of pedogenesis of these Technosols and to provide insight into the potential for reclamation of these mined sites in the future. Full article
(This article belongs to the Special Issue Thin Sections: The Past Serving The Future)
Show Figures

Figure 1

19 pages, 4584 KiB  
Article
Response of Landscape Types and Shorebird Diversity to Extreme Drought Climate in Poyang Lake, China During the Non-Breeding Period
by Zhongshan Yan and Mingqin Shao
Animals 2025, 15(10), 1399; https://doi.org/10.3390/ani15101399 - 12 May 2025
Viewed by 388
Abstract
Habitat use by shorebirds is described in Poyang Lake in the Nanji Wetland National Nature Reserve (“Nanji Wetland”) and the Wuxing reclamation region (“Wuxing”) during the non-breeding periods of 2022 (extreme drought year) and 2023 (normal water year), using the sample point method. [...] Read more.
Habitat use by shorebirds is described in Poyang Lake in the Nanji Wetland National Nature Reserve (“Nanji Wetland”) and the Wuxing reclamation region (“Wuxing”) during the non-breeding periods of 2022 (extreme drought year) and 2023 (normal water year), using the sample point method. The results indicated that the deep water area in the extreme drought year at Nanji Wetland and Wuxing was smaller than in the normal water year, while the mudflat area was larger. Grassland area during the early and middle parts of the extreme drought year was lower than in the normal water year, and fluctuations in shallow water area were relatively small in both regions. Landscape indices at Nanji Wetland exhibited greater variability, with most indices being lower in the extreme drought year. Most landscape indices in Wuxing were consistent across years. The number of species and individuals was higher in the extreme drought year than in the normal water year at Nanji Wetland, whereas the opposite trend was observed at Wuxing, suggesting that the large, protected area served as a refuge for many shorebirds. The mudflat area was found to be strongly and positively correlated with the total number of shorebirds, the number of species, and the populations of Vanellus vanellus and Tringa erythropus. The SHDI was found to exhibit a strong negative correlation with the number of shorebird species and the populations of Limosa limosa. The results indicate that the mudflat area is critical for maintaining shorebird diversity in Poyang Lake, and reducing the SHDI may enhance shorebird diversity. Our findings have to be further tested for long-term period in the future. These findings provide guidelines for shorebird population conservation and habitat management strategies. Full article
(This article belongs to the Section Wildlife)
Show Figures

Graphical abstract

20 pages, 3419 KiB  
Article
Changes in Microbial Activity Associated with the Nitrogen Biogeochemical Cycle in Differently Managed Soils, Including Protected Areas and Those Reclaimed with Gangue
by Jolanta Joniec, Edyta Kwiatkowska, Anna Walkiewicz and Grzegorz Grzywaczewski
Sustainability 2025, 17(10), 4343; https://doi.org/10.3390/su17104343 - 11 May 2025
Viewed by 434
Abstract
The proximity of ecologically valuable areas to industrial zones indicates a strong need for monitoring their condition. Soil assessment involves both molecular techniques for studying microbial biodiversity, such as PCR, sequencing, and metagenomics, as well as parameters of biochemical and enzymatic activity of [...] Read more.
The proximity of ecologically valuable areas to industrial zones indicates a strong need for monitoring their condition. Soil assessment involves both molecular techniques for studying microbial biodiversity, such as PCR, sequencing, and metagenomics, as well as parameters of biochemical and enzymatic activity of soil microorganisms. The authors studied the activity of microorganisms responsible for the nitrogen cycle to compare the condition of soils under different uses (wastelands and arable fields) located in the ecologically valuable areas of the Polesie National Park (PNP, protected area) and its surroundings. Additionally, they assessed the suitability of gangue for reclamation and its effectiveness depending on treatment duration (2 and 10 years). In most of the activities analyzed, their levels were lower in the park. A higher intensity of ammonification and nitrification was observed in the soil sampled from the field in the park; however, a reduced N2O emission was also recorded after incubation in the lab of soil samples collected in the autumn, which may indicate that nitrogen loss from the soil does not occur in this particular habitat, which requires further, long-term and cyclical field trials. These observations confirm the potential protective role of the park in relation to soils and atmosphere in the context of the nitrogen cycle. The activities under study in the reclaimed soils were in both cases lower than in soils from the fields. The current results prove that this method of reclamation is not entirely effective; however, long-term reclamation yielded better results. The present study provided valuable information on the effectiveness of the protective role of the PNP in relation to soils and air. Additionally, these results may be helpful in making decisions regarding the use of waste, such as gangue, for reclamation. Full article
Show Figures

