Technosol Micromorphology Reveals the Early Pedogenesis of Abandoned Rare Earth Element Mining Sites Undergoing Reclamation in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Presentation and History of the Mining Site
2.2. Soil Description and Sampling
2.3. Physico-Chemical Analyses
2.4. Micromorphology
- (1)
- Micro X-ray fluorescence. A thin section of the surface layer of profile A1 in the reclaimed tailings was completely mapped using a Bruker M4 Tornado µ-XRF (GeoRessources, Vandoeuvre-lès-Nancy, France) consisting of a Rh anode X-ray tube and a Bruker XFalsh double detector (SDD-type). The map was obtained at 50 keV/600 µA with a 20 µm spot, a spacing between two spots of 45 µm, and a counting time of 8 ms. Elemental maps of the most abundant elements detected (Al, Ca, Ce, Fe, Si, Mn, Mg, K, Ti, and Zr) were processed using the integrated software of quantitative mapping Q map by binning 3 pixels and deconvolution of the spectra. The intensity of the color on the maps is proportional to the concentration of the element. The map of Ca showed its presence in the resin used to make thin sections.
- (2)
- Scanning electron microscopy (SEM; GeoRessources, Vandoeuvre-lès-Nancy, France). Several thin sections collected along profiles A1 and A2 in the reclaimed mine tailings were analyzed punctually using an SEM Tescan coupled with an electron-dispersive X-ray spectroscopy (EDX) microanalyzer, running at 15 keV or 18 keV, respectively, for analysis or mapping, with a pressure of 20 Pa allowing a low vacuum.
3. Results
3.1. Characteristics of Mine Tailings
3.2. Description of Soil Profiles
3.3. Physico-Chemical Analyses Along the Profiles
3.4. Micromorphology Characterization
3.4.1. Structure Description
3.4.2. µ-XRF and SEM-EDX Analyses of Mineral Features
3.4.3. Organic Matter and Biogenic Features
3.4.4. Structure Evolution
4. Discussion
4.1. Mine Tailings as Parent Materials
4.2. Effects of Reclamation on the Pedogenesis and Restoration of Soil Functions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novák, T.J.; Balla, D.; Kamp, J. Changes in anthropogenic influence on soils across Europe 1990–2018. Appl. Geogr. 2020, 124, 102294. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legend for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienne, Austria, 2022; Available online: https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (accessed on 17 April 2025).
- Micheli, E.; Schád, P.; Spaargaren, O.; Dent, D.; Nachtergaele, F.; IUSS WG WRB. World Reference Base for Soil Resources, 2006: A Framework for International Classification, Correlation and Communication; World Soil Resources Report; FAO: Rome, Italy, 2006; Volume 103, 5p, Available online: http://www.fao.org/3/a-a0510e.pd (accessed on 7 May 2025).
- Rossiter, D.G. Classification of Urban and Industrial Soils in the World Reference Base for Soil Resources. J. Soils Sediments 2007, 7, 96–100. [Google Scholar] [CrossRef]
