Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (141)

Search Parameters:
Keywords = rare earth steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4258 KiB  
Review
Corrosion Performance of Atmospheric Corrosion Resistant Steel Bridges in the Current Climate: A Performance Review
by Nafiseh Ebrahimi, Melina Roshanfar, Mojtaba Momeni and Olga Naboka
Materials 2025, 18(15), 3510; https://doi.org/10.3390/ma18153510 - 26 Jul 2025
Viewed by 643
Abstract
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance [...] Read more.
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance strategies. The protective patina, composed of stable iron oxyhydroxides, develops over time under favorable wet–dry cycles but can be disrupted by environmental aggressors such as chlorides, sulfur dioxide, and prolonged moisture exposure. Key alloying elements like Cu, Cr, Ni, and Nb enhance corrosion resistance, while design considerations—such as drainage optimization and avoidance of crevices—are critical for performance. The study highlights the vulnerability of WS bridges to microenvironments, including de-icing salt exposure, coastal humidity, and debris accumulation. Regular inspections and maintenance, such as debris removal, drainage system upkeep, and targeted cleaning, are essential to mitigate corrosion risks. Climate change exacerbates challenges, with rising temperatures, altered precipitation patterns, and ocean acidification accelerating corrosion in coastal regions. Future research directions include optimizing WS compositions with advanced alloys (e.g., rare earth elements) and integrating climate-resilient design practices. This review highlights the need for a holistic approach combining material science, proactive maintenance, and adaptive design to ensure the longevity of WS bridges in evolving environmental conditions. Full article
Show Figures

Figure 1

13 pages, 3688 KiB  
Article
Influence Mechanisms of Trace Rare-Earth Ce on Texture Development of Non-Oriented Silicon Steel
by Feihu Guo, Yuhao Niu, Bing Fu, Jialong Qiao and Shengtao Qiu
Materials 2025, 18(15), 3493; https://doi.org/10.3390/ma18153493 - 25 Jul 2025
Viewed by 276
Abstract
The effects of trace Ce on the microstructure and texture of non-oriented silicon steel during recrystallization and grain growth were examined using X-ray diffraction and electron backscatter diffraction. Additionally, this study focused on investigating the mechanisms by which trace Ce influences the evolution [...] Read more.
The effects of trace Ce on the microstructure and texture of non-oriented silicon steel during recrystallization and grain growth were examined using X-ray diffraction and electron backscatter diffraction. Additionally, this study focused on investigating the mechanisms by which trace Ce influences the evolution of the {114} <481> and γ-fiber textures. During the recrystallization process, as the recrystallization fraction of annealed sheets increased, the intensity of α-fiber texture decreased, while the intensities of α*-fiber and γ-fiber textures increased. The {111} <112> grains preferentially nucleated in the deformed γ-grains and their grain-boundary regions and tended to form a colony structure with a large amount of nucleation. In addition, the {100} <012> and {114} <481> grains mainly nucleated near the deformed α-grains, which were evenly distributed but found in relatively small quantities. The hindering effect of trace Ce on dislocation motion in cold-rolled sheets results in a 2–7% lower recrystallization ratio for the annealed sheets, compared to conventional annealed sheets. Trace Ce suppresses the nucleation and growth of γ-grains while creating opportunities for α*-grain nucleation. During grain growth, trace Ce reduces γ-grain-boundary migration rate in annealed sheets, providing growth space for {114} <418> grains. Consequently, the content of the corresponding {114} <481> texture increased by 6.4%, while the γ-fiber texture content decreased by 3.6%. Full article
Show Figures

