Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = recirculation bubble

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 15170 KB  
Article
Numerical Investigation of Recirculation Bubble Dynamics in Extremely Under-Expanded Jet Impingement with Non-Uniform Inflow Conditions
by Zixi Zhao, Ruiyang Xu and Guosheng He
Aerospace 2026, 13(1), 102; https://doi.org/10.3390/aerospace13010102 - 21 Jan 2026
Viewed by 159
Abstract
During lunar landing and takeoff, an extremely under-expanded jet from retrorocket engines generates a complex impingement flow, including multiple shocks and a near-field recirculation bubble, posing critical risks to lunar missions. To clarify the formation and evolution of the recirculation bubble, numerical simulations [...] Read more.
During lunar landing and takeoff, an extremely under-expanded jet from retrorocket engines generates a complex impingement flow, including multiple shocks and a near-field recirculation bubble, posing critical risks to lunar missions. To clarify the formation and evolution of the recirculation bubble, numerical simulations under non-uniform inflow conditions over a range of nozzle heights are performed using a compressible Navier–Stokes solver. The shock structures depend on the distance available for inflow development. Non-uniform total pressure ahead of the surface shock is the primary driver of the adverse pressure gradient that initiates the bubble. This non-uniformity originates from shock interactions at high nozzle heights and directly from the inflow conditions at low heights. Furthermore, the flow stabilizes rapidly at high nozzle heights, while strong unsteadiness persists at low heights. A dimensionless coefficient, CRB, defined as the ratio of pressure difference to dynamic pressure along the recirculation bubble boundary, is proposed to characterize the interaction between the recirculation bubble and surface shock. Its steady-state variation with nozzle height reveals a distinct threshold below which both bubble size and intensity increase sharply, indicating a flow pattern transition. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

22 pages, 5391 KB  
Article
Rotor–Stator Configuration in Gas-Inducing Reactors: Effects of Blade Number and Thickness on Gas Holdup
by Ehsan Zamani Abyaneh, Farhad Ein-Mozaffari and Ali Lohi
Processes 2026, 14(2), 354; https://doi.org/10.3390/pr14020354 - 19 Jan 2026
Viewed by 225
Abstract
Gas-inducing reactors (GIRs) are widely used in applications where external gas recycling is unsafe or operationally restricted, yet quantitative design guidelines for impeller–stator geometry remain scarce, despite its strong influence on gas dispersion and retention. This study investigates the effects of stator blade [...] Read more.
Gas-inducing reactors (GIRs) are widely used in applications where external gas recycling is unsafe or operationally restricted, yet quantitative design guidelines for impeller–stator geometry remain scarce, despite its strong influence on gas dispersion and retention. This study investigates the effects of stator blade number and blade thickness on gas holdup in a double-impeller GIR using a three-dimensional Euler–Euler CFD framework. Stator configurations with 12–48 blades and blade thicknesses of 1.5–45 mm were examined and validated against experimental data, with gas holdup predictions agreeing within 5–10%. The results show that the stator open-area fraction (ϕA) is the dominant geometric parameter governing the balance between radial dispersion and axial confinement. High-ϕA stators (fewer, thinner blades) enhance bulk recirculation and bubble residence time, increasing gas holdup by up to ~20% relative to dense stator designs, whereas low-ϕA stators suppress macro-circulation, promote axial gas transport, and reduce holdup despite higher local dissipation near the rotor–stator gap. A modified gas-holdup correlation incorporating ϕA is proposed, yielding strong agreement with CFD and experimental data (R2 = 0.96). Torque analysis further reveals competing effects between impeller gassing, which lowers hydraulic loading, and increased flow resistance at low ϕA, which elevates torque. Overall, the results provide quantitative guidance on how stator blade number and thickness influence gas holdup, enabling informed stator design and optimization in GIRs to improve gas dispersion through rational geometric selection rather than trial and error approaches. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