Figure 1

15 pages, 2681 KiB  
Article
Drivers of PM10 Retention by Black Locust Post-Mining Restoration Plantations
by Chariton Sachanidis, Mariangela N. Fotelli, Nikos Markos, Nikolaos M. Fyllas and Kalliopi Radoglou
Atmosphere 2025, 16(5), 555; https://doi.org/10.3390/atmos16050555 - 7 May 2025
Viewed by 403
Abstract
Atmospheric pollution due to an increased particulate matter (PM) concentration imposes a threat for human health. This is particularly true for regions with intensive industrial activity and nature-based solutions, such as tree plantations, are adopted to mitigate the phenomenon. Here, we report on [...] Read more.
Atmospheric pollution due to an increased particulate matter (PM) concentration imposes a threat for human health. This is particularly true for regions with intensive industrial activity and nature-based solutions, such as tree plantations, are adopted to mitigate the phenomenon. Here, we report on the case of the lignite complex of western Macedonia (LCWM), the largest in Greece, where extensive Robinia pseudoacacia L. plantations have been established during the last 40 years for post-mining reclamation, but their PM retention capacity and the controlling parameters have not been assessed to date. Thus, during the 2021 growth season (May to October), we determined the PM10 capture by leaves sampled twice per month, across four 10-m long transects, each consisting of five trees, and at three different heights along the tree canopy. During the same period, we also measured the leaf area index (LAI) of the plantations and collected climatic data, as well as data on PM10 production by the belt conveyors system, the main polluting source at the site. We estimated that the plantations’ foliage captures on average c. 42.85 μg cm−2 PM10 and we developed a robust linear model that describes PM10 retention on a leaf area basis, as a function of PM10 production, LAI (a proxy of seasonal changes in leaf area), distance from the emitting source, and wind speed and foliage height within the crown. The accuracy of the estimates and the performance of the model were tested with the bootstrap cross-validate resampling technique. PM10 retention increased in spring and early summer following the increase in LAI, but its peak in August and October was controlled by the highest PM10 production, due to elevated energy demands. Moreover, PM10 retention was facilitated by wind speed, and it was higher at the lower part of the trees’ canopy. On the contrary, the PM10 load on the trees’ foliage decreased with an increasing distance from the conveyor belt system and the frontline of the plantations. Our findings support the positive role of R. pseudoacacia plantations for PM10 retention at heavily polluted areas, such as the lignite mines in Greece, and provide a model for the estimation of PM10 retention by their foliage based on basic environmental drivers and characteristics of the plantations, which could be helpful for planning their future management. Full article
(This article belongs to the Special Issue Dispersion and Mitigation of Atmospheric Pollutants)
Show Figures

