Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (539)

Search Parameters:
Keywords = receptor tyrosine kinase genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2600 KiB  
Article
Nintedanib Induces Mesenchymal-to-Epithelial Transition and Reduces Subretinal Fibrosis Through Metabolic Reprogramming
by David Hughes, Jüergen Prestle, Nina Zippel, Sarah McFetridge, Manon Szczepan, Heike Neubauer, Heping Xu and Mei Chen
Int. J. Mol. Sci. 2025, 26(15), 7131; https://doi.org/10.3390/ijms26157131 - 24 Jul 2025
Viewed by 359
Abstract
This study aimed to investigate the tyrosine kinase inhibitor Nintedanib and its potential role in reversing epithelial–mesenchymal transition (EMT) induced by transforming growth factor beta 2 (TGF-β2) in retinal pigment epithelial (RPE) cells, along with its therapeutic potential using a mouse model of [...] Read more.
This study aimed to investigate the tyrosine kinase inhibitor Nintedanib and its potential role in reversing epithelial–mesenchymal transition (EMT) induced by transforming growth factor beta 2 (TGF-β2) in retinal pigment epithelial (RPE) cells, along with its therapeutic potential using a mouse model of subretinal fibrosis. We hypothesized that the blockade of angiogenesis promoting and fibrosis inducing signaling using the receptor tyrosine kinase inhibitor Nintedanib (OfevTM) can prevent or reverse EMT both in vitro and in our in vivo model of subretinal fibrosis. Primary human retinal pigment epithelial cells (phRPE) and adult retinal pigment epithelial cell line (ARPE-19) cells were treated with TGF-β210 ng/mL for two days followed by four days of Nintedanib (1 µM) incubation. Epithelial and mesenchymal phenotypes were assessed by morphological examination, quantitative real-time polymerase chain reaction(qPCR) (ZO-1, Acta2, FN, and Vim), and immunocytochemistry (ZO-1, vimentin, fibronectin, and αSMA). Metabolites were measured using luciferase-based assays. Extracellular acidification and oxygen consumption rates were measured using the Seahorse XF system. Metabolic-related genes (GLUT1, HK2, PFKFB3, CS, LDHA, LDHB) were evaluated by qPCR. A model of subretinal fibrosis using the two-stage laser-induced method in C57BL/6J mice assessed Nintedanib’s therapeutic potential. Fibro-vascular lesions were examined 10 days later via fluorescence angiography and immunohistochemistry. Both primary and ARPE-19 RPE stimulated with TGF-β2 upregulated expression of fibronectin, αSMA, and vimentin, and downregulation of ZO-1, consistent with morphological changes (i.e., elongation). Glucose consumption, lactate production, and glycolytic reserve were significantly increased in TGF-β2-treated cells, with upregulation of glycolysis-related genes (GLUT1, HK2, PFKFB3, CS). Nintedanib treatment reversed TGF-β2-induced EMT signatures, down-regulated glycolytic-related genes, and normalized glycolysis. Nintedanib intravitreal injection significantly reduced collagen-1+ fibrotic lesion size and Isolectin B4+ neovascularization and reduced vascular leakage in the two-stage laser-induced model of subretinal fibrosis. Nintedanib can induce Mesenchymal-to-Epithelial Transition (MET) in RPE cells and reduce subretinal fibrosis through metabolic reprogramming. Nintedanib can therefore potentially be repurposed to treat retinal fibrosis. Full article
Show Figures

Figure 1

16 pages, 1480 KiB  
Article
Enhanced Drug Screening Efficacy in Zebrafish Using a Highly Oxygen-Permeable Culture Plate
by Liqing Zang, Shota Kondo, Yukiya Komada and Norihiro Nishimura
Appl. Sci. 2025, 15(15), 8156; https://doi.org/10.3390/app15158156 - 22 Jul 2025
Viewed by 300
Abstract
Zebrafish are model organisms for drug screening owing to their transparent bodies, rapid embryonic development, and genetic similarities with humans. However, using standard polystyrene culture plates can limit the oxygen supply, potentially affecting embryo survival and the reliability of assays conducted in zebrafish. [...] Read more.
Zebrafish are model organisms for drug screening owing to their transparent bodies, rapid embryonic development, and genetic similarities with humans. However, using standard polystyrene culture plates can limit the oxygen supply, potentially affecting embryo survival and the reliability of assays conducted in zebrafish. In this study, we evaluated the application of a novel, highly oxygen-permeable culture plate (InnoCellTM) in zebrafish development and drug screening assays. Under both normal and oxygen-restricted conditions, zebrafish embryos cultured on InnoCellTM plates exhibited significantly improved developmental parameters, including heart rate and body length, compared with those cultured on conventional polystyrene plates. The InnoCellTM plate enabled a significant reduction in medium volume without compromising zebrafish embryo viability, thereby demonstrating its advantages, particularly in high-throughput 384-well formats. Drug screening tests using antiangiogenic receptor tyrosine kinase inhibitors (TKIs) revealed enhanced sensitivity and more pronounced biological effects in InnoCellTM plates, as evidenced by the quantification of intersegmental blood vessels and gene expression analysis of the vascular endothelial growth factor receptor (vegfr, also known as kdrl). These results indicate that the InnoCellTM highly oxygen-permeable plate markedly improves zebrafish-based drug screening efficiency and assay reliability, highlighting its potential for widespread application in biomedical research. Full article
Show Figures