27 pages, 7755 KB  
Article
Characterization of a Multi-Diffuser Fine-Bubble Aeration Reactor: Influence of Local Parameters and Hydrodynamics on Oxygen Transfer
by Oscar Prades-Mateu, Guillem Monrós-Andreu, Delia Trifi, Jaume Luis-Gómez, Salvador Torró, Raúl Martínez-Cuenca and Sergio Chiva
Water 2025, 17(24), 3448; https://doi.org/10.3390/w17243448 - 5 Dec 2025
Viewed by 742
Abstract
Fine-bubble aeration is a core process in wastewater treatment plants (WWTPs). However, the physical mechanisms linking bubble plume hydrodynamics to oxygen transfer performance remain insufficiently quantified under configurations representative of full-scale installations. This study presents a local multi-sensor experimental characterization of a multiple [...] Read more.
Fine-bubble aeration is a core process in wastewater treatment plants (WWTPs). However, the physical mechanisms linking bubble plume hydrodynamics to oxygen transfer performance remain insufficiently quantified under configurations representative of full-scale installations. This study presents a local multi-sensor experimental characterization of a multiple bubble plume system using a 4 × 4 array of commercial membrane diffusers in a pilot-scale aeration tank (2 m3), emulating WWTP diffuser density and geometry. Airflow rate was varied to analyze its effects on mixing and oxygen transfer efficiency. The experimental methodology combines three complementary measurement approaches. Oxygen transfer performance is quantified using a dissolved oxygen probe. Liquid-phase velocity fields are then mapped using Acoustic Doppler Velocimetry (ADV). Finally, local two-phase measurements are obtained using dual-tip Conductivity Probe (CP) arrays, which provide bubble size, bubble velocity, void fraction, and Interfacial Area Concentration (IAC). Based on these observations, a zonal hydrodynamic model is proposed to describe plume interaction, wall-driven recirculation, and the formation of a collective plume core at higher airflows. Quantitatively, the results reveal a 29% reduction in Standard Oxygen Transfer Efficiency (SOTE) between 10 and 40 m3/h, driven by a 41% increase in bubble size and an 18% rise in bubble velocity. Bubble chord length also increased with height, by 33%, 19%, and 15% over 0.8 m for 10, 20, and 40 m3/h, respectively. These trends indicate that increasing airflow enhances turbulent mixing but simultaneously enlarges bubbles and accelerates their ascent, thereby reducing residence time and negatively affecting oxygen transfer. Overall, the validated multiphase datasets and mechanistic insights demonstrate the dominant role of diffuser interaction in dense layouts, supporting improved parameterization and experimental benchmarking of fine-bubble aeration systems in WWTPs. Full article
(This article belongs to the Special Issue Hydrodynamics Science Experiments and Simulations, 2nd Edition)
Show Figures

Figure 1

22 pages, 9007 KB  
Article
Numerical Analysis of Aerodynamic Drag Reduction for a DrivAer Automobile Model Using Rear Air Jets
by Shun Liu, Tao Chen and Wenjie Zhou
Appl. Sci. 2025, 15(22), 12334; https://doi.org/10.3390/app152212334 - 20 Nov 2025
Viewed by 715
Abstract
This paper presents a numerical investigation into aerodynamic drag reduction by air jets for a realistic DrivAer estateback vehicle model. Numerical simulations are conducted based on Reynolds-Averaged Navier–Stokes equations with a shear stress transport k-ω turbulence model, for optimizing the drag reduction with [...] Read more.
This paper presents a numerical investigation into aerodynamic drag reduction by air jets for a realistic DrivAer estateback vehicle model. Numerical simulations are conducted based on Reynolds-Averaged Navier–Stokes equations with a shear stress transport k-ω turbulence model, for optimizing the drag reduction with seven individual rear slot jets and their combination. The results demonstrate that the jets located at the upper and lower edges of the rear end could achieve the highest individual drag reduction of up to 4.82%, by suppressing recirculation bubbles, delaying flow separation, and promoting pressure recovery. The jet positioned at the lower lateral side of vehicle base reduces the drag by 4.14% through the control of the underbody vortex. Moderate performance is observed for other individual jets within the wake flow. The underlying mechanisms are elucidated by detailed analyses of wake flow fields and rear-end surface pressure distributions. On this basis, optimal performance is obtained by a multi-jet combination, incorporating the best vertical jet and three better horizontal jets, which collectively yield a remarkable 11.80% drag reduction with high energy efficiency. This work confirms that the active flow control by the rear air jets can greatly improve the aerodynamic efficiency for realistic vehicles, providing a practical approach for drag reduction in modern automotive applications. Full article
Show Figures