- Séré, G.; Schwartz, C.; Ouvrard, S.; Sauvage, C.; Renat, J.C.; Morel, J.L. Soil Construction: A Step for Ecological Reclamation of Derelict Lands. J. Soils Sediments 2008, 8, 130–136. [Google Scholar] [CrossRef]
- Ouédraogo, D.-Y.; Lafitte, A.; Sordello, R.; Pozzi, F.; Mikajlo, I.; Araujo, J.H.R.; Reyjol, Y.; Lerch, T.Z. Existing evidence on the potential of soils constructed from mineral wastes to support biodiversity: A systematic map. Environ. Evid. 2024, 13, 9. [Google Scholar] [CrossRef]
- Ruiz, F.; Resmini Sartor, L.; de Souza Júnior, V.S.; Cheyson Barros dos Santos, J.; Osório Ferreira, T. Fast pedogenesis of tropical Technosols developed from dolomitic limestone mine spoils (SE-Brazil). Geoderma 2020, 374, 114439. [Google Scholar] [CrossRef]
- Goncalves, J.O.; Moreno Fruto, C.; Barranco, M.J.; Silva Oliveiria, M.L.; Ramos, C.G. Recovery of degraded areas through Technosols and mineral Nanoparticles: A review. Sustainablity 2022, 14, 993. [Google Scholar] [CrossRef]
- Aguilar-Garrido, A.; Romero-Freire, A.; Paniagua-López, M.; Martínez-Garzón, F.J.; Martín-Peinado, F.J.; Sierra-Aragón, M. Technosols Derived from Mining, Urban, and Agro-Industrial Waste for the Remediation of Metal(loid)-Polluted Soils: A Microcosm Assay. Toxics 2023, 11, 854. [Google Scholar] [CrossRef]
- Uzarowicz, L.; Wolińska, A.; Błońska, E.; Szafranek-Nakonieczna, A.; Kuźniar, A.; Słodczyk, Z.; Kwasowski, W. Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: Microbiological activity as an indicator of soil development following land reclamation. Appl. Soil Ecol. 2020, 156, 103699. [Google Scholar] [CrossRef]
- Díaz-Ortega, J.; Rivera-Uria, Y.; López-Mendoza, E.; Sedov, S.; Romero, F.; Solleiro-Rebolledo, E.; Martínez-Jardines, L.G. Development of sustainable hydromorphic Technosols within artificial wetlands in mining landscapes: The effects of wastewater and hydrothermal geological materials. J. Soils Sediments 2024, 24, 2948–2962. [Google Scholar] [CrossRef]
- Séré, G.; Schwartz, C.; Ouvrard, S.; Renat, J.C.; Watteau, F.; Villemin, G.; Morel, J.L. Early pedogenic evolution of constructed Technosols. J. Soils Sediments 2010, 10, 1246–1254. [Google Scholar] [CrossRef]
- Paniagua-Lopez, M.; Garcia-Robles, H.; Aguilar-Garrido, A.; Romero-Freire, A.; Lorite, J.; Sierra-Aragon, M. Vegetation establishment in soils polluted by heavy metal(loid)s after natural remediation. Plant Soil 2024, 497, 257–275. [Google Scholar] [CrossRef]
- Chaney, R.L.; Malik, M.; Li, Y.M.; Brown, S.L.; Brewer, E.P.; Angle, J.S.; Baker, A.J.M. Phytoremediation of soil metals. Curr. Opin. Biotechnol. 1997, 8, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Dobson, A.P.; Bradshaw, A.D.; Baker, A.J.M. Hopes for the future: Restoration Ecology and Conservation Biology. Science 1997, 277, 515–522. [Google Scholar] [CrossRef]
- Arocena, J.M.; van Mourik, J.M.; Schilder, M.L.M.; Faz Cano, A. Initial Soil Development Under Pioneer Plant Species in Metal Mine Waste Deposits. Restor. Ecol. 2010, 18, 244–252. [Google Scholar] [CrossRef]
