Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = reactive force field simulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4854 KB  
Article
Atomic-Scale Mechanisms of Catalytic Recombination and Ablation in Knitted Graphene Under Hyperthermal Atomic Oxygen Exposure
by Yating Pan, Yunpeng Zhu, Donghui Zhang and Ning Wei
C 2025, 11(3), 67; https://doi.org/10.3390/c11030067 - 2 Sep 2025
Viewed by 977
Abstract
Effective ablative thermal protection systems are essential for ensuring the structural integrity of hypersonic vehicles subjected to extreme aerothermal loads. However, the microscopic reaction mechanisms at the gas–solid interface, particularly under non-equilibrium high-enthalpy conditions, remain poorly understood. This study employs reactive molecular dynamics [...] Read more.
Effective ablative thermal protection systems are essential for ensuring the structural integrity of hypersonic vehicles subjected to extreme aerothermal loads. However, the microscopic reaction mechanisms at the gas–solid interface, particularly under non-equilibrium high-enthalpy conditions, remain poorly understood. This study employs reactive molecular dynamics (RMD) simulations with the ReaxFF-C/H/O force field to investigate the atomic-scale ablation behavior of a graphene-based knitted graphene structure impacted by atomic oxygen (AO). By systematically varying the AO incident kinetic energy (from 0.1 to 8.0 eV) and incidence angle (from 15° to 90°), we reveal the competing interplay between catalytic recombination and ablation processes. The results show that the catalytic recombination coefficient of oxygen molecules reaches a maximum at 5.0 eV, where surface-mediated O2 formation is most favorable. At higher energies, the reaction pathway shifts toward enhanced CO and CO2 production due to increased carbon atom ejection and surface degradation. Furthermore, as the AO incidence angle increases, the recombination efficiency decreases linearly, while C-C bond breakage intensifies due to stronger vertical energy components. These findings offer new insights into the anisotropic surface response of knitted graphene structures under hyperthermal oxygen exposure and provide valuable guidance for the design and optimization of next-generation thermal protection materials for hypersonic flight. Full article
(This article belongs to the Special Issue 10th Anniversary of C — Journal of Carbon Research)
Show Figures

Figure 1

14 pages, 3520 KB  
Article
Design and Fabrication of Embedded Microchannel Cooling Solutions for High-Power-Density Semiconductor Devices
by Yu Fu, Guangbao Shan, Xiaofei Zhang, Lizheng Zhao and Yintang Yang
Micromachines 2025, 16(8), 908; https://doi.org/10.3390/mi16080908 - 4 Aug 2025
Cited by 1 | Viewed by 2232
Abstract
The rapid development of high-power-density semiconductor devices has rendered conventional thermal management techniques inadequate for handling their extreme heat fluxes. This manuscript presents and implements an embedded microchannel cooling solution for such devices. By directly integrating micropillar arrays within the near-junction region of [...] Read more.
The rapid development of high-power-density semiconductor devices has rendered conventional thermal management techniques inadequate for handling their extreme heat fluxes. This manuscript presents and implements an embedded microchannel cooling solution for such devices. By directly integrating micropillar arrays within the near-junction region of the substrate, efficient forced convection and flow boiling mechanisms are achieved. Finite element analysis was first employed to conduct thermo–fluid–structure simulations of micropillar arrays with different geometries. Subsequently, based on our simulation results, a complete multilayer microstructure fabrication process was developed and integrated, including critical steps such as deep reactive ion etching (DRIE), surface hydrophilic/hydrophobic functionalization, and gold–stannum (Au-Sn) eutectic bonding. Finally, an experimental test platform was established to systematically evaluate the thermal performance of the fabricated devices under heat fluxes of up to 1200 W/cm2. Our experimental results demonstrate that this solution effectively maintains the device operating temperature at 46.7 °C, achieving a mere 27.9 K temperature rise and exhibiting exceptional thermal management capabilities. This manuscript provides a feasible, efficient technical pathway for addressing extreme heat dissipation challenges in next-generation electronic devices, while offering notable references in structural design, micro/nanofabrication, and experimental validation for related fields. Full article
Show Figures