Figure 1

16 pages, 4432 KB  
Article
Enhancing Biofilm Performance and Ammonia Removal in MBBR Systems Using Nanobubble Aeration: A Pilot-Scale Experimental Study
by Putu Ayustin Suriasni, Ferry Faizal, Camellia Panatarani, Wawan Hermawan, Ujang Subhan, Fitrilawati Fitrilawati and I Made Joni
Water 2025, 17(22), 3215; https://doi.org/10.3390/w17223215 - 11 Nov 2025
Viewed by 1294
Abstract
The recirculating aquaculture system (RAS) provides a sustainable approach to sustaining aquaculture output while reducing environmental pollution and excessive water consumption. Nonetheless, high concentrations of Total Ammonia Nitrogen (TAN) continue to be a significant obstacle in RAS operations. To address this issue, the [...] Read more.
The recirculating aquaculture system (RAS) provides a sustainable approach to sustaining aquaculture output while reducing environmental pollution and excessive water consumption. Nonetheless, high concentrations of Total Ammonia Nitrogen (TAN) continue to be a significant obstacle in RAS operations. To address this issue, the Moving Bed Biofilm Reactor (MBBR), with bubble aeration, is important for promoting ammonia degradation. Bubble size impacts the effectiveness of bubble aeration, influencing both oxygen transfer and microbial activity. This research involved a 35-day experiment to evaluate the effects of bubble size, produced by nanobubble and coarse bubble aerators, on biofilm development and TAN decrease. The maximum biofilm thickness of 172.88 µm was recorded during nanobubble aeration, which also produced a higher quantity of microbial colonies (293 × 107 CFU) in comparison to coarse bubble aeration (89 × 107 CFU), as validated by Total Plate Count analysis. SEM–EDX imaging additionally demonstrated a more compact and consistent biofilm structure in the presence of nanobubbles. These results align with an increased TAN degradation efficiency, achieving 83.33% with nanobubble aeration, while coarse bubble aeration reached only 50%. The findings indicate that nanobubble aeration enhances biofilm functionality by improving bacterial dispersion and oxygen availability within the biofilm matrix, thereby promoting a more uniform distribution of microorganisms and nutrients. This mechanism represents a promising approach for improving water quality and overall treatment efficiency in recirculating aquaculture systems (RAS). Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 2465 KB  
Proceeding Paper
Phase-Field Simulation of Bubble Evolution and Heat Transfer in Microchannels Under Subcooled and Saturated Flow Boiling
by Jawed Ahmed Jamali and Ying He
Eng. Proc. 2025, 111(1), 27; https://doi.org/10.3390/engproc2025111027 - 28 Oct 2025
Viewed by 844
Abstract
This study numerically investigates the growth and dynamics of a single vapor bubble in a rectangular microchannel under subcooled and saturated inlet conditions using the phase-field method coupled with the Lee phase-change model. Results demonstrate that subcooled flow induces early bubble nucleation, pronounced [...] Read more.
This study numerically investigates the growth and dynamics of a single vapor bubble in a rectangular microchannel under subcooled and saturated inlet conditions using the phase-field method coupled with the Lee phase-change model. Results demonstrate that subcooled flow induces early bubble nucleation, pronounced lateral expansion along the heated wall, and prolonged bubble-wall contact due to stronger condensation at the interface and thinner microlayer formation. Enhanced recirculating vortices and steeper thermal gradients promote vigorous evaporation and increased local heat flux, resulting in faster downstream bubble propagation driven by significant axial pressure gradients. Analysis of temperature gradient and heat flux profiles confirms that subcooled conditions produce higher wall heat flux and more frequent peaks in evaporative flux compared to the saturated case, indicating intensified phase-change activity and thermal transport. Conversely, saturated conditions produce more spherical bubbles with dominant vertical growth, weaker condensation, and symmetrical thermal and pressure fields, leading to slower growth and delayed detachment near the nucleation site. These findings highlight the critical influence of inlet subcooling on bubble morphology, flow structures, heat transfer, and pressure distribution, underscoring the thermal management advantages of subcooled boiling in microchannel applications. Full article
Show Figures