Figure 1

16 pages, 554 KiB  
Systematic Review
Ocular Manifestations in Congenital Insensitivity to Pain with Anhidrosis: A Window into a Rare Syndrome
by Mohammed Baker, Kenda Abedal-Kareem, Sadeen Eid, Mahmoud Alkhawaldeh, Yahya Albashaireh, Jihan Joulani, Sara Bani Amer, Ethar Hazaimeh, Omar F. Jbarah, Abdelwahab Aleshawi and Rami Al-Dwairi
Vision 2025, 9(3), 62; https://doi.org/10.3390/vision9030062 - 21 Jul 2025
Viewed by 335
Abstract
Background: Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive syndrome caused by loss-of-function mutations in the Neurotrophic Tyrosine Kinase Receptor 1 gene, characterized by recurrent episodes of infections and unexplained fever, anhidrosis, absence of reactions to noxious stimuli, [...] Read more.
Background: Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive syndrome caused by loss-of-function mutations in the Neurotrophic Tyrosine Kinase Receptor 1 gene, characterized by recurrent episodes of infections and unexplained fever, anhidrosis, absence of reactions to noxious stimuli, intellectual disability, self-mutilating behaviors, and damage to many body organs, including the eyes. Main text: We systematically searched the Medline/PubMed, Scopus, and Web of Science databases from their inception until March 2025 for papers describing the clinical manifestations of patients with CIPA. The inclusion criterion was papers reporting ocular manifestations of patients diagnosed with CIPA. We excluded non-English papers or those reporting ocular manifestations of patients diagnosed with syndromes other than CIPA. Also, we excluded review articles, clinical trials, gray literature, or any paper that did not report ocular manifestations of patients with CIPA or that reported patients with previous ocular surgeries. Out of 6243 studies, 28 were included in the final analysis, comprising 118 patients. The mean age was 7.37 years, and males represented 63.5% (n = 75). Of the patients, fifty-six had bilateral ocular manifestations. The most common ocular manifestations were the absence of corneal reflex in 56 patients (47.5%, bilateral in 56), whereas corneal ulcerations were the second most common manifestation in 46 patients (38.98%, bilateral in 8), followed by corneal opacity in 32 patients (27.11%, bilateral in 19). Topical lubricants, topical antibiotics, and lateral tarsorrhaphy were common management modalities for these patients. Absent corneal sensitivity, corneal ulcers, and corneal opacities, among other manifestations, are common ocular presentations in patients with CIPA. Conclusions: Self-mutilation, intellectual disability, decreased lacrimation, and absence of the corneal reflex are factors that may explain the development of these manifestations in CIPA. The early detection of these manifestations can improve patient conditions and prevent further complications, in addition to helping to guide the clinical diagnosis of CIPA in these patients. Full article
Show Figures

Figure 1

12 pages, 1025 KiB  
Article
Inhibitory Effects of Vandetanib on Catecholamine Synthesis in Rat Pheochromocytoma PC12 Cells
by Yoshihiko Itoh, Kenichi Inagaki, Tomohiro Terasaka, Eisaku Morimoto, Takahiro Ishii, Kimitomo Yamaoka, Satoshi Fujisawa and Jun Wada
Int. J. Mol. Sci. 2025, 26(14), 6927; https://doi.org/10.3390/ijms26146927 - 18 Jul 2025
Viewed by 317
Abstract
Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on [...] Read more.
Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on MTCs and PCCs. Recently, TKIs, namely, sunitinib and selpercatinib, which were clinically used to target PPGLs, have been reported to decrease catecholamine levels without reducing tumor size. Our clinical case of metastatic medullary thyroid cancer, which is associated with RET mutations undergoing treatment with vandetanib, also suggests that vandetanib can decrease catecholamine levels. Therefore, we investigated the effect of vandetanib, a representative multi-targeted TKI for RET-related MTC, on cell proliferation and catecholamine synthesis in rat pheochromocytoma PC12 cells. Vandetanib reduced viable cells in a concentration-dependent manner. The dopamine and noradrenaline levels of the cell lysate were reduced in a concentration-dependent manner. They also decreased more prominently at lower concentrations of vandetanib compared to the inhibition of cell proliferation. The RNA knockdown study of Ret revealed that this inhibitory effect on catecholamine synthesis is mainly mediated by the suppression of RET signaling. Next, we focused on two signaling pathways downstream of RET, namely, ERK and AKT signaling. Treatment with vandetanib reduced both ERK and AKT phosphorylation in PC12 cells. Moreover, both an MEK inhibitor U0126 and a PI3K/AKT inhibitor LY294002 suppressed catecholamine synthesis without decreasing viable cells. This study in rat pheochromocytoma PC12 cells reveals the direct inhibitory effects of vandetanib on catecholamine synthesis via the suppression of RET-ERK and RET-AKT signaling. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