Figure 1

13 pages, 3705 KB  
Article
Molecular Simulations of Interface-Driven Crosslinked Network Formation and Mechanical Response in Composite Propellants
by Chen Ling, Xinke Zhang, Xin Li, Guozhu Mou, Xiang Guo, Bing Yuan and Kai Yang
Polymers 2025, 17(13), 1863; https://doi.org/10.3390/polym17131863 - 3 Jul 2025
Cited by 1 | Viewed by 681
Abstract
Composite solid propellants, which serve as the core energetic materials in aerospace and military propulsion systems, necessitate tailored enhancement of their mechanical properties to ensure operational safety and stability. A critical challenge involves elucidating the interfacial interactions among the multiple propellant components (≥6 [...] Read more.
Composite solid propellants, which serve as the core energetic materials in aerospace and military propulsion systems, necessitate tailored enhancement of their mechanical properties to ensure operational safety and stability. A critical challenge involves elucidating the interfacial interactions among the multiple propellant components (≥6 components, including the polymer binder HTPB, curing agent IPDI, oxidizer particles AP/Al, bonding agents MAPO/T313, plasticizer DOS, etc.) and their influence on crosslinked network formation. In this study, we propose an integrated computational framework that combines coarse-grained simulations with reactive force fields to investigate these complex interactions at the molecular level. Our approach successfully elucidates the two-step reaction mechanism propagating along the AP interface in multicomponent propellants, comprising interfacial self-polymerization of bonding agents followed by the participation of curing agents in crosslinked network formation. Furthermore, we assess the mechanical performance through tensile simulations, systematically investigating both defect formation near the interface and the influence of key parameters, including the self-polymerization time, HTPB chain length, and IPDI content. Our results indicate that the rational selection of parameters enables the optimization of mechanical properties (e.g., ~20% synchronous improvement in tensile modulus and strength, achieved by selecting a side-chain ratio of 20%, a DOS molar ratio of 2.5%, a MAPO:T313 ratio of 1:2, a self-polymerization MAPO time of 260 ns, etc.). Overall, this study provides molecular-level insights into the structure–property relationships of composite propellants and offers a valuable computational framework for guided formulation optimization in propellant manufacturing. Full article
(This article belongs to the Collection Polymerization and Kinetic Studies)
Show Figures

Figure 1

19 pages, 6947 KB  
Article
Simulation of the Pyrolysis Process of Cyclohexane-Containing Semi-Aromatic Polyamide Based on ReaxFF-MD
by Xiaotong Zhang, Yuanbo Zheng, Qian Zhang, Kai Wu, Qinwei Yu and Jianming Yang
Polymers 2025, 17(12), 1593; https://doi.org/10.3390/polym17121593 - 6 Jun 2025
Cited by 1 | Viewed by 1253
Abstract
Cyclohexane-containing semi-aromatic polyamides (c-SaPA) exhibit excellent comprehensive properties. Existing studies predominantly focus on synthesis and modification, while fundamental investigations into pyrolysis mechanisms remain limited, which restricts the development of advanced materials for high-performance applications such as automotive and energy systems. This study employs [...] Read more.
Cyclohexane-containing semi-aromatic polyamides (c-SaPA) exhibit excellent comprehensive properties. Existing studies predominantly focus on synthesis and modification, while fundamental investigations into pyrolysis mechanisms remain limited, which restricts the development of advanced materials for high-performance applications such as automotive and energy systems. This study employs Reactive Force Field Molecular Dynamics (ReaxFF-MD) simulations to establish a pyrolysis model for poly(terephthaloyl-hexahydro-m-xylylenediamine) (PHXDT), systematically probing its pyrolysis kinetics and evolutionary pathways under elevated temperatures. The simulation results reveal an activation energy of 107.55 kJ/mol and a pre-exponential factor of 9.64 × 1013 s−1 for the pyrolysis process. The primary decomposition pathway involves three distinct stages. The first is initial backbone scission generating macromolecular fragments, followed by secondary fragmentation that preferentially occurs at short-chain hydrocarbon formation sites alongside radical recombination. Ultimately, the process progresses to deep dehydrogenation, carbonization, and heteroatom elimination through sequential reaction steps. Mechanistic analysis identifies multi-pathway pyrolysis involving carboxyl/amide bond cleavage and radical-mediated transformations (N-C-O, C-C-O, OH· and H·), yielding primary products including H2, CO, H2O, CH3N, C2H2, and C2H4. Crucially, the cyclohexane structure demonstrates preferential participation in dehydrogenation and hydrogen transfer reactions due to its conformational dynamic instability and low bond dissociation energy, significantly accelerating the rapid generation of small molecules like H2. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