Figure 1

38 pages, 22596 KB  
Article
Parameter Tuning of Detached Eddy Simulation Using Data Assimilation for Enhancing the Simulation Accuracy of Large-Scale Separated Flow Around a Cylinder
by Kyosuke Nomoto and Shigeru Obayashi
Aerospace 2025, 12(8), 736; https://doi.org/10.3390/aerospace12080736 - 19 Aug 2025
Viewed by 663
Abstract
In this study, data assimilation using PIV measurement data of the cylinder wake obtained from wind tunnel tests was applied to tune the simulation model parameters of Detached Eddy Simulation (DES) to improve the accuracy of large-scale separated flow simulations around a cylinder. [...] Read more.
In this study, data assimilation using PIV measurement data of the cylinder wake obtained from wind tunnel tests was applied to tune the simulation model parameters of Detached Eddy Simulation (DES) to improve the accuracy of large-scale separated flow simulations around a cylinder. The use of DES enables more accurate simulation of large-scale separation flows than RANS. However, it increases computational costs and makes parameter tuning using data assimilation difficult. To reduce the computational time required for data assimilation, the conventional data assimilation method was modified. The background values used for data assimilation were constructed by extracting only velocity data from locations corresponding to observation points. This approach reduced the computational time for background error covariance and Kalman gain, thereby significantly reducing the execution time of the filtering step in data assimilation. As a result of tuning, Cdes significantly increased, while Cb1 decreased. This adjustment extended the length of the recirculation bubble, bringing the time-averaged velocity distribution closer to the PIV measurement data. However, the peak frequency in the PSD obtained from the FFT analysis of velocity fluctuations in the wake shifted slightly toward lower frequencies, slightly increasing the discrepancy with the measurement data. Verifying the relationship between parameter values and flow, it was found that parameter tuning stabilized the separation shear layer generated at the leading edge of the cylinder and enlarged the size of the recirculation bubbles. On the other hand, frequency variations did not show consistent changes in response to parameter value changes, indicating that the effect of parameter tuning was limited under the simulation conditions of this study. To bring the frequency fluctuations closer to experimental results, it is suggested that other methods, such as higher-order spatial and temporal accuracy, should be combined. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

18 pages, 8362 KB  
Article
Thermal Performance of Trombe Walls with Inclined Glazing and Guided Vanes
by Albert Jorddy Valenzuela Inga, Patrick Cuyubamba, Boris Senin Carhuallanqui Parian and Joel Contreras Núñez
Sustainability 2025, 17(11), 4775; https://doi.org/10.3390/su17114775 - 22 May 2025
Cited by 1 | Viewed by 1242
Abstract
The Trombe Wall (TW) has gained recognition for its simplicity, efficiency, and zero operational costs, making it a key contributor to Sustainable Development Goals (SDGs) 7 and 11 by enhancing energy access and providing sustainable heating solutions. This passive solar technology is particularly [...] Read more.
The Trombe Wall (TW) has gained recognition for its simplicity, efficiency, and zero operational costs, making it a key contributor to Sustainable Development Goals (SDGs) 7 and 11 by enhancing energy access and providing sustainable heating solutions. This passive solar technology is particularly beneficial in rural areas, offering cost-effective thermal comfort while minimizing environmental impact. This study evaluates the performance of three TW configurations attached to a room, designed with inclined glazing relative to the vertical air layer and stone layers at the bottom acting as thermal mass, commonly used in rural installations in Peru. Using 2D Computational Fluid Dynamics, the analysis compares an inclined heated wall with guided vanes featuring three or five blades to a configuration without vanes. Results show that the three-blade guided flow configuration achieves the highest temperature rise of 4 °C, with a reference temperature of 20 °C, under an absorber heat flux of 200–400 W/m2, albeit with a slightly lower flow rate of 0.17–0.23 kg/s compared to the configuration without guided flow. The maximum thermal efficiency of 57.90% was observed for the three-blade configuration, which is 2.26% higher than the efficiency of the configuration without guided flow, under an absorber heat flux of 400 W/m2. The obtained path-lines reveals that the three-blade configuration minimizes flow detachment, nearly eliminates recirculation near the bottom corner of the glazing, and reduces the separation bubble at the top corner of the massive wall near the outlet. These findings highlight the potential of guided vanes to enhance the performance of Trombe Walls in rural settings. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