12 pages, 1345 KiB  
Article
Do NGF and LPS Interact Synergistically to Modulate Inflammation in Sheep Endometrial Epithelial Cells?
by Gabriella Guelfi, Camilla Capaccia, Vicente Francisco Ratto, Cecilia Dall’Aglio, Francesca Mercati and Margherita Maranesi
Int. J. Mol. Sci. 2025, 26(14), 6862; https://doi.org/10.3390/ijms26146862 - 17 Jul 2025
Viewed by 202
Abstract
Neurotrophins and inflammatory mediators are known to influence endometrial function, but their interplay in luminal epithelial cells remains poorly characterized. In this study, sheep endometrial luminal epithelial cells (SELECs) were treated with nerve growth factor (NGF), lipopolysaccharide (LPS), or both, and the effects [...] Read more.
Neurotrophins and inflammatory mediators are known to influence endometrial function, but their interplay in luminal epithelial cells remains poorly characterized. In this study, sheep endometrial luminal epithelial cells (SELECs) were treated with nerve growth factor (NGF), lipopolysaccharide (LPS), or both, and the effects on gene expression and prostaglandin secretion were evaluated. NGF stimulation alone induced a clear transcriptional activation of NGF, neurotrophic receptor tyrosine kinase 1 (NTRK1), p75 neurotrophin receptor (p75NTR), cyclooxygenase 2 (COX2), and steroidogenic acute regulatory protein (STAR). LPS treatment selectively increased Toll-like receptor 4 (TLR4), COX2, and insulin-like growth factor binding protein 6 (IGFBP6). Combined NGF and LPS treatment did not enhance the transcriptional response beyond that induced by NGF alone, except for STAR. However, co-treatment resulted in a modest increase in prostaglandin production, particularly prostaglandin F2α (PGF2α), but not prostaglandin E2 (PGE2), compared to single treatments, suggesting a possible post-transcriptional modulation rather than a transcriptional synergy. These findings indicate that NGF acts as the primary transcriptional driver in SELECs, while LPS contributes selectively and may enhance prostaglandin output. The observed increase in prostaglandin production may involve post-transcriptional mechanisms, although this remains to be confirmed. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

22 pages, 5156 KiB  
Article
The Role of Fat Mass and Obesity-Associated (FTO) Gene in Non-Small Cell Lung Cancer Tumorigenicity and EGFR Tyrosine Kinase Inhibitor Resistance
by Aayush Rastogi, Rong Qiu, Rachel Campoli, Usama Altayeh, Sarai Arriaga, Muhammad J. Khan, Subaranjana Saravanaguru Vasanthi, Robert Hillwig and Neelu Puri
Biomedicines 2025, 13(7), 1653; https://doi.org/10.3390/biomedicines13071653 - 7 Jul 2025
Viewed by 514
Abstract
Background/Objectives: The fat mass and obesity-associated (FTO) protein demethylates nuclear N6-Methyladenosine (m6A) on mRNA, facilitates tumor growth, and contributes to therapeutic resistance in multiple cancer types. Recent evidence demonstrates several roles of FTO in tumorigenesis. In this study, we seek to explore [...] Read more.
Background/Objectives: The fat mass and obesity-associated (FTO) protein demethylates nuclear N6-Methyladenosine (m6A) on mRNA, facilitates tumor growth, and contributes to therapeutic resistance in multiple cancer types. Recent evidence demonstrates several roles of FTO in tumorigenesis. In this study, we seek to explore the role of FTO in non-small cell lung cancer (NSCLC) tumorigenicity and its relationship with epidermal growth factor receptor (EGFR) tyrosine kinase resistance. Methods: We performed qPCR, immunoblotting, viability assays, migration assays, and ATP assays to investigate the functions of FTO in EGFR tyrosine kinase inhibitor (TKI) resistance, specifically to erlotinib, in three NSCLC cell lines harboring either wild-type or mutant EGFR. We also performed immunohistochemistry on lung tumor tissues from patients diagnosed at different stages of NSCLC. Results: Our study found an upregulation of FTO in erlotinib-resistant (ER) cell lines at both the gene and protein levels. FTO inhibition and knockdown significantly reduced cell viability of erlotinib-resistant H2170 and PC9 cells by over 30% when treated with 0.8 µM of Dac51 and about 20% when treated with siFTO. FTO inhibition also slowed down the migration of ER cells, and the effect was even more pronounced when combined with erlotinib. Furthermore, FTO was found to be overexpressed in late-stage NSCLC tumor tissues compared to early-stage tumors, and it was upregulated in patients who smoked. Conclusions: These findings suggest FTO might mediate resistance and tumor growth by augmenting cell proliferation. In addition, FTO can be a potential prognostic marker in NSCLC patients. Full article
(This article belongs to the Special Issue Signaling of Protein Kinases in Development and Disease)
Show Figures