16 pages, 4044 KB  
Article
Reaction Pathway Analysis of Methane and Propylene Cracking: A Reactive Force Field Simulation Approach
by Wei Yang, Yiqiang Hong, Youpei Du, Zhen Dai, Guangyuan Cui, Geng Chen, Dabo Xing, Yunlong Ma, Lei Liang and Hongyang Cui
Materials 2025, 18(12), 2672; https://doi.org/10.3390/ma18122672 - 6 Jun 2025
Viewed by 601
Abstract
This study presents the development and validation of an elementary reaction pathway tracking algorithm based on reactive force field simulations, enabling the dynamic monitoring of cracking products at the 20,000-atom scale, the accurate identification of chain reaction pathways, and the comprehensive tracking of [...] Read more.
This study presents the development and validation of an elementary reaction pathway tracking algorithm based on reactive force field simulations, enabling the dynamic monitoring of cracking products at the 20,000-atom scale, the accurate identification of chain reaction pathways, and the comprehensive tracking of large carbon chain formation. The research demonstrates that the differences between methane and propylene cracking–polymerization reactions primarily stem from disparities in bond dissociation energies, radical stabilities, and molecular topologies, and the operation of molecular dynamics relies on LAMMPS 3 March 2020. The cracking pathway of methane is relatively straightforward, predominantly involving the homolytic cleavage of C–H bonds, followed by radical chain propagation leading to the formation of large carbonaceous species. In contrast, propylene, owing to its unsaturated structure and multiple reactive sites, exhibits more complex reaction networks and a wider diversity of products. Furthermore, the study elucidates the reaction pathways of intermediate species during methane and propylene cracking and investigates the effect of reaction temperature on carbon sheet development. In conclusion, the algorithm established in this work offers a detailed mechanistic insight into the gas-phase cracking of methane and propylene, providing a new theoretical basis for the optimization of gas-phase deposition processes and the rational design of carbon-based materials. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