- Zanuzzi, A.; Arocena, J.M.; Van Mourik, J.M.; Cano, A.F. Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology. Geoderma 2009, 154, 69–75. [Google Scholar] [CrossRef]
- Abbruzzini, T.F.; Prado Pano, B.L.; Mora Palomino, L.; Loredo-Jasso, A.U.; del Pilar, M.; Larrocea, O.; Perez Vargas, C.; Peña Ramirez, V.M. Technosols constructed from urban waste enhance carbon stabilization through improved soil aggregation. Int. J. Environ. Qual. 2025, 67, 71–85. [Google Scholar]
- Jangorzo, N.-S.; Watteau, F.; Hajos, D.; Schwartz, C. Nondestructive monitoring of the effect of biological activity on the pedogenesis of a Technosol. J. Soils Sediments 2015, 15, 1705–1715. [Google Scholar] [CrossRef]
- Watteau, F.; Huot, H.; Séré, G.; Begin, J.C.; Rees, F.; Schwartz, C.; Morel, J.L. Micropedology to reveal pedogenetic processes in Technosols. Span. J. Soil Sci. 2018, 8, 148–163. [Google Scholar] [CrossRef]
- Yang, X.J.; Lin, A.J.; Li, X.L.; Wu, Y.D.; Zhou, W.B.; Chen, Z.H. China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ. Dev. 2013, 8, 131–136. [Google Scholar] [CrossRef]
- Liu, W.-S.; Guo, M.-N.; Liu, C.; Yuan, M.; Chen, X.-T.; Huot, H.; Zhao, C.-M.; Tang, Y.-T.; Morel, J.L.; Qiu, R.-L. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Chemosphere 2019, 216, 75–83. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Li, Z.L.; Liu, W.; Liu, S.H.; Zhang, L.M.; Zhong, L.Y.; Luo, X.M.; Liang, H. Restoration of rare earth mine areas: Organic amendments and phytoremediation. Environ. Sci. 2015, 22, 17151–17160. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.W.; Hao, Z.K.; Li, X.H.; Guan, Z.B.; Cai, Y.J.; Liao, X.R. The effects of phytoremediation on soil bacterial communities in an abandoned mine site of rare earth elements. Sci. Total. Environ. 2019, 670, 950–960. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, W.S.; Huot, H.; Guo, M.N.; Zhu, S.C.; Zheng, H.X.; Morel, J.L.; Tang, Y.T.; Qiu, R.L. Biogeochemical cycles of nutrients, rare earth elements (REEs) and Al in soil-plant system in ion-adsorption REE mine tailings remediated with amendment and ramie (Boehmeria nivea L.). Sci. Total Environ. 2022, 809, 152075. [Google Scholar] [CrossRef]
- Murakami, H.; Ishihara, S. REE Mineralization of Weathered Crust and Clay Sediment on Granitic Rocks in the Sanyo Belt, SW Japan and the Southern Jiangxi Province, China. Resour. Geol. 2008, 58, 373–401. [Google Scholar] [CrossRef]
- Li, Y.H.M.; Zhao, W.W.; Zhou, M.-F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model. J. Asian Earth. Sci. 2017, 148, 65–95. [Google Scholar] [CrossRef]
- Papangelakis, V.G.; Moldoveanu, G. Recovery of Rare Earth Elements from clay minerals. In Proceedings of the ERES 2014: 1st European Rare Earth Resources Conference, Milos, Greece, 4–7 September 2014; pp. 191–202. [Google Scholar]
- Yang, B.; Zhou, M.; Shu, W.S.; Lan, C.Y.; Ye, Z.H.; Qiu, R.L.; Cui, G.X.; Wong, M.H. Constitutional tolerance to heavy metals of a fiber crop, ramie (Boehmeria nivea), and its potential usage. Environ. Pollut. 2010, 158, 551–558. [Google Scholar] [CrossRef]