Figure 1

13 pages, 4282 KiB  
Article
Cerium Addition Enhances Impact Energy Stability in S355NL Steel by Tailoring Microstructure and Inclusions
by Jiandong Yang, Bijun Xie and Mingyue Sun
Metals 2025, 15(7), 802; https://doi.org/10.3390/met15070802 - 16 Jul 2025
Viewed by 290
Abstract
S355NL structural steel is extensively employed in bridges, ships, and power station equipment owing to its excellent tensile strength, weldability, and low-temperature toughness. However, pronounced fluctuations in its Charpy impact energy at low temperatures significantly compromise the reliability and service life of critical [...] Read more.
S355NL structural steel is extensively employed in bridges, ships, and power station equipment owing to its excellent tensile strength, weldability, and low-temperature toughness. However, pronounced fluctuations in its Charpy impact energy at low temperatures significantly compromise the reliability and service life of critical components. In this study, vacuum-induction-melted ingots of S355NL steel containing 0–0.086 wt.% rare earth cerium were prepared. The effects of Ce on microstructures, inclusions, and impact toughness were systematically investigated using optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and Charpy V-notch testing. The results indicate that appropriate Ce additions (0.0011–0.0049 wt.%) refine the average grain size from 5.27 μm to 4.88 μm, reduce the pearlite interlamellar spacing from 204 nm to 169 nm, and promote the transformation of large-size Al2O3-MnS composite inclusions into fine, spherical, Ce-rich oxysulfides. Charpy V-notch tests at –50 °C reveal that 0.0011 wt.% Ce enhances both longitudinal (269.7 J) and transverse (257.4 J) absorbed energies while minimizing anisotropy (E_t/E_l  =  1.01). Conversely, excessive Ce addition (0.086 wt.%) leads to coarse inclusions and deteriorates impact performance. These findings establish an optimal Ce window (0.0011–0.0049 wt.%) for microstructural and inclusion engineering to enhance the low-temperature impact toughness of S355NL steel. Full article
Show Figures

Figure 1

11 pages, 5556 KiB  
Article
Electromagnetic Analysis and Multi-Objective Design Optimization of a WFSM with Hybrid GOES-NOES Core
by Kyeong-Tae Yu, Hwi-Rang Ban, Seong-Won Kim, Jun-Beom Park, Jang-Young Choi and Kyung-Hun Shin
World Electr. Veh. J. 2025, 16(7), 399; https://doi.org/10.3390/wevj16070399 - 16 Jul 2025
Viewed by 258
Abstract
This study presents a design and optimization methodology to enhance the power density and efficiency of wound field synchronous machines (WFSMs) by selectively applying grain-oriented electrical steel (GOES). Unlike conventional non-grain-oriented electrical steel (NOES), GOES exhibits significantly lower core loss along its rolling [...] Read more.
This study presents a design and optimization methodology to enhance the power density and efficiency of wound field synchronous machines (WFSMs) by selectively applying grain-oriented electrical steel (GOES). Unlike conventional non-grain-oriented electrical steel (NOES), GOES exhibits significantly lower core loss along its rolling direction, making it suitable for regions with predominantly alternating magnetic fields. Based on magnetic field analysis, four machine configurations were investigated, differing in the placement of GOES within stator and rotor teeth. Finite element analysis (FEA) was employed to compare electromagnetic performance across the configurations. Subsequently, a multi-objective optimization was conducted using Latin Hypercube Sampling, meta-modeling, and a genetic algorithm to maximize power density and efficiency while minimizing torque ripple. The optimized WFSM achieved a 13.97% increase in power density and a 1.0% improvement in efficiency compared to the baseline NOES model. These results demonstrate the feasibility of applying GOES in rotating machines to reduce core loss and improve overall performance, offering a viable alternative to rare-earth permanent magnet machines in xEV applications. Full article
Show Figures

Figure 1

25 pages, 14812 KiB  
Article
The Effect of Yttrium Addition on the Solidification Microstructure and Sigma Phase Precipitation Behavior of S32654 Super Austenitic Stainless Steel
by Jun Xiao, Geng Tian, Di Wang, Shaoguang Yang, Kuo Cao, Jianhua Wei and Aimin Zhao
Metals 2025, 15(7), 798; https://doi.org/10.3390/met15070798 - 15 Jul 2025
Viewed by 299
Abstract
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect [...] Read more.
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect of the rare earth element yttrium (Y) on the solidification microstructure and σ phase precipitation behavior of SASS. The results show that the microstructure of SASS consists of austenite dendrites and interdendritic eutectoid structures. The eutectoid structures mainly comprise the σ phase and the γ2 phase, exhibiting lamellar or honeycomb-like morphologies. Regarding elemental distribution, molybdenum displays a “concave” distribution pattern within the dendrites, with lower concentrations at the center and higher concentrations at the sides; when Mo locally exceeds beyond a certain threshold, it easily induces the formation of eutectoid structures. Mo is the most significant segregating element, with a segregation ratio as high as 1.69. The formation mechanism of the σ phase is attributed to the solid-state phase transformation of austenite (γ → γ2 + σ). In the late stages of solidification, the concentration of chromium and Mo in the residual liquid phase increases, and due to insufficient diffusion, there are significant compositional differences between the interdendritic regions and the matrix. The enriched Cr and Mo cause the interdendritic austenite to become supersaturated, leading to solid-state phase transformation during subsequent cooling, thereby promoting σ phase precipitation. The overall phase transformation process can be summarized as L → L + γ → γ → γ + γ2 + σ. Y microalloying has a significant influence on the solidification process. The addition of Y increases the nucleation temperature of austenite, raises nucleation density, and refines the solidification microstructure. However, Y addition also leads to an increased amount of eutectoid structures. This is primarily because Y broadens the solidification temperature range of the alloy and prolongs grain growth perio, which aggravates the microsegregation of elements such as Cr and Mo. Moreover, Y raises the initial precipitation temperature of the σ phase and enhances atomic diffusion during solidification, further promoting σ phase precipitation during the subsequent eutectoid transformation. Full article
(This article belongs to the Special Issue Synthesis, Processing and Applications of New Forms of Metals)
Show Figures