15 pages, 17864 KB  
Article
An LES Investigation of Flow Field Around the Cuboid Artificial Reef at Different Angles of Attack
by Jie Dai, Qianshun Xu, Yiqing Gong, Yang Lu, Xinbo Liu and Jingqiao Mao
J. Mar. Sci. Eng. 2025, 13(3), 463; https://doi.org/10.3390/jmse13030463 - 27 Feb 2025
Cited by 5 | Viewed by 1052
Abstract
The placement of artificial reefs (ARs) significantly influences local hydrodynamics and nutrient transport, both of which are crucial for enhancing marine ecosystems and improving marine habitats. Large eddy simulations (LESs) are performed to study the flow field around a cuboid artificial reef (CAR) [...] Read more.
The placement of artificial reefs (ARs) significantly influences local hydrodynamics and nutrient transport, both of which are crucial for enhancing marine ecosystems and improving marine habitats. Large eddy simulations (LESs) are performed to study the flow field around a cuboid artificial reef (CAR) with three inflow angles (α = 0°, 45°, and 90°). The numerical method is successfully validated with experimental data, and a reasonable grid resolution is chosen. The results demonstrate that the case with an inflow angle of 45° exhibits superior flow field performance, including the largest recirculation bubble length and the maximum volumes for both the upwelling and wake regions. Stronger turbulence is also observed around the CAR at this inflow angle, attributed to the intensified shear layer. The instantaneous flow features torn horseshoe vortices and rollers shed from the shear layer, which further develop into hairpin vortices. Full article
Show Figures

Figure 1

23 pages, 8016 KB  
Article
Flow Characteristics of a Dual Sweeping Jet Impinging on a Flat Surface
by Muhammad Zubair and Xin Wen
Actuators 2025, 14(2), 101; https://doi.org/10.3390/act14020101 - 19 Feb 2025
Cited by 2 | Viewed by 1052
Abstract
The dual sweeping jet (DSJ)-producing fluidic oscillator is a novel device developed by sharing a feedback channel between two standard fluidic oscillators. This device produces a pair of sweeping jets in the outer domain and has the potential to be used for the [...] Read more.
The dual sweeping jet (DSJ)-producing fluidic oscillator is a novel device developed by sharing a feedback channel between two standard fluidic oscillators. This device produces a pair of sweeping jets in the outer domain and has the potential to be used for the better and uniform treatment of impinged surfaces. Therefore, it is important to investigate the extent of the synchronicity of these jets at different Re numbers and various aspect ratios in outer domains, and to comprehend their internal switching mechanism simultaneously. The time-averaged flow fields demonstrated that, at lower Re numbers, both sweeping jets were symmetric about their centerlines and the cores were strong. The strength of the cores deteriorated at higher Re numbers, and the flare regions became wider and stronger. Moreover, the transverse velocities pulled the sweeping jets away from the origin and a high upwash flow formed in-between the jets. The phase-averaged flow fields vividly illustrated the sharing mechanism between the two power nozzles through the formation of left- and right-loops consecutively in the shared feedback channel. These primary loops generated an auxiliary mechanism on both sides of a fluidic oscillator, which actually controlled the synchronicity of the two sweeping jets in the outer domain. Additionally, they also showed that both jets are properly synchronized and have strong cores at lower Re numbers. However, at higher Re numbers, greater velocities were found in the switching and sweeping mechanisms which caused asynchrony between the sweeping jets but nonetheless impinged a larger area and covered the region in-between the jets properly. The power nozzles were also found to self-feed themselves due to the hindrance at the ‘outer shoulders’ of this fluidic oscillator and hence caused the premature formation of a recirculation bubble of vorticity between the power nozzle and its respective outer island. Lastly, the aspect ratio analysis revealed that the asynchrony of DSJ at higher Re numbers can be mitigated by reducing the aspect ratio. Full article
Show Figures

Graphical abstract

15 pages, 2301 KB  
Article
Measurement and Correlation of Vapor–Liquid Equilibrium of Mixtures of 1,2-Propanediol or 1,4-Butanediol + 1,8-Diazabicyclo(5.4.0)undec-7-ene at 30 kPa
by Camilla Barbieri, Valentina Schiattarella, Stefania Moioli, Laura A. Pellegrini, Giacomo Filippini, Alberto R. de Angelis and Gianluca Fiori
Clean Technol. 2025, 7(1), 3; https://doi.org/10.3390/cleantechnol7010003 - 30 Dec 2024
Cited by 2 | Viewed by 3755
Abstract
In this study, vapor–liquid equilibrium (VLE) experimental data were measured for two binary solvents based on 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU), which can be used as a new CO2-binding organic liquids (CO2-BOLs) solvent. No experimental data are available in the literature and [...] Read more.
In this study, vapor–liquid equilibrium (VLE) experimental data were measured for two binary solvents based on 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU), which can be used as a new CO2-binding organic liquids (CO2-BOLs) solvent. No experimental data are available in the literature and are fundamental to determine whether the considered mixtures are suitable to be possible alternatives to traditional amine solutions for CO2 removal. The bubble point data of 1,2-propanediol+1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) and 1,4-butanediol+DBU mixtures were measured at 30 kPa. The experimental determination was carried out in an all-glass dynamic recirculation still at the Process Thermodynamics laboratory (PT lab) of Politecnico di Milano. The thermodynamic modeling of the VLE behavior of two DBU-based mixtures was performed considering the NRTL, the UNIQUAC, and the Wilson models, and binary interaction parameters of the NRTL activity coefficients model were regressed on the basis of the measured experimental data. Full article
(This article belongs to the Special Issue Green Solvents and Materials for CO2 Capture)
Show Figures