- Segovia, C.; Hedri, M.; Huot, H.; Zigler-Devin, I.; Liu, C.; Tang, Y.; Qiu, R.; Morel, J.L.; Brosse, N. Industrial Ramie Growing on Reclaimed Ion-Adsorption Rare Earth Elements Mine Tailings in Southern China: Defibration and Fibers Quality. Waste Biomass Valorization 2021, 12, 6255–6260. [Google Scholar] [CrossRef]
- Tamm, O. Eine methode zur bestimmung der anorganischen komponente des gelkomplexes im boden. Medd. Stat. Skogsförsöksanst. 1922, 19, 385–404. [Google Scholar]
- Kostka, J.; Luther, G.W., III. Partitioning and speciation of solid-phase iron in saltmarsh sediments. Geochim. Cosmochim. Acta 1994, 58, 1701–1710. [Google Scholar] [CrossRef]
- Murphy, C.P. Thin Section Preparation in Soils and Sediments; AB Academic Publishers: Berkhamsted, UK, 1986; Volume 1. [Google Scholar]
- Stoops, G. (Ed.) Guidelines for Anlysis and Description of Soils and Regolith Thin Sections; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar] [CrossRef]
- Felix-Heningsen, P.; Zakosek, H.; Liu, L.-W. Distribution and genesis of red and yellow soils in the central subtropics of southeast China. Catena 1989, 16, 73–89. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Guidelines for Soil Description, 4th ed.; FAO: Rome, Italy, 2006; 109p. [Google Scholar]
- Dill, H.G. The geology of aluminium phosphates and sulphates of the alunite group minerals: A review. Earth Sci. Rev. 2001, 53, 35–93. [Google Scholar] [CrossRef]
- Janot, N.; Huot, H.; Rivard, C.; Perrin, M.; Noirault, A.; Tang, Y.T.; Watteau, F.; Montargès-Pelletier, E. Localization and speciation of Rare Earth Elements in mine tailings from ion-adsorption clay deposits, Southern China: Insights from microfocused X-ray fluorescence spectroscopy. J. Hazard. Mater. Adv. 2025, 17, 100609. [Google Scholar] [CrossRef]
- Ram, R.; Becker, M.; Brugger, J.; Etschmann, B.; Burcher-Jones, C.; Howard, D.; Kooyman, P.J.; Petersen, J. Characterisation of a rare earth element- and zirconium-bearing ion-adsorption clay deposit in Madagascar. Chem. Geol. 2019, 522, 93–107. [Google Scholar] [CrossRef]
- Coussy, S.; Grangeon, S.; Bataillard, P.; Khodja, H.; Maubec, N.; Faure, P.; Schwartz, C.; Dagois, R. Evolution of iron minerals in a 100years-old Technosol. Consequences on Zn mobility. Geoderma 2017, 290, 19–32. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Chang, Q.; Qiu, T. Technological mineralogy of ion-type rare earth ore before and after leaching. Chin. J. Rare Earths 2019, 43, 1. (In Chinese) [Google Scholar]
- Abdulaha-Al Baquy, M.; Li, J.Y.; Jiang, J.; Mehmood, K.; Shi, R.Y.; Xu, R.K. Critical pH and exchangeable Al of four acidic soils derived from different parent materials for maize crops. J. Soil. Sediment 2018, 18, 1490–1499. [Google Scholar] [CrossRef]
- Jin, X.; Chen, L.; Chen, H.; Zhang, L.; Wang, W.; Ji, H.; Deng, S.; Jiang, J. XRD and TEM analyses of a simulated leached rare earth ore deposit: Implications for clay mineral contents and structural evolution. Ecotoxic. Environ. Saf. 2021, 225, 112728. [Google Scholar] [CrossRef]