Figure 1

13 pages, 1141 KiB  
Article
Multi-Cancer Genome Profiling for Neurotrophic Tropomyosin Receptor Kinase (NTRK) Fusion Genes: Analysis of Profiling Database of 88,688 Tumors
by Hinano Nishikubo, Kyoka Kawabata, Saki Kanei, Rika Aoyama, Dongheng Ma, Tomoya Sano, Daiki Imanishi, Takashi Sakuma, Koji Maruo, Canfeng Fan, Yurie Yamamoto and Masakazu Yashiro
Cancers 2025, 17(13), 2250; https://doi.org/10.3390/cancers17132250 - 4 Jul 2025
Viewed by 373
Abstract
Background/Objectives: The neurotrophic tropomyosin receptor kinase (NTRK) genes NTRK1, NTRK2, and NTRK3 encode tyrosine kinase receptors, and their fusion genes are known as the oncogenic driver genes for cancer. This study aimed to compare the diagnostic ability of NTRK fusion [...] Read more.
Background/Objectives: The neurotrophic tropomyosin receptor kinase (NTRK) genes NTRK1, NTRK2, and NTRK3 encode tyrosine kinase receptors, and their fusion genes are known as the oncogenic driver genes for cancer. This study aimed to compare the diagnostic ability of NTRK fusion among five types of multi-cancer genome profiling tests (multi-CGP tests) and determine a useful multi-CGP test for NTRK fusion, recorded in the Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database in Japan. This study aimed to compare the diagnostic results for NTRK fusions among the five different CGP tests. Methods: A total of 88,688 tumor cases were enrolled in the C-CAT profiling database from 2019 to 2024. The detection frequency of NTRK fusion genes was compared to the results for five multi-CGP tests: NCC Oncopanel, FoundationOne CDx (F1), FoundationOne Liquid (F1L), GenMineTOP (GMT), and Guardant360. Results: NTRK fusion genes were detected in 175 (0.20%) of the 88,688 total cases. GMT, which is equipped with RNA sequencing function, frequently detected NTRK fusion genes (20 of 2926 cases; 0.68%) in comparison with the other four multi-CGP tests that do not have RNA sequencing analysis. GMT showed significantly (p < 0.05) higher diagnostic ability for NTRK fusions compared with the other four multi-CGP tests. Especially, NTRK2 fusion was significantly (p < 0.001) more highly determined by GMT than it was by the other four multi-CGP tests. The detection rates for FGFR1 and FGFR3 were significantly higher in GMT than in other multi-CGP tests. In contrast, the detection rates of the ALK and RET fusion genes were significantly higher in F1L. Conclusions: GMT, which is equipped with RNA sequencing analysis, might show a useful diagnostic ability for NTRK fusions, especially for NTRK2 fusion genes. Full article
Show Figures