Figure 1

11 pages, 2836 KB  
Article
Electric Field-Based Ozone Nanobubbles in Tandem with Reduced Ultraviolet Light Exposure for Water Purification and Treatment: Aquaculture and Beyond
by Niall J. English
Environments 2024, 11(12), 292; https://doi.org/10.3390/environments11120292 - 18 Dec 2024
Cited by 2 | Viewed by 3072
Abstract
Micro- and nanobubbles are tiny gas bubbles that are smaller than 100 μm and 1 μm, respectively. This study investigated the impact of electric field ozone nanobubbles (EF-ONBs) on the purification of both deionised and aquaculture water bodies, finding that heightened reactive oxygen [...] Read more.
Micro- and nanobubbles are tiny gas bubbles that are smaller than 100 μm and 1 μm, respectively. This study investigated the impact of electric field ozone nanobubbles (EF-ONBs) on the purification of both deionised and aquaculture water bodies, finding that heightened reactive oxygen species (ROS) production and oxygen reduction potential (ORP) are correlated to a higher production of EF-ONBs. In particular, it was found that there were substantially reduced ultraviolet light requirements for aquaculture when using EF-ONBs to maintain aquaculture purification standards. It is clear that the approximately exponential decay is slowed down by almost ten times by EF-ONBs even without UV applied, and that it is still roughly six times longer than the ‘control’ case of standard O3 sparging in water (i.e., meso- and macro-bubbles with no meaningful level of dispersed-phase, bubble-mediated dissolution beyond the standard Henry’s law state—owing mostly to rapid Stokes’ law rising speeds). This has very positive implications for, inter alia, recirculation aeration systems featuring an ozonation cycle, as well as indoor agriculture under controlled-light environments and malting, where ozonation cycles are also often used or contemplated in process redesign strategies. Such promising results for EF-ONBs offer, inter alia, more sustainable aquaculture, water sterilisation, indoor farming, and malting. Full article
(This article belongs to the Special Issue Environmental Risk Assessment of Aquatic Environments)
Show Figures

Figure 1

16 pages, 8548 KB  
Review
CREC Optical-Fibre Sensors for Hydrodynamic Studies in Gas−Solid Fluidized Beds
by Nicolas Torres Brauer, Cesar Medina-Pedraza and Hugo de Lasa
Inventions 2024, 9(5), 94; https://doi.org/10.3390/inventions9050094 - 28 Aug 2024
Cited by 1 | Viewed by 1509
Abstract
Optical probes can be employed in dense and dilute fluidized beds. Their application is useful to determine particle volume fraction, bubble velocity, bubble size, and solid segregation in dense-phase fluidized-bed reactors, as well as particle-cluster velocity, size, and shape, in downer/riser units. The [...] Read more.
Optical probes can be employed in dense and dilute fluidized beds. Their application is useful to determine particle volume fraction, bubble velocity, bubble size, and solid segregation in dense-phase fluidized-bed reactors, as well as particle-cluster velocity, size, and shape, in downer/riser units. The CREC-UWO team has developed a unique and miniaturized CREC Optiprobes System (CREC-GS-OPS) equipped with a GRIN (graded refraction index) lens. The GRIN lens creates a small volume of high light irradiation by focusing a laser a few millimetres away from the front of the probe tip. This design minimizes sensor intrusiveness and, as a result, provides trustworthy measurements of hydrodynamic parameters. Through the application of the CREC-GS-OPS, advances have been achieved, leading to (a) the development of a “Y-back” unit with graphite ferrules that protects the optiprobes from fibre-optic stresses and prevents the loss of sensor calibration and (b) the establishment of statistically-based data analysis. It is envisioned that through the introduction of a few design changes, the CREC Optiprobes will be made suitable for high-temperature applications. This will allow the measurement of catalyst flow recirculation (among other measurements), in industrial-scale fluidized-bed catalytic cracking units involving fluidized riser crackers and catalyst regenerators. Full article
(This article belongs to the Special Issue Inventions and Innovations in Optical Sensing Materials and Devices)
Show Figures

