Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (189)

Search Parameters:
Keywords = rare earth doped material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3386 KiB  
Article
Reversible Sodium Storage of CoTe2 Anode via Lanthanum Doping
by Haonan Xie, Xiaolin Xie, Taijiao Guo and Ting Deng
Inorganics 2025, 13(6), 207; https://doi.org/10.3390/inorganics13060207 - 19 Jun 2025
Viewed by 370
Abstract
Cobalt telluride (CoTe2) is considered an advanced anode material for sodium-ion batteries (SIBs) because of its high theoretical capacity and high conductivity. Nevertheless, the ionic radius of the Co2+ ion (0.74 Å) is smaller than that of the Na+ [...] Read more.
Cobalt telluride (CoTe2) is considered an advanced anode material for sodium-ion batteries (SIBs) because of its high theoretical capacity and high conductivity. Nevertheless, the ionic radius of the Co2+ ion (0.74 Å) is smaller than that of the Na+ ion, meaning the integrity of CoTe2 electrodes can be easily damaged when Na+ ions diffuse into CoTe2 and convert to large Na2Te. Herein, we propose a doping strategy by introducing an unreactive element but with a large radius to enhance the overall performance. Lanthanum (La) can be doped into the CoTe2 structure to counteract the size effect of Na2Te since La has a large radius. On the other hand, La with abundant electrons in CoTe2 can also facilitate the charge transfer during charge/discharge. As a result, La-doped CoTe2 (La-CoTe2) can deliver a maximum capacity of 345 mAh g−1 at 0.05 A g−1 and has a decent rate performance. After 2000 cycles at 2 A g−1, a capacity of 88 mAh g−1 remained, which is a notable improvement compared to undoped CoTe2. These results demonstrate the potential of rare earth elements in preparing advanced SIB electrode materials. Full article
Show Figures

Figure 1

12 pages, 2925 KiB  
Article
Rare Earth Fluorescent Composite Hydrogel with Controllable Color Photoluminescence for Information Encryption
by Jiajia Du, Daohai Zhang, Teng Zhou, Kunlan Diao and Zhi Lei
Polymers 2025, 17(11), 1534; https://doi.org/10.3390/polym17111534 - 30 May 2025
Viewed by 525
Abstract
In the context of the information age, the need for data security and confidentiality is becoming increasingly urgent. In this study, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) were used as the matrix, and a PVA/PEG/rare earth composite hydrogel material with controllable photoluminescence [...] Read more.
In the context of the information age, the need for data security and confidentiality is becoming increasingly urgent. In this study, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) were used as the matrix, and a PVA/PEG/rare earth composite hydrogel material with controllable photoluminescence color was successfully developed by incorporating rare earth ion doping. Through scanning electron microscopy (SEM), X-ray photoelectronic spectroscopy (XPS), X-ray diffraction (XRD), and fluorescence spectroscopy, it was confirmed that the introduction of lanthanide metal light-emitting units makes the material’s photoluminescence color adjustable from red to green, significantly improves the mechanical properties, and the compressive strength is increased from 17.6 MPa to 23 MPa, representing a 30.7% improvement. In addition, the material exhibits excellent alkaline pH response characteristics; as the concentration of NaOH solution increases, the luminous intensity gradually decays to complete quenching. Based on the adjustable light color and dynamic response characteristics, the material can realize information concealment and encryption through programmable light color changes, providing a new functional material solution for intelligent anti-counterfeiting and optical encryption. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

36 pages, 5120 KiB  
Review
Enhancing Optoelectronic Performance Through Rare-Earth-Doped ZnO: Insights and Applications
by Shagun Sood, Pawan Kumar, Isha Raina, Mrinmoy Misra, Sandeep Kaushal, Jyoti Gaur, Sanjeev Kumar and Gurjinder Singh
Photonics 2025, 12(5), 454; https://doi.org/10.3390/photonics12050454 - 8 May 2025
Viewed by 1773
Abstract
Rare-earth (RE) doping has been found to be a potent method to improve the structural, optical, electronic, and magnetic properties of ZnO, positioning it as a versatile material for future optoelectronic devices. This review herein thoroughly discusses the latest developments in RE-doped ZnO [...] Read more.
Rare-earth (RE) doping has been found to be a potent method to improve the structural, optical, electronic, and magnetic properties of ZnO, positioning it as a versatile material for future optoelectronic devices. This review herein thoroughly discusses the latest developments in RE-doped ZnO based on the role of the dopant type, concentration, synthesis method, and consequences of property modifications. The 4f electronic states of rare-earth elements create strong visible emissions, control charge carriers, and design defects. These structural changes lead to tunable bandgap energies and increased light absorption. Also, RE doping considerably enhances ZnO’s performance in electronic devices, like UV photodetectors, LEDs, TCOs, and gas sensors. Though, challenges like solubility constraints and lattice distortions at higher doping concentrations are still key challenges. Co-doping methodologies and new synthesis techniques to further optimize the incorporation of RE into ZnO matrices are also reviewed in this article. By showing a systematic comparison of different RE-doped ZnO systems, this paper sheds light on their future optoelectronic applications. The results are useful for the design of advanced ZnO-based materials with customized functionalities, which will lead to enhanced device efficiency and new photonic applications. Full article
Show Figures