Figure 1

12 pages, 4872 KiB  
Article
Study of the Influence of Gas Tungsten Arc (GTA) Welding on the Microstructure and Properties of Mg–Al–RE-Type Magnesium Alloys
by Katarzyna N. Braszczyńska-Malik
Materials 2025, 18(14), 3277; https://doi.org/10.3390/ma18143277 - 11 Jul 2025
Viewed by 399
Abstract
The effects of the gas tungsten arc (GTA) welding process on the microstructure and microhardness of two Mg-5Al-3RE and Mg-5Al-5RE experimental alloys (RE—rare earth elements) are presented. Both alloys were gravity-cast in a steel mould and GTA-welded in the same conditions. Analyses of [...] Read more.
The effects of the gas tungsten arc (GTA) welding process on the microstructure and microhardness of two Mg-5Al-3RE and Mg-5Al-5RE experimental alloys (RE—rare earth elements) are presented. Both alloys were gravity-cast in a steel mould and GTA-welded in the same conditions. Analyses of the alloys’ microstructure were carried out by scanning electron microscopy (SEM+EDX) as well as X-ray diffraction (XRD). In as-cast conditions; both alloys were mainly composed of α-Mg; Al11RE3; and Al10RE2Mn7 intermetallic phases. Additionally; α+γ eutectic (where γ is Al12Mg17) in the Mg-5Al-3RE alloy and an Al2RE phase in the Mg-5Al-5RE material were revealed. The same phase composition was revealed for both alloys after the GTA welding process. The results of the dendrite arm size (DAS) and Vickers microhardness measurements were also described. Both welded materials exhibited an intensive size reduction of the structural constituents after GTA welding. About 75% smaller values of the dendrite arm spacing were revealed in the fusion zones of the investigated materials than in the as-cast conditions. The GTA welding process also influenced the microhardness of the experimental alloys and increased them by about 21% compared to the base metal; which was the consequence of the refinement of the structural constituents. Full article
(This article belongs to the Collection Alloy and Process Development of Light Metals)
Show Figures