15 pages, 2265 KB  
Article
Shock Wave-Induced Degradation of Polyethylene and Polystyrene: A Reactive Molecular Dynamics Study on Nanoplastic Transformation in Aqueous Environments
by Tomasz Panczyk, Marcin Cichy and Monika Panczyk
Molecules 2025, 30(10), 2164; https://doi.org/10.3390/molecules30102164 - 14 May 2025
Viewed by 859
Abstract
Degradation of polyethylene and polystyrene was studied theoretically using reactive molecular dynamics based on the ReaxFF force field. The degradation reactions were carried out on nanoparticles (approximately 2 nm in diameter) composed of ideal low-density polyethylene and polystyrene in the presence of water. [...] Read more.
Degradation of polyethylene and polystyrene was studied theoretically using reactive molecular dynamics based on the ReaxFF force field. The degradation reactions were carried out on nanoparticles (approximately 2 nm in diameter) composed of ideal low-density polyethylene and polystyrene in the presence of water. The reactions leading to degradation were triggered by applying a shock wave through the simulation box. This approach allowed the energy to be transferred to the sample in a controllable manner and initiated the reactions. The state of the nanoparticles after the shock wave passage was investigated in detail, focusing on the type and quantities of new surface functional groups and new chemical connections in the bulk samples. It was found that polyethylene predominantly reveals surface hydroxyl groups (some of which can be protonated) and has the ability to release linear polyhydroxy alcohols. Other surface functional groups with significant presence are ether groups. The degradation of polystyrene proceeds through the addition of hydroxyl groups primarily to the benzene rings, causing their dearomatization. The number of hydroxyl groups in a single ring increases with the degree of degradation, and some hydroxyl groups are also protonated. Polystyrene is also susceptible to crosslink formation, mainly between aromatic rings, leading to branched and dearomatized forms that are chemically distinct from styrene. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3rd Edition)
Show Figures

Figure 1

17 pages, 7854 KB  
Article
Understanding Polysiloxane Polymer to Amorphous SiOC Conversion During Pyrolysis Through ReaxFF Simulation
by Kathy Lu and Harrison Chaney
Materials 2025, 18(7), 1412; https://doi.org/10.3390/ma18071412 - 22 Mar 2025
Viewed by 858
Abstract
A significant challenge during the polymer-to-ceramic pyrolysis conversion is to understand the polymer-to-ceramic atomic evolution and correlate the composition changes with the precursor molecular structures, pyrolysis conditions, and resulting ceramic characteristics. In this study, a Reactive Force Field (ReaxFF) simulation approach has been [...] Read more.
A significant challenge during the polymer-to-ceramic pyrolysis conversion is to understand the polymer-to-ceramic atomic evolution and correlate the composition changes with the precursor molecular structures, pyrolysis conditions, and resulting ceramic characteristics. In this study, a Reactive Force Field (ReaxFF) simulation approach has been used to simulate silicon oxycarbide (SiOC) ceramic formation from four different polysiloxane precursors. For the first time, we show atomically that pyrolysis time and temperature proportionally impact the new Si-O rich and C rich cluster sizes as well as the composition separation of Si-O from C. Polymer side groups have a more complex effect on the Si-O and C cluster separation and growth, with ethyl group leading to the most Si-O cluster separation and phenyl group leading to the most C cluster separation. We also demonstrate never-before correlations of gas release with polymer molecular structures and functional groups. CH4, C2H6, C2H4, and H2 are preferentially released from the pyrolyzing systems. The sequence is determined by the polymer molecular structures. This work is the first to atomically illustrate the innate correlations between the polymer precursors and pyrolyzed ceramics. Full article
Show Figures

Figure 1

38 pages, 5548 KB  
Review
Reactive Molecular Dynamics in Ionic Liquids: A Review of Simulation Techniques and Applications
by Márta Gődény and Christian Schröder
Liquids 2025, 5(1), 8; https://doi.org/10.3390/liquids5010008 - 14 Mar 2025
Cited by 3 | Viewed by 4695
Abstract
Ionic liquids exhibit distinctive solvation and reactive properties, making them highly relevant for applications in energy storage, catalysis, and CO2 capture. However, their complex molecular interactions, including proton transfer and physisorption/chemisorption, necessitate advanced computational efforts to model them at the atomic scale. [...] Read more.
Ionic liquids exhibit distinctive solvation and reactive properties, making them highly relevant for applications in energy storage, catalysis, and CO2 capture. However, their complex molecular interactions, including proton transfer and physisorption/chemisorption, necessitate advanced computational efforts to model them at the atomic scale. This review examines key molecular dynamics approaches for simulating ionic liquid reactivity, including quantum-mechanical methods, conventional reactive force fields such as ReaxFF, and fractional force fields employed in PROTEX. The strengths and limitations of each method are assessed within the context of ionic liquid simulations. While quantum-mechanical simulations provide detailed electronic insights, their high computational cost restricts system size and simulation timescales. Reactive force fields enable bond breaking and formation in larger systems but require extensive parameterization. These approaches are well suited for investigating reaction pathways influenced by the local environment, which can also be partially addressed using multiscale simulations. Fractional force fields offer an efficient alternative for simulating significantly larger reactive systems over extended timescales. Instead of resolving individual reaction mechanisms in full detail, they incorporate reaction probabilities to model complex coupled reactions. This approach enables the study of macroscopic properties, such as conductivity and viscosity, as well as proton transport mechanisms like the Grotthuß process—phenomena that remain inaccessible to other computational methods. Full article
(This article belongs to the Section Molecular Liquids)
Show Figures