Figure 1

19 pages, 748 KiB  
Review
Management of MET-Driven Resistance to Osimertinib in EGFR-Mutant Non-Small Cell Lung Cancer
by Panagiotis Agisilaos Angelopoulos, Antonio Passaro, Ilaria Attili, Pamela Trillo Aliaga, Carla Corvaja, Gianluca Spitaleri, Elena Battaiotto, Ester Del Signore, Giuseppe Curigliano and Filippo de Marinis
Genes 2025, 16(7), 772; https://doi.org/10.3390/genes16070772 - 30 Jun 2025
Viewed by 701
Abstract
Epidermal growth factor receptor (EGFR) mutations occur in approximately 10–20% of Caucasian and up to 50% of Asian patients with oncogene-addicted non-small cell lung cancer (NSCLC). Most frequently, alterations include exon 19 deletions and exon 21 L858R mutations, which confer sensitivity [...] Read more.
Epidermal growth factor receptor (EGFR) mutations occur in approximately 10–20% of Caucasian and up to 50% of Asian patients with oncogene-addicted non-small cell lung cancer (NSCLC). Most frequently, alterations include exon 19 deletions and exon 21 L858R mutations, which confer sensitivity to EGFR tyrosine kinase inhibitors (TKIs). In the last decade, the third-generation EGFR-TKI osimertinib has represented the first-line standard of care for EGFR-mutant NSCLC. However, the development of acquired mechanisms of resistance significantly impacts long-term outcomes and represents a major therapeutic challenge. The mesenchymal–epithelial transition (MET) gene amplification and MET protein overexpression have emerged as prominent EGFR-independent (off-target) resistance mechanisms, detected in approximately 25% of osimertinib-resistant NSCLC. Noteworthy, variability in diagnostic thresholds, which differ between fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) platforms, complicates its interpretation and clinical applicability. To address MET-driven resistance, several therapeutic strategies have been explored, including MET-TKIs, antibody–drug conjugates (ADCs), and bispecific monoclonal antibodies, and dual EGFR/MET inhibition has emerged as the most promising strategy. In this context, the bispecific EGFR/MET antibody amivantamab has demonstrated encouraging efficacy, regardless of MET alterations. Furthermore, the combination of the ADC telisotuzumab vedotin and osimertinib has been associated with activity in EGFR-mutant, c-MET protein-overexpressing, osimertinib-resistant NSCLC. Of note, several novel agents and combinations are currently under clinical development. The success of these targeted approaches relies on tissue re-biopsy at progression and accurate molecular profiling. Yet, tumor heterogeneity and procedural limitations may challenge the feasibility of re-biopsy, making biomarker-agnostic strategies viable alternatives. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

10 pages, 525 KiB  
Review
Myeloid and Lymphoid Malignancies with Fusion Kinases Involving Spleen Tyrosine Kinase (SYK)—Emerging Rare Entities?
by Velizar Shivarov and Stefan Lozenov
Hemato 2025, 6(2), 17; https://doi.org/10.3390/hemato6020017 - 14 Jun 2025
Viewed by 402
Abstract
Myeloid/lymphoid neoplasms with tyrosine kinase gene fusions (MLN-TK) represent a distinct group of hematologic malignancies recognized in the latest WHO classification due to shared clinical, morphological, and molecular features, and their responsiveness to tyrosine kinase inhibitors (TKIs). Among these, fusions involving the SYK [...] Read more.
Myeloid/lymphoid neoplasms with tyrosine kinase gene fusions (MLN-TK) represent a distinct group of hematologic malignancies recognized in the latest WHO classification due to shared clinical, morphological, and molecular features, and their responsiveness to tyrosine kinase inhibitors (TKIs). Among these, fusions involving the SYK gene, such as ETV6::SYK and ITK::SYK, have emerged as rare but potentially targetable genetic events in both myeloid and lymphoid neoplasms. SYK, a non-receptor tyrosine kinase critical for hematopoietic signalling, can become constitutively activated through gene fusions, driving oncogenesis via the PI3K/AKT, MAPK, and JAK-STAT pathways. ETV6::SYK has been primarily associated with myeloid neoplasms, often presenting with eosinophilia, bone marrow dysplasia, and skin involvement. In vitro and in vivo models confirm its leukemogenic potential and identify SYK as a therapeutic target. Although SYK inhibitors like fostamatinib have shown transient efficacy, resistance mechanisms, possibly involving alternative pathway activation, remain a challenge. The ITK::SYK fusion, on the other hand, has been identified in peripheral T-cell lymphomas, particularly of the follicular helper T-cell subtype, with similar pathway activation and potential for targeted intervention. Additional rare SYK fusions, such as PML::SYK and CTLC::SYK, have been reported in myeloid neoplasms and juvenile xanthogranuloma, respectively, expanding the spectrum of SYK-driven diseases. Accumulating evidence supports the inclusion of SYK fusions in future classification systems and highlights the need for broader molecular screening and clinical evaluation of SYK-targeted therapies. Full article
Show Figures