- Roberts, J.A.; Daniels, W.L.; Bell, J.C.; Burger, J.A. Early stages of mine soil genesis in a southwest Virginia Spoil lithosequence. Soil Sci. Am. J. 1988, 52, 716–723. [Google Scholar] [CrossRef]
- Brevik, E.C.; Lazari, A.G. Rates of Pedogenesis in Reclaimed Lands as Compared to Rates of Natural Pedogenesis. Soil Horiz. 2014, 55, 1–6. [Google Scholar] [CrossRef]
Recently Leached Tailings (T1, n = 6) | Abandoned Terraced Tailings (T2, n = 5) | ||
---|---|---|---|
Elemental composition (total concentrations) | |||
Ctot | % (w/w) | 0.20 ± 0.04 | 0.17 ± 0.03 |
Ntot | % (w/w) | 0.035 ± 0.004 | 0.015 ± 0.002 |
C:N | - | 5.8 ± 0.9 | 12.0 ± 0.7 |
Altot | % (w/w) | 10.4 ± 1.7 | 8.8 ± 0.6 |
Fetot | % (w/w) | 3.0 ± 0.6 | 2.2 ± 0.5 |
Ktot | % (w/w) | 3.9 ± 0.3 | 4.7 ± 0.2 |
Sitot | % (w/w) | 30.7 ± 2.1 | 32.6 ± 1.2 |
ΣREEs 1 | mg kg−1 | 352 ± 104 | 391 ± 111 |
Particle size distribution | |||
Clay (<2 µm) | % of fine earth | 8.7 ± 4.6 | 7.4 ± 1.1 |
Silt (2–50 µm) | % of fine earth | 34.7 ± 8.6 | 16.4 ± 1.1 |
Sand (50–2000 µm) | % of fine earth | 56.7 ± 12.4 | 76.2 ± 0.9 |
Coarse fragments (>2 mm) | % (w/w) | 14.2 ± 7.8 | 17.4 ± 6.6 |
pH, CEC, and exchangeable cations | |||
pHwater | - | 5.5 ± 0.4 | 4.6 ± 0.1 |
EC 2 | dS m−1 | n.a. | 0.019 ± 0.003 |
CEC 3 | cmol kg−1 | 3.9 ± 1.1 | 2.8 ± 0.7 |
Al/T 4 | % | 56 ± 12 | 77 ± 11 |
S/T 5 | % | 5.8 ± 0.7 | 2.9 ± 0.3 |
Forms of Fe | |||
Feo 6 | mg kg−1 (% of total Fe content) | 148 ± 56 (0.5 ± 0.1% of Fetot) | 228 ± 82 (1.0 ± 0.3 of Fetot) |
Fed 7 | mg kg−1 (% of total Fe content) | 11,091 ± 2003 (38 ± 4 of Fetot) | 8615 ± 1341 (39 ± 6 of Fetot) |
Feo/Fed 8 | % | 1.3 ± 0.3 | 2.6 ± 0. 6 |
(Fed-Feo)/Fetot 9 | % | 37 ± 4 | 38 ± 6 |
Non-Reclaimed Tailings (n = 3 Profiles, C1 to C3) | Reclaimed Tailings—Zone A (n = 5 Profiles, A1 to A5) | |||||
---|---|---|---|---|---|---|
Layer Depth | cm | 0–25 or 30 | 25 or 30–60 | 0–10 | 10–30 or 45 | 30 or 45–60 |
Profile description | ||||||
Compactness 1 | 1–3 | 2–3 | 0 | 1–2 | 2–3 | |
Structure | Single-grain | Single-grain | Granular | Angular blocky | Angular blocky | |
Root frequency | % | 0 | 0 | 96.8 ± 4.9 | 72.0 ± 9.4 | 38.3 ± 22.8 |
Particle size distribution | ||||||
Coarse fragments | % (w/w) | 32.3 ± 1.8 | 29.2 ± 7.6 * | 26.7 ± 6.4 | 34.7 ± 3.5 | 31.5 ± 5.4 |
Sand | % of fine earth | 71.2 ± 6.5 | 69.3 ± 2.1 * | 72.4 ± 7.4 * | 70.2 ± 2.0 * | 69.4 ± 0.0 * |
Silt | % of fine earth | 20.0 ± 4.6 | 24.9 ± 4.9 * | 20.7 ± 9.4 * | 22.3 ± 2.8 * | 22.1 ± 0.6 * |
Clay | % of fine earth | 8.8 ± 2.0 | 5.8 ± 2.8 * | 7.0 ± 2.0 * | 7.6 ± 1.1 * | 8.5 ± 0.6 * |
Porosity | ||||||
ρb 2 | g cm−3 | 1.19 ± 0.14 | 1.42 ± 0.07 * | 0.81 ± 0.07 | 1.29 ± 0.06 | 1.27 ± 0.08 |
θsat 3 | % (v/v) | 42.8 ± 2.5 | 39.7 ± 2.5 * | 37 ± 5.2 | 38.2 ± 1.7 | 42.8 ± 1.7 |
εtot 4 | % (v/v) | 55.2 ± 5.2 | 46.6 ± 2.6 * | 69.6 ± 2.7 | 51.2 ± 2.3 | 52.2 ± 3.0 |
εcap/εtot 5 | % (v/v) | 77.9 ± 7.5 | 85.3 ± 0.6 * | 53.2 ± 7.4 | 74.9 ± 5.4 | 81.9 ± 2.4 |