Figure 1

19 pages, 4849 KB  
Article
Impact of Supercritical Carbon Dioxide on Pore Structure and Gas Transport in Bituminous Coal: An Integrated Experiment and Simulation
by Kui Dong, Zhiyu Niu, Shaoqi Kong and Bingyi Jia
Molecules 2025, 30(6), 1200; https://doi.org/10.3390/molecules30061200 - 7 Mar 2025
Cited by 5 | Viewed by 1268
Abstract
The injection of CO2 into coal reservoirs occurs in its supercritical state (ScCO2), which significantly alters the pore structure and chemical composition of coal, thereby influencing the adsorption and diffusion behavior of methane (CH4). Understanding these changes is [...] Read more.
The injection of CO2 into coal reservoirs occurs in its supercritical state (ScCO2), which significantly alters the pore structure and chemical composition of coal, thereby influencing the adsorption and diffusion behavior of methane (CH4). Understanding these changes is crucial for optimizing CH4 extraction and improving CO2 sequestration efficiency. This study aims to investigate the effects of ScCO2 on the pore structure, chemical bonds, and CH4 diffusion mechanisms in bituminous coal to provide insights into coal reservoir stimulation and CO2 storage. By utilizing high-pressure CO2 injection adsorption, low-pressure CO2 gas adsorption (LP-CO2-GA), Fourier-transform infrared spectroscopy (FTIR), and reactive force field molecular dynamics (ReaxFF-MD) simulations, this study examines the multi-scale changes in coal at the nano- and molecular levels. The following results were found: Pore Structure Evolution: After ScCO2 treatment, micropore volume increased by 19.1%, and specific surface area increased by 11.2%, while mesopore volume and specific surface area increased by 14.4% and 5.7%, respectively. Chemical Composition Changes: The content of aromatic structures, oxygen-containing functional groups, and hydroxyl groups decreased, while aliphatic structures increased. Specific molecular changes included an increase in (CH2)n, 2H, 1H, and secondary alcohol (-C-OH) and phenol (-C-O) groups, while Car-Car and Car-H bonds decreased. Mechanisms of Pore Volume Changes: The pore structure evolves through three distinct phases: Swelling Phase: Breakage of low-energy bonds generates new micropores. Aromatic structure expansion reduces intramolecular spacing but increases intermolecular spacing, causing a decrease in micropore volume and an increase in mesopore volume. Early Dissolution Phase: Continued bond breakage increases micropore volume, while released aliphatic and aromatic structures partially occupy these pores, converting some mesopores into micropores. Later Dissolution Phase: Minimal chemical bond alterations occur, but weakened π-π interactions and van der Waals forces between aromatic layers result in further mesopore volume expansion. Impact on CH4 Diffusion: Changes in pore volume directly affect CH4 migration. In the early stages of ScCO2 interaction, pore shrinkage reduces the mean square displacement (MSD) and self-diffusion coefficient of CH4. However, as the reaction progresses, pore expansion enhances CH4 diffusion, ultimately improving gas extraction efficiency. This study provides a fundamental understanding of how ScCO2 modifies coal structure and CH4 transport properties, offering theoretical guidance for enhanced CH4 recovery and CO2 sequestration strategies. Full article
Show Figures