Figure 1

18 pages, 9256 KiB  
Article
Effect of Rare Earth Element Ce on Nanoscale (Ti, Nb) C Precipitates and Mechanical Properties of High-Strength Low-Alloy Weathering Steel
by Yunlong Wang, Rui Zhu, Hairui Ma, Guohua Ding, Limeng Liang, Weiwei Sun and Yongxia Wang
Materials 2025, 18(13), 3033; https://doi.org/10.3390/ma18133033 - 26 Jun 2025
Viewed by 324
Abstract
This study investigates the influence of rare earth element Ce addition on the nanoscale precipitation, microstructure, and mechanical properties of Ti-containing secondary phases in high-strength low-alloy weathering steel. Mechanical property testing and microstructural characterization were performed on experimental samples subjected to rolling-aging treatment. [...] Read more.
This study investigates the influence of rare earth element Ce addition on the nanoscale precipitation, microstructure, and mechanical properties of Ti-containing secondary phases in high-strength low-alloy weathering steel. Mechanical property testing and microstructural characterization were performed on experimental samples subjected to rolling-aging treatment. The results demonstrate that the addition of Ce promotes coarsening of nanoscale precipitates, thereby diminishing their precipitation strengthening effect. At a 0.11% Ce content, an increase in inclusions was observed, leading to crack formation during hot deformation. However, Ce addition also refines inclusion size and modifies inclusion types, contributing to steel purification. Through austenite recrystallization zone rolling combined with an isothermal process, a high-strength ferritic weathering steel with nanoscale precipitates was fabricated, exhibiting a yield strength of 635 MPa, tensile strength of 750 MPa, and elongation of 21.2%. Precipitation strengthening plays a critical role in enhancing the room-temperature strength of ferritic steel. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 6662 KiB  
Article
Effect of the Rare Earth Element Cerium on the Corrosion Resistance of Steel for an Offshore Platform in a Simulated Marine Atmospheric Environment
by Yanjie Wu, Ruifeng Dong, Zhipeng Mu, Jing Guo, Xiong Yang and Peiying Zhou
Materials 2025, 18(11), 2443; https://doi.org/10.3390/ma18112443 - 23 May 2025
Viewed by 489
Abstract
This study investigated the corrosion behavior and mechanism of offshore platform steel in a simulated marine atmospheric environment using electrochemical analysis, phase analysis, and rust layer characterization. The findings demonstrate that the addition of trace amounts of the rare earth element Ce significantly [...] Read more.
This study investigated the corrosion behavior and mechanism of offshore platform steel in a simulated marine atmospheric environment using electrochemical analysis, phase analysis, and rust layer characterization. The findings demonstrate that the addition of trace amounts of the rare earth element Ce significantly enhances the steel’s corrosion resistance in the marine environment and effectively reduces the corrosion rate. The addition of Ce promotes the enrichment of Cr in the inner rust layer and forms a dense protective rust layer, thereby preventing the rust layer from falling off, as well as hindering the penetration of oxygen ions. Phase analysis and electrochemical studies further confirmed that the addition of rare earth Ce optimized the structure of the rust layer, improved the matrix protection effect, and enhanced the corrosion resistance of the steel. The crystal structure of the rust layer and the stability between the matrix were simulated by first principles. The results show that the addition of rare earth enhances the bonding force and compactness of the steel matrix and the rust layer, thereby improving corrosion resistance. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

16 pages, 4449 KiB  
Article
The Cooling Phase Transition Behavior of 30MnNbRE Steel Studied Based on TMCP
by Shimin Guo, Hui Ma, Xirong Bao, Jia Sun, Xuejiao Tang and Xiaodong Wang
Crystals 2025, 15(4), 327; https://doi.org/10.3390/cryst15040327 - 28 Mar 2025
Viewed by 466
Abstract
The continuous cooling transformation (CCT) curves of undercooled austenite serve as crucial references for obtaining desired microstructures and properties in metallic materials (particularly deformed metals) through heat treatment. In this study, static and dynamic CCT curves were constructed for experimental steels micro-doped with [...] Read more.
The continuous cooling transformation (CCT) curves of undercooled austenite serve as crucial references for obtaining desired microstructures and properties in metallic materials (particularly deformed metals) through heat treatment. In this study, static and dynamic CCT curves were constructed for experimental steels micro-doped with rare earth element Ce by combining temperature-dilatometric curves recorded after austenitization at 900 °C with microstructural characterization and microhardness measurements. Comparative analyses were conducted on the microstructures and microhardness of three experimental steels with varying Ce contents subjected to sizing (reducing) diameter deformation at 850 °C and 950 °C. The CCT experimental results revealed that the microhardness of the tested steels increased with cooling rates. Notably, dynamic CCT specimens cooled at 50 °C/s to room temperature following superheated deformation exhibited 56.7 HV5 higher microhardness than static CCT specimens, accompanied by increased martensite content. The reduction of deformation temperature from 950 °C to 850 °C resulted in the expansion of the bainitic phase region. The incorporation of trace Ce elements demonstrated a significant enhancement in the microhardness of 30MnNbRE steel. This research proposes an effective processing route for improving strength-toughness combination in microalloyed oil well tubes: introducing trace Ce additions followed by sizing (reducing) diameter deformation at 950 °C and subsequent ultra-fast cooling at 50 °C/s to room temperature. This methodology facilitates the production of high-strength/toughness steels containing abundant martensitic microstructures. Full article
Show Figures