Figure 1

16 pages, 2967 KiB  
Article
Geometrical Evolution Pattern and Spectroscopic Properties of Terbium-Doped Germanium Anionic TbGen (n = 6–17) Nanoclusters: From Tb-Lined to Tb-Encapsulated Structures
by Chenliang Hao and Jucai Yang
Molecules 2025, 30(9), 2066; https://doi.org/10.3390/molecules30092066 - 6 May 2025
Viewed by 444
Abstract
Developing advanced materials with enhanced performance through the doping of nanoclusters is a promising strategy. However, there remains an insufficient understanding of the specific effects induced by such doped nanoclusters, particularly regarding the structural evolution pattern after doping with rare-earth elements and their [...] Read more.
Developing advanced materials with enhanced performance through the doping of nanoclusters is a promising strategy. However, there remains an insufficient understanding of the specific effects induced by such doped nanoclusters, particularly regarding the structural evolution pattern after doping with rare-earth elements and their impact on performance. To solve this problem, we used first-principles calculation to study the structural evolution pattern and spectroscopic properties of anionic TbGen (n = 6–17) nanoclusters through the ABCluster global search technique coupled with the mPW2PLYP double-hybrid density functional theory. The results revealed that the geometrical evolution pattern is from the typical Tb-linked structures (for n = 10–13, in which Tb acts as a linker connecting two germanium sub-clusters) to Tb-centered cage configurations (for n = 14–17). The simulated photoelectron spectroscopy of anionic TbGe16 agrees well with its experimental counterpart. Furthermore, we calculated properties such as infrared spectroscopy, Raman spectroscopy, ultraviolet–visible (UV–vis) spectra, magnetism, charge transfer, the HOMO-LUMO gap, and relative stability. The results suggest that TbGe12 and TbGe16 clusters, with their remarkable stability and tunable photothermal properties, can serve as ideal building blocks for developing novel functional nanomaterials. These clusters demonstrate promising applications in solar photothermal conversion, photoelectric conversion, and infrared imaging technologies through their distinct one- and three-dimensional architectures, respectively. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

17 pages, 4566 KiB  
Article
Visible-Light Photocatalytic Degradation of Methylene Blue by Yb3+-Doped 3D Nanosheet Arrays BiOI Anchored on High-Chloride Fly Ash Composites
by Shuxian Qiu, Danhua Zhao, Runtong Luo, Xiaohong Liu, Jianping Yang, Lijun Xie, Xingyuan Gao and Liaochuan Jiang
Inorganics 2025, 13(5), 147; https://doi.org/10.3390/inorganics13050147 - 6 May 2025
Viewed by 661
Abstract
A Yb3+-doped BiOI 3D nanosheet array composite was successfully fabricated through a solvothermal deposition strategy on flexible carbon cloth (CC). This composite was subsequently integrated with high-chlorine fly ash (FA) blocks to form the Yb-BiOI/CC/FA hybrid material. Comprehensive characterization was performed [...] Read more.
A Yb3+-doped BiOI 3D nanosheet array composite was successfully fabricated through a solvothermal deposition strategy on flexible carbon cloth (CC). This composite was subsequently integrated with high-chlorine fly ash (FA) blocks to form the Yb-BiOI/CC/FA hybrid material. Comprehensive characterization was performed using multiple analytical techniques for crystalline phase identification, morphological analysis, valence state, band structure evaluation, and charge carrier separation assessment. Electrochemical measurements were conducted to evaluate the material’s electronic properties. Experimental results demonstrated superior photocatalytic performance under visible light irradiation, with the Yb-BiOI/CC/FA composite achieving 52.87% methylene blue degradation efficiency. The reaction rate constant of this modified nanomaterial was approximately 2.1 times higher than that of pristine BiOI/CC/FA. Radical trapping experiments revealed that superoxide radicals (·O2) served as the predominant oxidative species. This study presents a dual-benefit strategy for environmental remediation by simultaneously achieving sustainable waste valorization of industrial byproducts (FA) and developing high-efficiency photocatalytic materials. The successful integration of rare-earth metal modification with substrate engineering provides valuable insights for designing advanced photocatalytic systems for pollutant degradation. Full article
Show Figures