Figure 1

11 pages, 5046 KB  
Article
Coulomb Effect of Intermediate Products of Core–Shell SiO2@Al Nanothermite
by Jinping Zhang, Yuanhong Chu, Fei Wang, Shan Yuan, Minghui Tan, Hui Fu and Yu Jia
Molecules 2025, 30(4), 932; https://doi.org/10.3390/molecules30040932 - 17 Feb 2025
Cited by 1 | Viewed by 749
Abstract
Nanothermites as high-energy-density and high-reaction-rate materials have important applications in civil and military fields. Nevertheless, it is difficult to detect all intermediates and products using conventional experimental methods. In this work, the reaction process of core-shell SiO2@Al nanoparticles under adiabatic conditions [...] Read more.
Nanothermites as high-energy-density and high-reaction-rate materials have important applications in civil and military fields. Nevertheless, it is difficult to detect all intermediates and products using conventional experimental methods. In this work, the reaction process of core-shell SiO2@Al nanoparticles under adiabatic conditions was investigated through molecular dynamics simulations using a reactive force field (ReaxFF). In the microcanonical ensemble, the redox reaction of SiO2@Al nanothermite becomes explosive due to the huge energy release during Al-O bond formation. The gaseous products are mainly the intermediate products Al5O and Al4O as well as the final products Al2O, AlO, Si and Al. Analyses of the steric charge distributions and evolution show that the Coulomb effect causes the number of intermediates Al5O (0.32|e|) to increase to the maximum, then slowly decrease and remain stable. But the tetrahedral Al4O cluster is almost charge-neutral, at −0.05|e|, and the number remained almost constant. This work is expected to provide deeper insights into the complex reaction mechanism of nanothermite. Full article
Show Figures

Graphical abstract

11 pages, 13085 KB  
Article
Mechanism of OH*-Modified 4H-SiC Surface with Scratches Based on ReaxFF MD Simulation
by Dongxiao Yan, Hui Huang, Mingpu Xue and Nian Duan
Micromachines 2025, 16(2), 184; https://doi.org/10.3390/mi16020184 - 3 Feb 2025
Viewed by 1341
Abstract
OH* generated through plasma catalysis offers several advantages, including a long survival time, high modification efficiency, and environmental friendliness. Consequently, a plasma-assisted polishing technology has rapidly developed. Previous studies exploring the interaction mechanism between OH* and 4H-SiC have often assumed flat surfaces. However, [...] Read more.
OH* generated through plasma catalysis offers several advantages, including a long survival time, high modification efficiency, and environmental friendliness. Consequently, a plasma-assisted polishing technology has rapidly developed. Previous studies exploring the interaction mechanism between OH* and 4H-SiC have often assumed flat surfaces. However, in the surface modification experiments on 4H-SiC, the actual surface morphology was not flat but contained numerous scratches. Therefore, this study investigated the interaction mechanism of OH* on an uneven surface using reactive force field molecular dynamics (ReaxFF MD) simulations. The results show that in the low-speed OH* modification process, the adsorption effect leads to a thicker modified layer at higher locations than at lower locations. The resulting modified layer can be removed by soft abrasive mechanical polishing to achieve surface flatness, but there will be a modified layer on the surface, which needs to be modified and polished several times. In contrast, during high-speed OH* modification, high-speed particle bombardment causes more Si-O bonds to diffuse into the scratches, resulting in the formation of a flat bonding layer with surface planarization achieved after a single polishing step. The interaction mechanism of OH* with the uneven surface at different speeds, as obtained through ReaxFF MD, provides a theoretical foundation for subsequent polishing experiments. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