Figure 1

19 pages, 414 KiB  
Review
Development of CDK4/6 Inhibitors in Gastrointestinal Cancers: Biomarkers to Move Forward
by Ioannis A. Voutsadakis
Curr. Issues Mol. Biol. 2025, 47(6), 454; https://doi.org/10.3390/cimb47060454 - 12 Jun 2025
Viewed by 847
Abstract
Targeting the cell cycle has become a focus of cancer research bearing impressive results with the introduction of CDK4/6 inhibitors in the treatment of ER-positive/HER2-negative breast cancers. However, no definitive benefit in other cancers has been observed. In gastrointestinal cancers, despite preclinical studies [...] Read more.
Targeting the cell cycle has become a focus of cancer research bearing impressive results with the introduction of CDK4/6 inhibitors in the treatment of ER-positive/HER2-negative breast cancers. However, no definitive benefit in other cancers has been observed. In gastrointestinal cancers, despite preclinical studies pinpointing positive effects on cancer inhibition in pre-clinical models, no positive clinical trials have been published with CDK4/6 inhibitors. Several biomarkers have been proposed in breast cancers, where the field is more advanced, and include up-regulations of the inhibited kinases CDK4 and CDK6 and their partner cyclin D as well as the main target of phosphorylation, RB. Up-regulation of Cyclin E, an E2F1/RB regulated gene, also arises as a marker of CDK4/6 inhibition resistance. Signaling from receptor tyrosine kinase pathways through KRAS/BRAF/MEK and PI3K/AKT/mTOR are also implicated in feedback CDK4/6 activation and inhibitors resistance. In gastrointestinal cancers, some of these biomarkers have also proven valuable in predicting sensitivity to CDK4/6 inhibitors and would lead markers to guide clinical development. Modulation of the tumor microenvironment, where immune cells are prominent components, arises as a feature of CDK4/6 inhibition and could be harnessed in therapeutic combinations. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

24 pages, 8383 KiB  
Article
Idebenone Mitigates Traumatic-Brain-Injury-Triggered Gene Expression Changes to Ephrin-A and Dopamine Signaling Pathways While Increasing Microglial Genes
by Hyehyun Hwang, Chinmoy Sarkar, Boris Piskoun, Naibo Zhang, Apurva Borcar, Courtney L. Robertson, Marta M. Lipinski, Nagendra Yadava, Molly J. Goodfellow and Brian M. Polster
Cells 2025, 14(11), 824; https://doi.org/10.3390/cells14110824 - 1 Jun 2025
Viewed by 807
Abstract
Traumatic brain injury (TBI) leads to persistent pro-inflammatory microglial activation implicated in neurodegeneration. Idebenone, a coenzyme Q10 analogue that interacts with both mitochondria and the tyrosine kinase adaptor SHC1, inhibits aspects of microglial activation in vitro. We used the NanoString Neuropathology Panel to [...] Read more.
Traumatic brain injury (TBI) leads to persistent pro-inflammatory microglial activation implicated in neurodegeneration. Idebenone, a coenzyme Q10 analogue that interacts with both mitochondria and the tyrosine kinase adaptor SHC1, inhibits aspects of microglial activation in vitro. We used the NanoString Neuropathology Panel to test the hypothesis that idebenone post-treatment mitigates TBI-pathology-associated acute gene expression changes by moderating the pro-inflammatory microglial response to injury. Controlled cortical impact to adult male mice increased the microglial activation signature in the peri-lesional cortex at 24 h post-TBI. Unexpectedly, several microglial signature genes upregulated by TBI were further increased by post-injury idebenone administration. However, idebenone significantly attenuated TBI-mediated perturbations to gene expression associated with behavior, particularly in the gene ontology–biological process (GO:BP) pathways “ephrin receptor signaling” and “dopamine metabolic process”. Gene co-expression analysis correlated levels of microglial complement component 1q (C1q) and the neurotrophin receptor gene Ntrk1 to large (>3-fold) TBI-induced decreases in dopamine receptor genes Drd1 and Drd2 that were mitigated by idebenone treatment. Bioinformatics analysis identified SUZ12 as a candidate transcriptional regulator of idebenone-modified gene expression changes. Overall, the results suggest that idebenone may enhance TBI-induced microglial number within the first 24 h of TBI and identify ephrin-A and dopamine signaling as novel idebenone targets. Full article
Show Figures