Non-Reclaimed Tailings (n = 3 Profiles, C1 to C3) | Reclaimed Tailings—Zone A (n = 5 Profiles, A1 to A5) | |||||
---|---|---|---|---|---|---|
Layer Depth | cm | 0–25 or 30 | 25 or 30–60 | 0–10 | 10–30 or 45 | 30 or 45–60 |
Elemental composition (total concentrations) | ||||||
Ctot | % | 0.14 ± 0.02 | 0.16 ± 0.02 * | 1.83 ± 0.45 | 0.22 ± 0.02 | 0.16 ± 0.01 |
Ntot | % | 0.017 ± 0.006 | 0.021 ± 0.004 * | 0.155 ± 0.035 | 0.021 ± 0.002 | 0.017 ± 0.006 |
C:N | - | 8.8 ± 1.8 | 7.7 ± 0.2 * | 11.7 ± 1.1 | 10.4 ± 1.0 | 10.7 ± 3.7 |
Altot | % | 8.6 ± 0.9 | 9.0 ± 0.1 * | 8.7 ± 0.8 | 9.2 ± 0.1 | 9.1 ± 0.2 |
Fetot | % | 2.4 ± 1.1 | 3.1 ± 0.1 * | 2.8 ± 0.1 | 3.1 ± 0.3 | 2.8 ± 0.2 |
Ktot | % | 3.6 ± 0.5 | 3.4 ± 0.1 * | 3.9 ± 0.1 | 4.2 ± 0.2 | 3.9 ± 0.3 |
Sitot | % | 33.1 ± 1.9 | 32.2 ± 0.5 * | 30.8 ± 1.4 | 31.6 ± 0.6 | 32.1 ± 0.2 |
Catot | g kg−1 | 0.14 ± 0.0003 | 0.09 ± 0.08 * | 1.53 ± 0.44 | 0.45 ± 0.30 | 0.36 ± 0.18 |
Ptot | g kg−1 | 0.04 ± 0.01 | 0.03 ± 0.02 * | 0.74 ± 0.21 | 0.06 ± 0.02 | 0.04 ± 0.01 |
Stot | g kg−1 | 0.11 ± 0.02 | 0.07 ± 0.07 * | 0.34 ± 0.23 | 0.14 ± 0.08 | 0.13 ± 0.02 |
ΣREEs 1 | mg kg−1 | 426 ± 178 | 562 ± 108 * | 809 ± 643 | 334 ± 133 | 294 ± 60 |
Chemical properties | ||||||
pHwater | - | 4.44 ± 0.05 | 4.44 ± 0.04 * | 5.25 ± 0.28 | 4.60 ± 0.19 | 4.54 ± 0.21 |
CEC 2 | cmol+ kg−1 | 3.2 ± 0.9 | 4.0 ± 1.0 * | 5.9 ± 1.3 | 4.4 ± 0.8 | 4.6 ± 0.4 |
Alexch 3 | cmol+ kg−1 | 2.3 ± 0.6 | 2.2 ± 0.1 * | 0.1 ± 0.1 | 2.2 ± 1.3 | 2.9 ± 0.7 |
Caexch 3 | cmol+ kg−1 | 0.1 ± 0.1 | 0.5 ± 0.4 * | 5.2 ± 1.4 | 1.6 ± 1.4 | 1.3 ± 0.9 |
Kexch 3 | cmol+ kg−1 | 0.06 ± 0.02 | 0.10 ± 0.04 * | 0.34 ± 0.12 | 0.11 ± 0.05 | 0.09 ± 0.01 |
Mgexch 3 | cmol+ kg−1 | 0.01 ± 0.01 | 0.03 ± 0.02 * | 1.01 ± 0.15 | 0.27 ± 0.19 | 0.09 ± 0.04 |
Naexch 3 | cmol+ kg−1 | <DL | <DL * | 0.03 ± 0.01 | <DL | <DL |
Al/T 4 | % | 72 ± 3 | 57 ± 13 * | 2.3 ± 2.6 | 52 ± 33 | 62 ± 16 |
S/T 5 | % | 5.7 ± 1.4 | 16 ± 8 * | 113 ± 7 | 44 ± 29 | 31 ± 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watteau, F.; Morel, J.L.; Liu, C.; Tang, Y.; Huot, H. Technosol Micromorphology Reveals the Early Pedogenesis of Abandoned Rare Earth Element Mining Sites Undergoing Reclamation in South China. Minerals 2025, 15, 514. https://doi.org/10.3390/min15050514
Watteau F, Morel JL, Liu C, Tang Y, Huot H. Technosol Micromorphology Reveals the Early Pedogenesis of Abandoned Rare Earth Element Mining Sites Undergoing Reclamation in South China. Minerals. 2025; 15(5):514. https://doi.org/10.3390/min15050514
Chicago/Turabian StyleWatteau, Françoise, Jean Louis Morel, Chang Liu, Yetao Tang, and Hermine Huot. 2025. "Technosol Micromorphology Reveals the Early Pedogenesis of Abandoned Rare Earth Element Mining Sites Undergoing Reclamation in South China" Minerals 15, no. 5: 514. https://doi.org/10.3390/min15050514
APA StyleWatteau, F., Morel, J. L., Liu, C., Tang, Y., & Huot, H. (2025). Technosol Micromorphology Reveals the Early Pedogenesis of Abandoned Rare Earth Element Mining Sites Undergoing Reclamation in South China. Minerals, 15(5), 514. https://doi.org/10.3390/min15050514