13 pages, 2954 KB  
Article
Molecular Simulation of Graphene Growth Reactions at Various Temperatures Derived from Benzene in Coal Tar Aromatic Hydrocarbons
by Shuhan Zhao, Zhongyang Luo, Mengxiang Fang, Qinhui Wang and Jianmeng Cen
Energies 2025, 18(2), 392; https://doi.org/10.3390/en18020392 - 17 Jan 2025
Viewed by 1452
Abstract
Coal tar, a by-product of the pyrolysis of coal, is rich in aromatic compounds that have the potential to facilitate the synthesis of graphene, a high-quality carbon material, via low-temperature chemical vapor deposition (CVD). This approach offers a promising avenue for the cost-effective [...] Read more.
Coal tar, a by-product of the pyrolysis of coal, is rich in aromatic compounds that have the potential to facilitate the synthesis of graphene, a high-quality carbon material, via low-temperature chemical vapor deposition (CVD). This approach offers a promising avenue for the cost-effective and large-scale industrial production of graphene while minimizing energy consumption. Nevertheless, there is a paucity of research focused on the low-temperature synthesis mechanisms of graphene derived from aromatic compounds in the context of graphene growth. To achieve high-quality graphene synthesis from coal tar and its aromatic constituents at reduced temperatures, a comprehensive investigation into the reaction pathways of these aromatic compounds is essential. In this study, we meticulously simulate the pyrolysis of benzene, a key aromatic component of coal tar, across various temperature settings utilizing reactive force field (ReaxFF) methodology. Furthermore, we apply density functional theory (DFT) calculations, executed through the Vienna Ab initio Simulation Package (VASP), to assess the dehydrogenation energy associated with the adsorption of benzene on vapor-deposited copper foils. Our molecular dynamics simulations, enhanced by a mixed force field approach, revealed that the dehydrogenated benzene ring (C6 intermediate) acts as a critical precursor for graphene synthesis. This research significantly elucidates the reaction pathways of aromatic benzene in coal tar through molecular simulations conducted at different temperatures, both in the gas phase and on solid copper foil substrates. Full article
Show Figures

Figure 1

19 pages, 13414 KB  
Article
Adsorption of Methylene Blue on Activated Carbon Surfaces Obtained by Shock Compression of Graphite Using Reactive Molecular Dynamics
by Tomasz Panczyk, Pawel Wolski, Krzysztof Nieszporek and Robert Pietrzak
Molecules 2024, 29(24), 6030; https://doi.org/10.3390/molecules29246030 - 21 Dec 2024
Cited by 2 | Viewed by 1755
Abstract
This study explores the formation of functionalized carbon surfaces through shock compression of graphite in the presence of water, modeled using molecular dynamics and the ReaxFF reactive force field. The shock compression method produces activated carbon with surface functionalities, primarily hydroxyl groups, and [...] Read more.
This study explores the formation of functionalized carbon surfaces through shock compression of graphite in the presence of water, modeled using molecular dynamics and the ReaxFF reactive force field. The shock compression method produces activated carbon with surface functionalities, primarily hydroxyl groups, and varying morphological properties. Two approaches, unidirectional and isotropic compression, yield distinct surface structures: the former preserves a relatively flat surface, while the latter generates corrugated features with valleys and ridges. These features significantly impact the adsorption properties of methylene blue (MB), a commonly used dye. Simulations reveal that MB molecules are highly mobile on flat surfaces, aligning with a mobile adsorption model. However, on corrugated surfaces, MB exhibits localized adsorption, with the deepest valleys effectively immobilizing the dye molecules. Additionally, the study highlights the influence of surface hydroxyl groups, which, through interactions with water molecules, prevent MB from occupying these regions. The findings underscore that traditional adsorption models may not fully capture the dynamics of MB adsorption on activated carbons with complex morphologies. These insights are critical for advancing carbon-based adsorbents in water purification applications. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry—2nd Edition)
Show Figures