Figure 1

16 pages, 8657 KiB  
Article
Effect of Ce-Y Composite Addition on the Inclusion Evolution in T91 Heat-Resistant Steel
by Jun Liu, Gen Li, Chengbin Shi, Zhengxin Tang, Lei Jia, Yu Zhao, Shijun Wang and Xikou He
Materials 2025, 18(7), 1459; https://doi.org/10.3390/ma18071459 - 25 Mar 2025
Viewed by 435
Abstract
This study investigates the influence of rare earth elements Ce and Y on the evolution of inclusions in T91 steel by melting experimental steels with varying Ce-Y contents in a vacuum induction melting furnace. The results show that the inclusions in the steel [...] Read more.
This study investigates the influence of rare earth elements Ce and Y on the evolution of inclusions in T91 steel by melting experimental steels with varying Ce-Y contents in a vacuum induction melting furnace. The results show that the inclusions in the steel without rare earth are mainly composed of Mg-Al-O oxides, (Nb, V, Ti)(C, N) carbonitrides, and composite inclusions formed by carbonitrides coated oxides, and all of them have obvious edges and corners. Upon the addition of different concentrations of Ce and Y, the oxygen content in the steel significantly decreased, and the inclusions were modified into spherical rare earth oxides, sulfides, and oxy-sulfides. Additionally, no large-sized primary carbonitrides were observed. The average size of the inclusions was reduced from 2.8 μm in the non-rare-earth-added steel to 1.7 μm and 1.9 μm with rare earth addition. Thermodynamic analysis indicates that the possible inclusions precipitated in the steel with varying Ce contents include Ce2O3, Ce2O2S, Y2O3, Y2S3, and CeS. With the increase in Ce content, the rare earth inclusions Y2S3, Y2O3, and CeS can be transformed into Ce2O2S and Ce2O3. There are two kinds of reactions in the process of high-temperature homogenization: one is the internal transformation reaction of inclusions, which makes Y easier to aggregate in the inner layer, and the other is the reaction of Y2S3→CeS and Y2O3 + Y2S3→Ce2O2S due to the diffusion of Ce in the matrix to the inclusions. Combined with the mismatch analysis, it can be seen that Al2O3 has the best effect on the heterogeneous nucleation of carbonitrides during the solidification of molten steel. Among the rare earth inclusions, only Ce2O3 may become the nucleation core of carbonitrides, and the rest are more difficult to form heterogeneous nucleation. Therefore, by Ce-Y composite addition, increasing the Y/Ce ratio can reduce the formation of Ce2O3, which can avoid the precipitation of primary carbonitride and ultimately improve the dispersion strengthening effect. This study is of great significance for understanding the mechanism of rare earth elements in steel and provides theoretical guidance for the composition design and industrial trial production of rare earth steel. Full article
Show Figures

Figure 1

15 pages, 10591 KiB  
Article
Effect of Mixing Entropy on the Solid Solubility of Lanthanum in Fe Alloys
by Wenhao Guan, Wei Qu, Zhigang Liang, Huiping Ren, Zhili Li, Zhouli Liu, Cheng Ji, Wenbin Zhang, Haoyuan Sun and Jiangsen Song
Metals 2025, 15(4), 352; https://doi.org/10.3390/met15040352 - 23 Mar 2025
Viewed by 395
Abstract
A solid solution of rare-earth atoms in the iron matrix is a prerequisite for the microalloying effect in steels. However, to date, there has been considerable controversy regarding whether rare-earth atoms can form solid solutions within the iron matrix. Here, the effect of [...] Read more.
A solid solution of rare-earth atoms in the iron matrix is a prerequisite for the microalloying effect in steels. However, to date, there has been considerable controversy regarding whether rare-earth atoms can form solid solutions within the iron matrix. Here, the effect of mixing entropy (Smix) on the solid solubility of the rare-earth element lanthanum in Fe alloys was quantitatively analyzed using the non-aqueous solution electrolysis method. The results indicate that the solid solubility of lanthanum in Fe alloys increases with an increase in mixing entropy. Meanwhile, the thermodynamic essence of the formation of the solid solution was analyzed via the combination of first-principles calculation, thermodynamic analysis, and microstructure analysis. Full article
Show Figures