Graphical abstract

19 pages, 3313 KiB  
Article
Bioinformatic RNA-Seq Functional Profiling of the Tumor Suppressor Gene OPCML in Ovarian Cancers: The Multifunctional, Pleiotropic Impacts of Having Three Ig Domains
by Adam G. Marsh, Franziska Görtler, Sassan Hafizi and Hani Gabra
Curr. Issues Mol. Biol. 2025, 47(6), 405; https://doi.org/10.3390/cimb47060405 - 29 May 2025
Viewed by 549
Abstract
The IgLON family of tumor suppressor genes (TSG) impact a variety of cellular processes involved in cancer and non-cancer biology. OPCML is a member of this family and its inactivation is an important control point in oncogenesis and tumor growth. Here, we analyze [...] Read more.
The IgLON family of tumor suppressor genes (TSG) impact a variety of cellular processes involved in cancer and non-cancer biology. OPCML is a member of this family and its inactivation is an important control point in oncogenesis and tumor growth. Here, we analyze RNA-Seq expression ratios in ovarian cancers from The Cancer Genome Atlas (TCGA) (189 subjects at Stage III) to identify genes that exhibit a cooperative survival impact (via Kaplan–Meier survival curves) with OPCML expression. Using enrichment analyses, we reconstruct functional pathway impacts revealing interactions of OPCML, and then validate these in independent cohorts of ovarian cancer. These results emphasize the role of OPCML’s regulation of receptor tyrosine kinase (RTK) signaling pathways (PI3K/AKT and MEK/ERK) while identifying three new potential RTK transcriptomic linkages to KIT, TEK, and ROS1 in ovarian cancer. We show that other known extracellular signaling receptor ligands are also transcriptionally linked to OPCML. Several key genes were validated in GEO datasets, including KIT and TEK. Considering the range of OPCML impacts evident in our analyses on both external membrane interactions and cytosolic signal transduction, we expand the understanding of OPCML’s broad cellular influences, demonstrating a multi-functional, pleiotropic, tumor suppressor, in keeping with prior published studies of OPCML function. Full article
Show Figures

Graphical abstract

13 pages, 2464 KiB  
Case Report
Patients with Papillary Renal Cancer and Germline Duplication of MET Exons 5-21
by Dmitry S. Mikhaylenko, Natalya B. Kuryakova, Fatima M. Bostanova, Viktoria V. Zabnenkova, Oksana P. Ryzhkova, Ilya V. Volodin, Dmitry V. Zaletaev, Dmitry V. Pustoshilov, Sergey I. Kutsev and Vladimir V. Strelnikov
Biomedicines 2025, 13(6), 1329; https://doi.org/10.3390/biomedicines13061329 - 29 May 2025
Viewed by 604
Abstract
Hereditary papillary renal carcinoma (HPRC) is a rare monogenic hereditary disease in the group of hereditary cancer syndromes. Clinically, HPRC results in the development of multiple papillary renal cell carcinomas of the kidneys in young adults. HPRC is caused by point activating mutations [...] Read more.
Hereditary papillary renal carcinoma (HPRC) is a rare monogenic hereditary disease in the group of hereditary cancer syndromes. Clinically, HPRC results in the development of multiple papillary renal cell carcinomas of the kidneys in young adults. HPRC is caused by point activating mutations in the MET gene encoding a transmembrane tyrosine kinase receptor. Until now, all detected germline mutations in HPRC patients were missense variants leading to a constitutive activation of the tyrosine kinase domain. We describe, for the first time, unrelated patients with clinical features similar to HPRC and without MET pathogenic missense variants but harboring an extended heterozygous duplication ~101.4 kb in length (chr7:116740252-116841718) in 7q31.2 determined using whole-genome sequencing (WGS). This duplication results in an additional copy of the MET gene fragment, including exons 5-21. The duplicated exons encode most of the receptor domains. According to the American College of Medical Genetics and Genomics (ACMG) criteria, this duplication is classified as variant of uncertain significance (VUS) at present, but it is not excluded that this duplication may represent an activating mutation. Perhaps, further segregation analysis and functional studies will allow us to more accurately resolve the pathogenicity and diagnostic significance of this germline CNV. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Graphical abstract