Figure 1

21 pages, 13067 KiB  
Article
Significant Changes in Soil Properties in Arid Regions Due to Semicentennial Tillage—A Case Study of Tarim River Oasis, China
by Ying Xiao, Mingliang Ye, Jing Zhang, Yamin Chen, Xinxin Sun, Xiaoyan Li and Xiaodong Song
Sustainability 2025, 17(9), 4194; https://doi.org/10.3390/su17094194 - 6 May 2025
Viewed by 654
Abstract
Quantifying changes in soil properties greatly benefits our understanding of soil management and sustainable land use, especially in the context of strong anthropogenic activities and climate change. This study investigated the effects of long-term reclamation on soil properties in an artificial oasis region [...] Read more.
Quantifying changes in soil properties greatly benefits our understanding of soil management and sustainable land use, especially in the context of strong anthropogenic activities and climate change. This study investigated the effects of long-term reclamation on soil properties in an artificial oasis region with a cultivation history of more than 50 years. Critical soil properties were measured at 77 sites, and a total of 462 soil samples were collected down to a depth of 1 m, which captures both surface and subsurface processes that are critical for long-term cultivation effects. Thirteen critical soil properties were analyzed, among which four properties—soil organic carbon (SOC), total phosphorus (TP), pH, and ammonium nitrogen (NH4⁺)—were selected for detailed analysis due to their ecological significance and low intercorrelation. By comparing cultivated soils with nearby desert soils, this study found that semicentennial cultivation led to significant improvements in soil properties, including increased concentrations of SOC, NH4⁺, and TP, as well as reduced pH throughout the soil profile, indicating improved fertility and reduced alkalinity. Further analysis suggested that environmental factors—including temperature, clay content, evaporation differences between surface and subsurface layers, sparse vegetation cover, cotton root distribution, as well as prolonged irrigation and fertilization—collectively contributed to the enhancement of SOC decomposition and the reduction of soil alkalinity. Furthermore, three-dimensional digital soil mapping was performed to investigate the effects of long-term cultivation on the distributions of soil properties at unvisited sites. The soil depth functions were separately fitted to model the vertical variation in the soil properties, including the exponential function, power function, logarithmic function, and cubic polynomial function, and the parameters were extrapolated to unvisited sites via the quantile regression forest (QRF), boosted regression tree, and multiple linear regression techniques. The QRF technique yielded the best performance for SOC (R2 = 0.78 and RMSE = 0.62), TP (R2 = 0.79 and RMSE = 0.12), pH (R2 = 0.78 and RMSE = 0.10), and NH4+ (R2 = 0.71 and RMSE = 0.38). The results showed that depth function coupled with machine learning methods can predict the spatial distribution of soil properties in arid areas efficiently and accurately. These research conclusions will lead to more effective targeted measures and guarantees for local agricultural development and food security. Full article
Show Figures

Figure 1

25 pages, 5567 KiB  
Article
Study on the Trade-Off and Synergy Between Agricultural Water–Soil Matching and Ecosystem Service Value in the Tailan River Irrigation District of Xinjiang
by Yufan Ruan, Ying He, Yue Qiu and Le Ma
Sustainability 2025, 17(9), 4173; https://doi.org/10.3390/su17094173 - 5 May 2025
Viewed by 627
Abstract
Xinjiang is located in an inland arid area, and it faces significant challenges in water resource supply and demand, with a fragile ecological environment. Exploring the internal relationship between the time–space distribution of agricultural water–soil matching and the evolution of the ecosystem service [...] Read more.
Xinjiang is located in an inland arid area, and it faces significant challenges in water resource supply and demand, with a fragile ecological environment. Exploring the internal relationship between the time–space distribution of agricultural water–soil matching and the evolution of the ecosystem service value (ESV) in the Tailan River Irrigation District of Xinjiang from 2000 to 2020, this study provides theoretical guidance for the balance of agricultural water–soil resources and the healthy and sustainable development of the ecological environment in the irrigation district. By integrating the water–soil matching coefficient and the equivalent factor method, the spatiotemporal distribution of agricultural water–soil matching and the spatiotemporal evolution of the ESV under the change of land use (LU) in the irrigation district are analyzed. Based on the Pearson correlation, the trade-off synergy between the two is explored. The results show that the following occurred in the past 20 years: (1) Grassland and dryland are the two categories of land with the biggest transfer-out and transfer-in areas in the Tailan River Irrigation District, and the conversion areas are mostly in Jiamu Town and Guleawati Township. (2) The area and reclamation rate of the irrigation district increased gradually, among which the highest reclamation rate was 85.93% in Kezile Town and the lowest was 76.37% in Guleawati Township. The average Gini coefficient of agricultural water–soil in the irrigation district is 0.118, which is absolutely fair. (3) Kezile Town has the highest agricultural water consumption, but the matching of agricultural water–soil always fluctuates between the best and the worst. The agricultural water consumption in Communist Youth League Town is the lowest, but the matching of agricultural water–soil has remained the best for many years. (4) The ESV of the irrigation district showed an overall increasing trend, from CNY 243 million in 2000 to CNY 678 million in 2020; in addition, soil conservation, hydrological regulation, grassland, and dryland contributed the most to ESV in each period. (5) There was a significant trade-off relationship between agricultural water–soil matching and ecosystem services in the Tailan River Irrigation District, while there was a significant synergistic relationship between ecosystem services. Full article
Show Figures