Figure 1

25 pages, 13527 KiB  
Article
Achieving High Strength and Plasticity by Controlling the Volume Fractions of Martensite and Ferrite in Rare Earth, Micro-Alloyed Dual-Phase Steel
by Zhishen Li, Xinli Song, Jin Yu, Wei Geng, Xuewen You and Juan Jia
Metals 2025, 15(3), 310; https://doi.org/10.3390/met15030310 - 13 Mar 2025
Cited by 2 | Viewed by 873
Abstract
The volume fractions of martensite and ferrite in dual-phase steel affect its strength and plasticity. In this study, the effect of heat treatment on the structure morphology and volume fractions of martensitic and ferrite was studied in rare earth, micro-alloyed dual-phase steel, and [...] Read more.
The volume fractions of martensite and ferrite in dual-phase steel affect its strength and plasticity. In this study, the effect of heat treatment on the structure morphology and volume fractions of martensitic and ferrite was studied in rare earth, micro-alloyed dual-phase steel, and the strain-hardening behaviour of the experimental steel under various process conditions was determined. The results show that a uniform structure with an alternating distribution of ferrite and martensite could be obtained by complete quenching before critical annealing, and the martensitic phase content increased from 60% to 93% with a rise in annealing temperature. With the growth in the martensitic phase content, the strength of dual-phase (DP) steel gradually increased, and elongation gradually decreased. However, the strength–plasticity product remained at approximately 17 GPa∙%, showing good comprehensive mechanical properties, and the mechanical properties were better at 780 and 820 °C annealing temperatures. When the martensite content was higher, the strain-hardening ability of the DP steel was stronger. The results show that the failure mode of the DP steel was a typical ductile fracture, and only a small amount of cleavage pattern was observed in the samples annealed at 840 °C. No obvious interfacial disbonding was seen in the tensile fracture, and only a few cracks formed. By optimizing the heat treatment process, the microstructural uniformity was improved, and the ferrite phase was strengthened to some extent, which better coordinated the deformation of ferrite and martensite, thereby delaying fracture. The modification effect of rare earth elements on inclusions in the DP steel was obvious. Full article
Show Figures

Figure 1

17 pages, 9134 KiB  
Article
Effect of Holding Temperature on Wear and Corrosion Resistance of Rare Earth Oxide Thermally Diffused Zinc Coatings
by Ruolei Chen, Wei Liu, Zeyang Wang, Biao Xie, Zeng Yi, Zhiyuan Wang, Jingwei Xiao, Jian Gu and Kaiming Wang
Coatings 2025, 15(3), 290; https://doi.org/10.3390/coatings15030290 - 1 Mar 2025
Viewed by 1158
Abstract
The challenging wind conditions surrounding power transmission lines exacerbate the wear and corrosion of transmission line fittings. Thermal diffusion galvanizing technology, a novel method for obtaining galvanizing layers, significantly enhances the wear and corrosion resistance of metal components, thereby extending their service life. [...] Read more.
The challenging wind conditions surrounding power transmission lines exacerbate the wear and corrosion of transmission line fittings. Thermal diffusion galvanizing technology, a novel method for obtaining galvanizing layers, significantly enhances the wear and corrosion resistance of metal components, thereby extending their service life. Holding temperature plays a critical role in determining the performance of the thermally diffused zinc coating. In this study, we prepared thermally diffused zinc coatings containing rare earth oxides on 35CrMo steel at various holding temperatures and evaluated their morphology, wear resistance, and corrosion resistance. The findings indicate that increasing the holding temperature enhances the diffusion of zinc and iron, yielding thicker coatings with a maximum thickness of 60 μm at a holding temperature of 450 °C. Notably, the zinc coating produced at a holding temperature of 410 °C exhibits optimal wear resistance at room temperature, and the wear failure mechanisms were predominantly abrasive wear and oxidative wear with slight adhesive wear. In addition, the zinc coating produced at a holding temperature of 430 °C exhibits optimal corrosion resistance at room temperature. Full article
(This article belongs to the Special Issue Advanced Surface Technology and Application)
Show Figures