Figure 1

22 pages, 12892 KB  
Article
The Effect of Blade Angle Distribution on the Flow Field of a Centrifugal Impeller in Liquid-Gas Flow
by Michalis Mentzos, Ioannis Kassanos, Ioannis Anagnostopoulos and Andronikos Filios
Energies 2024, 17(16), 3997; https://doi.org/10.3390/en17163997 - 13 Aug 2024
Cited by 4 | Viewed by 3206
Abstract
Operating centrifugal pumps under two-phase flow conditions presents challenges such as phase separation, cavitation, and flow instabilities, compromising reliability and performance. A specialized design is crucial to mitigate these issues. This study utilized computational fluid dynamics (CFDs) to understand two-phase flow behavior and [...] Read more.
Operating centrifugal pumps under two-phase flow conditions presents challenges such as phase separation, cavitation, and flow instabilities, compromising reliability and performance. A specialized design is crucial to mitigate these issues. This study utilized computational fluid dynamics (CFDs) to understand two-phase flow behavior and assess the impact of different blade geometries on pump performance under such conditions. For this purpose, the inhomogeneous multiphase model was employed, wherein the momentum and continuity flow equations were individually solved for each phase across three different impellers with varying blade angle distributions. The computational results indicated higher gas concentrations on the pressure side of the blade, with gas pocket size correlating with flow rate and inlet gas concentration. The blade angle distribution’s effect was more pronounced with increased gas concentrations, while a tendency of gas bubbles to coalesce towards the impeller shroud was also observed. The presence of gas promoted flow recirculation and separation, substantially reducing impeller performance. Blade angle distribution critically influenced the flow field, affecting flow separation, stability, efficiency, and overall performance, highlighting the importance of optimized blade design for enhanced centrifugal pump performance in liquid–gas two-phase flow conditions. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

23 pages, 5664 KB  
Article
Toward Scale-Adaptive Subgrid-Scale Model in LES for Turbulent Flow Past a Sphere
by H. Ali Marefat, Jahrul M Alam and Kevin Pope
Fluids 2024, 9(6), 144; https://doi.org/10.3390/fluids9060144 - 18 Jun 2024
Cited by 2 | Viewed by 2314
Abstract
This study explores the dynamics of turbulent flow around a sphere at a Reynolds number of Re=103 using large-eddy simulation, focusing on the intricate connection between vortices and strain within the recirculation bubble of the wake. Employing a relatively [...] Read more.
This study explores the dynamics of turbulent flow around a sphere at a Reynolds number of Re=103 using large-eddy simulation, focusing on the intricate connection between vortices and strain within the recirculation bubble of the wake. Employing a relatively new subgrid-scale modeling approach based on scale adaptivity, this research implements a functional relation to compute ksgs that encompasses both vortex-stretching and strain rate mechanisms essential for the energy cascade process. The effectiveness of this approach is analyzed in the wake of the sphere, particularly in the recirculation bubble, at the specified Reynolds number. It is also evaluated in comparison with two different subgrid-scale models through detailed analysis of the coherent structures within the recirculation bubble. These models—scale-adaptive, k-Equation, and dynamic k-Equation—are assessed for their ability to capture the complex flow dynamics near the wake. The findings indicate that while all models proficiently simulate key turbulent wake features such as vortex formation and kinetic energy distribution, they exhibit unique strengths and limitations in depicting specific flow characteristics. The scale-adaptive model shows a good ability to dynamically adjust to local flow conditions, thereby enhancing the representation of turbulent structures and eddy viscosity. Similarly, the dKE model exhibits advantages in energy dissipation and vortex dynamics due to its capability to adjust coefficients dynamically based on local conditions. The comparative analysis and statistical evaluation of vortex stretching and strain across models deepen the understanding of turbulence asymmetries and intensities, providing crucial insights for advancing aerodynamic design and analysis in various engineering fields and laying the groundwork for further sophisticated turbulence modeling explorations. Full article
(This article belongs to the Special Issue Turbulent Flow, 2nd Edition)
Show Figures

Figure 1

Back to TopTop