17 pages, 2222 KiB  
Article
Role of Tyrosine Phosphorylation in PEP1 Receptor 1(PEPR1) in Arabidopsis thaliana
by Jae-Han Choi and Man-Ho Oh
Plants 2025, 14(10), 1515; https://doi.org/10.3390/plants14101515 - 19 May 2025
Viewed by 511
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have evolved to perceive environmental changes. Among LRR-RLKs, PEPR1 perceives the pep1 peptide and triggers defense signal transduction in Arabidopsis thaliana. In the present study, we focused on PEPR1 and PEPR2, which are the receptors of pep1, [...] Read more.
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have evolved to perceive environmental changes. Among LRR-RLKs, PEPR1 perceives the pep1 peptide and triggers defense signal transduction in Arabidopsis thaliana. In the present study, we focused on PEPR1 and PEPR2, which are the receptors of pep1, to understand the role of tyrosine phosphorylation. PEPR1-CD (cytoplasmic domain) recombinant protein exhibited strong tyrosine autophosphorylation, including threonine autophosphorylation. We subjected all tyrosine residues in PEPR1-CD to site-directed mutagenesis. The recombinant proteins were purified along with PEPR1-CD, and Western blotting was performed using a tyrosine-specific antibody. Among the 13 tyrosine residues in PEPR1-CD, the PEPR1(Y995F)-CD recombinant protein showed significantly reduced tyrosine autophosphorylation intensity compared to PEPR1-CD and other tyrosine mutants, despite little change in threonine autophosphorylation. To confirm the autophosphorylation site, we generated a phospho-specific peptide Ab, pY995. As a result, Tyr-995 of PEPR1-CD was a major tyrosine autophosphorylation site in vitro. To understand the function of tyrosine phosphorylation in vivo, we generated transgenic plants, expressing PEPR1-Flag, PEPR1(Y995F)-Flag, and PEPR1(Y995D)-Flag in a pepr1/2 double mutant background. Interestingly, the root growths of PEPR1(Y995F)-Flag and PEPR1(Y995D)-Flag were not inhibited by pep1 peptide treatment, compared to Col-0 and PEPR1-Flag (pepr1/2) transgenic plants. Also, we analyzed downstream components, which included PROPEP1, MPK3, WRKY33, and RBOHD gene expressions in four different genotypes (Col-0, PEPR1-Flag, PEPR1(Y995F)-Flag, and PEPR1(Y995D)-Flag) of plants in the presence of the pep1 peptide. Interestingly, the expressions of PROPEP1, MPK3, WRKY33, and RBOHD were not regulated by pep1 peptide treatment in PEPR1(Y995F)-Flag and PEPR1(Y995D)-Flag transgenic plants, in contrast to Col-0 and PEPR1-Flag. These results suggest that specific tyrosine residues play an important role in vivo in the plant receptor function. Full article
(This article belongs to the Special Issue Mechanisms of Plant Defense Against Abiotic Stresses)
Show Figures

Figure 1

15 pages, 4256 KiB  
Article
Cloning and Spatiotemporal Expression Analysis of IGF1R Gene cDNA in Alopex lagopus (Arctic Fox)
by Wei Xu, Hualin Fu, Xiangyu Meng, Yiwen Sun, Fangyong Ning and Zhiheng Du
Life 2025, 15(5), 796; https://doi.org/10.3390/life15050796 - 17 May 2025
Viewed by 426
Abstract
This study aimed to clarify the sequence characteristics and spatiotemporal expression patterns of the insulin-like growth factor 1 receptor (IGF1R) gene in Alopex lagopus (Arctic fox), thereby addressing the existing knowledge gap regarding IGF1R-mediated growth regulation in this species. The [...] Read more.
This study aimed to clarify the sequence characteristics and spatiotemporal expression patterns of the insulin-like growth factor 1 receptor (IGF1R) gene in Alopex lagopus (Arctic fox), thereby addressing the existing knowledge gap regarding IGF1R-mediated growth regulation in this species. The findings establish a crucial foundation for subsequent investigations into the correlation between this gene and Arctic fox growth traits. Specific primers were designed based on the cDNA sequence of the canine IGF1R gene (Accession No. XM_545828). The full-length coding sequence (CDS) of the Arctic fox IGF1R gene (1617 bp, encoding 538 amino acids) was successfully cloned via RT-PCR. Phylogenetic analysis using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithm revealed a 99% sequence homology in the IGF1R gene between the Arctic fox and canine, confirmed their closest evolutionary relationship. Protein characterization showed that the IGF1R protein has a molecular weight of 60.62 kDa (theoretical isoelectric point pI = 5.15), containing one fibronectin type-III domain and one tyrosine kinase domain, classifying it as an acidic hydrophilic transmembrane protein. Phosphorylation site prediction identified 27 phosphorylation sites, with secondary structures dominated by α-helices (26.39%) and random coils (52.79%). The IGF1R gene displayed significant tissue-specific expression variations across 12 examined tissues in Arctic foxes: highest expression levels in testis, minimal expression in stomach, and no detectable expression in duodenum. Spatiotemporal expression analysis revealed that in 2-, 4-, and 6-month-old individuals, hepatic IGF1R exhibited a progressive increase, testicular expression reached peak levels at 6 months, and skeletal muscle demonstrated transient upregulation peaking at 4 months. These spatiotemporal expression patterns suggest that IGF1R may participate in metabolism and organ developmental processes during critical growth stages of Arctic foxes through tissue-specific regulation. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

Back to TopTop