Figure 1

16 pages, 9735 KiB  
Article
Effect of Rare Earth Ce on Microstructure and Properties of Q370qENHY Bridge Steel
by Yue Chen, Jichun Yang and Xiangjun Liu
Materials 2025, 18(5), 1048; https://doi.org/10.3390/ma18051048 - 27 Feb 2025
Cited by 1 | Viewed by 812
Abstract
To enhance the mechanical characteristics and corrosion resistance of bridge steel, three distinct groups of test steels with varying Ce contents were formulated. The objective was to investigate the influence of rare earth Ce on the microstructure, impact performance, and corrosion resistance of [...] Read more.
To enhance the mechanical characteristics and corrosion resistance of bridge steel, three distinct groups of test steels with varying Ce contents were formulated. The objective was to investigate the influence of rare earth Ce on the microstructure, impact performance, and corrosion resistance of bridge steel. The addition of rare earth elements improves both the impact performance and the corrosion resistance of bridge steels. The present research systematically examines the impact of cerium (Ce) incorporation on the structural and impact performance of bridge construction steels, with particular emphasis on elucidating the fundamental mechanisms governing these modifications. This investigation establishes a comprehensive theoretical framework that facilitates the advancement of next-generation rare earth-enhanced high-performance steel alloys specifically designed for bridge engineering applications. The investigation reveals that rare-earth elements exert a significant influence on microstructural refinement, leading to the diminution of grain size. Additionally, these elements catalyze the modification of inclusion morphology in the test steel, transitioning from an irregular form to a spherical one, with a concomitant decrease in inclusion size. The tested steel with a rare earth mass fraction of 0.0025 wt.% has the best impact performance and the lowest corrosion rate. The impact performance improved by 7.37% compared with the experimental steel without the addition of rare earth elements. The incorporation of rare earth elements has been observed to promote the accumulation of Cu in the rust layer, which contributes to the improved stability of the layer. Concurrently, it has been noted that, for equivalent periods of corrosion exposure, there is a positive correlation between the arc radius of bulk resistance and the incremental levels of rare earth Ce. Full article
Show Figures

Figure 1

19 pages, 5751 KiB  
Article
Effect of the Use of Some Rare Earth Compounds as Corrosion Inhibitors for API 5L X70 Steel in Saline Medium
by Salvador Hernández García, Araceli Espinoza Vázquez, Laura Nadxieli Palacios-Grijalva, Anatolio Martínez Jiménez, Francisco Javier Rodríguez Gómez, Óscar Armando Gómez Vargas, Alan Miralrio, Miguel Castro and Ricardo Orozco Cruz
Metals 2025, 15(2), 195; https://doi.org/10.3390/met15020195 - 13 Feb 2025
Viewed by 1051
Abstract
This work presents a comparative study of five rare earth compounds—Erbium nitrate pentahydrate lll (Er), Neodymium nitrate pentahydrate (Nd), Samarium III Nitrate Hexahydrate (Sm), Yterbium III Chloride Hexahydrate (Yb) and Praseodymium nitrate hexahydrate lll (Pr)—protecting API 5L X70 steel from corrosion in saline [...] Read more.
This work presents a comparative study of five rare earth compounds—Erbium nitrate pentahydrate lll (Er), Neodymium nitrate pentahydrate (Nd), Samarium III Nitrate Hexahydrate (Sm), Yterbium III Chloride Hexahydrate (Yb) and Praseodymium nitrate hexahydrate lll (Pr)—protecting API 5L X70 steel from corrosion in saline medium that uses electrochemical impedance spectroscopy (EIS) and polarization curves (CPs) at different concentrations and in static mode. The results show that Erbium is the best corrosion inhibitor, containing 50 ppm and reaching an inhibition efficiency of about 89%, and similar result was shown by Sm with an IE~87.9%, while the other rare earths (Nd, Yb and Pr) showed a decrease in corrosion protection at the same concentration, since they were below an IE~80%. On the other hand, with the Langmuir model it was possible to describe that the adsorption process of the three rare earths follows a combined physisorption–chemisorption process to protect the metal’s surface. The observed adsorption free energy, ΔG°ads, reaches −38.7 kJ/mol for Er, −34.4 kJ/mol for Nd, and −33.6 kJ/mol for Pr; whereas Sm and Yb have adsorption free energies of −33.9 and −35.0 kJ/mol, respectively. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) further confirmed the formation of a protective film. Their characterization using density functional theory showed the transference of charge from the iron cluster towards the rare earth metal compounds. The adsorption process produced a slightly polarized region of interaction with the metal surface. Also, it was found that the adsorption of the rare earths affected the magnetic properties of the surface of the iron cluster. Quantum chemical descriptors, such as Pearson’s HSAB (Hard and Soft Acids and Bases) descriptors, were useful in predicting the behavior of the flow of electrons between the metal surface and the interacting rare earth ions. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials (Third Edition))
Show Figures

Figure 1

Back to TopTop