Figure 1

29 pages, 1438 KiB  
Review
A Comparison of Return Periods of Design Ground Motions for Dams from Different Agencies and Organizations
by Kevin Zeh-Zon Lee, David R. Gillette and Angel Gutierrez
Infrastructures 2025, 10(5), 105; https://doi.org/10.3390/infrastructures10050105 - 24 Apr 2025
Viewed by 838
Abstract
The purpose of this paper is to review and compare the criteria of seismic design ground motions and approaches in seismic hazard analysis set forth by various agencies and organizations. A total of 13 agencies and organizations were reviewed including three for non-dam [...] Read more.
The purpose of this paper is to review and compare the criteria of seismic design ground motions and approaches in seismic hazard analysis set forth by various agencies and organizations. A total of 13 agencies and organizations were reviewed including three for non-dam structures. It was found the both the deterministic and probabilistic seismic hazard analysis approaches have been used. Many have combined the two approaches to complement each other. High-consequence dams are designed for a long ground motion return period of approximately 10,000 years, which lies between the design return periods of bridges and nuclear power plants. In contrast to other agencies and organizations, U.S. Bureau of Reclamation dams are not subjected to specific design return periods; they are designed based on risk-informed decisions, which consider the failure probability in relation to the public protection guideline values. In addition, criteria from the Reclamation Design Standards are to be followed in any dam modifications. Based on the findings of this paper, it was deemed that the current Reclamation dam safety decisions and practices are in general agreement with other dam agencies and organizations that also adopt the risk-informed decision process. Full article
(This article belongs to the Special Issue Advances in Dam Engineering of the 21st Century)
Show Figures

Figure 1

37 pages, 9663 KiB  
Article
Integrated Assessment of Groundwater Quality for Water-Saving Irrigation Technology (Western Kazakhstan)
by Yermek Murtazin, Vitaly Kulagin, Vladimir Mirlas, Yaakov Anker, Timur Rakhimov, Zhyldyzbek Onglassynov and Valentina Rakhimova
Water 2025, 17(8), 1232; https://doi.org/10.3390/w17081232 - 21 Apr 2025
Cited by 1 | Viewed by 772
Abstract
Western Kazakhstan is susceptible to desertification, with surface water resource scarcity constraining agricultural development. Groundwater has substantial potential as a reliable and secure alternative to other water resources, particularly for irrigation, which is required to ensure food security. Eight aquifer segments with an [...] Read more.
Western Kazakhstan is susceptible to desertification, with surface water resource scarcity constraining agricultural development. Groundwater has substantial potential as a reliable and secure alternative to other water resources, particularly for irrigation, which is required to ensure food security. Eight aquifer segments with an exploitable potential of 0.24 km3/year have been identified for the integrated assessment of groundwater’s suitability for irrigation. The assessment criteria included hydro-chemical groundwater characteristics and irrigated land soil-reclamation conditions. The primary objectives of this study were to assess the groundwater quality for irrigation and to develop a practical operation scheme for rational groundwater use in water-saving irrigation technologies and optimize agricultural crop cultivation. Approximately 90% of the groundwater in these aquifer segments was found to be suitable for irrigation, with a total amount of 6520 thousand m3/day and a salinity of up to 1 g/L, and an additional 12,971 thousand m3/day had a water salinity of up to 3 g/L. Only approximately 10% had TDS values above 3 g/L and up to 6.5 g/L, categorized as conditionally suitable for restricted customized agricultural crop irrigation. Irrigated land development by complex soil desalination agro-reclamation operations enabled the use of brackish water for irrigation. The integrated analysis allowed the development of drip irrigation and sprinkling system irrigation schemes that gradually replaced wasteful surface irrigation. The irrigated land prospective area recommended for groundwater irrigation development is 653 km2, with the further restructuring of cultivated areas, reducing the number of annual grasses and grain crops and increasing the number of vegetables, potatoes, and perennial grasses. Full article
(This article belongs to the Special Issue Study of the Soil Water Movement in Irrigated Agriculture III)
Show Figures

Graphical abstract

Back to TopTop