Figure 1

16 pages, 3711 KB  
Article
Optical Flow Sensor with Fluorescent-Conjugated Hyperelastic Pillar: A Biomimetic Approach
by Dongmin Seo, Seungmin Yoon, Jaemin Park, Sangwon Lee, Seungoh Han, Sung-Hoon Byun and Sangwoo Oh
Biomimetics 2024, 9(12), 721; https://doi.org/10.3390/biomimetics9120721 - 22 Nov 2024
Viewed by 3038
Abstract
Although the Doppler velocity log is widely applied to measure underwater fluid flow, it requires high power and is inappropriate for measuring low flow velocity. This study proposes a fluid flow sensor that utilizes optical flow sensing. The proposed sensor mimics the neuromast [...] Read more.
Although the Doppler velocity log is widely applied to measure underwater fluid flow, it requires high power and is inappropriate for measuring low flow velocity. This study proposes a fluid flow sensor that utilizes optical flow sensing. The proposed sensor mimics the neuromast of a fish by attaching a phosphor to two pillar structures (A and B) produced using ethylene propylene diene monomer rubber. The optical signal emitted by the phosphor is measured using a camera. An experiment was conducted to apply an external force to the reactive part using a push–pull force gauge sensor to confirm the performance of the proposed sensor. The optical signal emitted by the phosphor was obtained using an image sensor, and a quantitative value was calculated using image analysis. A simulation environment was constructed to analyze the flow field and derive the relationship between the flow rate and velocity. The physical properties of the pillar were derived from hysteresis measurement results, and the error was minimized when pillar types A and B were utilized within the ranges of 0–0.1 N and 0–2 N, respectively. A difference in the elastic recovery characteristics was observed; this difference was linear based on the shape of the pillar, and improvement rates of 99.585% and 99.825% were achieved for types A and B, respectively. The proposed sensor can help obtain important information, such as precise flow velocity measurements in the near field, to precisely navigate underwater unmanned undersea vehicles and precisely control underwater robots after applying the technology to the surface of various underwater systems. Full article
(This article belongs to the Special Issue Biomimetics in Intelligent Sensor)
Show Figures

Graphical abstract

13 pages, 4665 KB  
Article
Interaction and Diffusion Mechanism of Moisture in Power Capacitor Insulating Oil Based on Molecular Simulation
by Changyou Wei, Zhiyi Pang, Rui Qin, Jiwen Huang and Yi Li
Materials 2024, 17(21), 5180; https://doi.org/10.3390/ma17215180 - 24 Oct 2024
Cited by 3 | Viewed by 957
Abstract
Characterized by its exceptional electrical, physical, and chemical properties, 1-phenyl-1-xylylethane (PXE) insulating oil finds extensive application in the realm of power capacitor insulation. In this study, molecular simulation is employed to investigate the reactivity of PXE insulating oil molecules and the impact of [...] Read more.
Characterized by its exceptional electrical, physical, and chemical properties, 1-phenyl-1-xylylethane (PXE) insulating oil finds extensive application in the realm of power capacitor insulation. In this study, molecular simulation is employed to investigate the reactivity of PXE insulating oil molecules and the impact of temperature on water diffusion behavior in PXE insulating oil, as well as its solubility. The findings demonstrate a higher propensity for hydrogen atoms in nucleophilic and electrophilic positions within PXE insulating oil molecules to interact with water molecules. The inclusion of a temperature field enhances the Brownian motion of water molecules and improves their diffusion ability within the oil. Furthermore, the temperature field diminishes the interaction force between water molecules and the oil medium. Under the influence of this temperature field, there is an increase in the free volume fraction of PXE insulating oil, leading to a weakening effect on hydrogen bonds between oxygen and hydrogen atoms within PXE insulating oil. Additionally, with increasing temperature, there is an elevation in moisture solubility within insulating oil, resulting in a transition from a suspended state to a dissolved state. Full article
Show Figures

Figure 1

Back to TopTop