Graphical abstract

20 pages, 6941 KiB  
Review
Random Lasers Based on Tellurite and Germanate Glasses and Glass-Ceramics Doped with Rare-Earth Ions
by Davinson M. da Silva, Josivanir G. Câmara, Niklaus U. Wetter, Jessica Dipold, Luciana R. P. Kassab and Cid B. de Araújo
Micromachines 2025, 16(5), 550; https://doi.org/10.3390/mi16050550 - 30 Apr 2025
Viewed by 361
Abstract
Random lasers (RLs) based on glasses and glass-ceramics doped with rare-earth ions (REI) deserve great attention because of their specific physical properties such as large thermal stability, possibility to operate at high intensities, optical wavelength tunability, and prospects to operate Fiber-RLs, among other [...] Read more.
Random lasers (RLs) based on glasses and glass-ceramics doped with rare-earth ions (REI) deserve great attention because of their specific physical properties such as large thermal stability, possibility to operate at high intensities, optical wavelength tunability, and prospects to operate Fiber-RLs, among other characteristics of interest for photonic applications. In this article, we present a brief review of experiments with RLs based on tellurite and germanate glasses and glass-ceramics doped with neodymium (Nd³⁺), erbium (Er³⁺), and ytterbium (Yb³⁺) ions. The glass samples were fabricated using the melt-quenching technique followed by controlled crystallization to achieve the glass-ceramics. Afterwards, the samples were crushed to obtain the powder samples for the RLs experiments. The experiments demonstrated RLs emissions at various wavelengths, with feedback mechanisms due to light scattering at grain/air and crystalline/glass interfaces. The phenomenon of replica symmetry breaking was verified through statistical analysis of the RLs intensity fluctuations, indicating a photonic phase-transition (corresponding to the RL threshold) analogous to the paramagnetic-to-spin glass transition in magnetic materials. The various results reported here highlight the potential of glasses and glass-ceramics for the development of RLs with improved performance in terms of reduction of laser threshold and large lifetime of the active media in comparison with organic materials. Full article
(This article belongs to the Collection Microdevices and Applications Based on Advanced Glassy Materials)
Show Figures

Figure 1

17 pages, 14218 KiB  
Article
Structural Investigation and Energy Transfer of Eu3+/Mn4+ Co-Doped Mg3Ga2SnO8 Phosphors for Multifunctional Applications
by Zaifa Yang
Molecules 2025, 30(9), 1945; https://doi.org/10.3390/molecules30091945 - 27 Apr 2025
Viewed by 466
Abstract
In recent years, rare earth ion and transition metal ion co-doped fluorescent materials have attracted a lot of attention in the fields of WLEDs and optical temperature sensing. In this study, I successfully prepared the dual-emission Mg3Ga2SnO8:Eu [...] Read more.
In recent years, rare earth ion and transition metal ion co-doped fluorescent materials have attracted a lot of attention in the fields of WLEDs and optical temperature sensing. In this study, I successfully prepared the dual-emission Mg3Ga2SnO8:Eu3+,Mn4+ red phosphors and the XRD patterns and refinement results show that the prepared phosphors belong to the Fd-3m space group. The energy transfer process between Eu3+ and Mn4+ was systematically investigated by emission spectra and decay curves of Mg3Ga2SnO8:0.12Eu3+,yMn4+ (0.002 ≤ y ≤ 0.012) phosphors and the maximum value of transfer efficiency can reach 71.2%. Due to the weak thermal quenching effect of Eu3+, its emission provides a stable reference for the rapid thermal quenching of the Mn4+ emission peak, thereby achieving good temperature measurement performance. The relative thermometric sensitivities of the fluorescence intensity ratio and fluorescence lifetime methods reached a maximum value of 2.53% K−1 at 448 K and a maximum value of 3.38% K−1 at 473 K. In addition, the prepared WLEDs utilizing Mg3Ga2SnO8:0.12Eu3+ phosphor have a high color rendering index of 82.5 and correlated color temperature of 6170 K. The electroluminescence spectrum of the synthesized red LED device by Mg3Ga2SnO8:0.009Mn4+ phosphor highly overlaps with the absorption range of the phytochrome PFR and thus can effectively promote plant growth. Therefore, the Mg3Ga2SnO8:Eu3+,Mn4+ phosphors have good application prospects in WLEDs, temperature sensing, and plant growth illumination. Full article
Show Figures

Graphical abstract

31 pages, 6110 KiB  
Review
Recent Progress on Rare Earth Orthoferrites for Gas-Sensing Applications
by Ganesh Kotnana and Seongin Hong
Chemosensors 2025, 13(5), 156; https://doi.org/10.3390/chemosensors13050156 - 23 Apr 2025
Viewed by 604
Abstract
Gas-sensing technology is crucial for the detection of toxic and harmful gases to ensure environmental safety and human health. Gas sensors convert the changes in the conductivity of the sensing material resulting from the adsorption of gas molecules into measurable electrical signals. Rare [...] Read more.
Gas-sensing technology is crucial for the detection of toxic and harmful gases to ensure environmental safety and human health. Gas sensors convert the changes in the conductivity of the sensing material resulting from the adsorption of gas molecules into measurable electrical signals. Rare earth orthoferrite-based perovskite oxides have emerged as promising candidates for gas-sensing technology owing to their exceptional structural, optical, and electrical properties, which enable the detection of various gases. In this article, we review the latest developments in orthoferrite-based gas sensors in terms of sensitivity, selectivity, stability, operating temperature, and response and recovery times. It begins with a discussion on the gas-sensing mechanism of orthoferrites, followed by a critical emphasis on their nanostructure, doping effects, and the formation of nanocomposites with other sensing materials. Additionally, the role of the tunable bandgap and different porous morphologies with a high surface area of the orthoferrites on their gas-sensing performance were explored. Finally, we identified the current challenges and future perspectives in the gas-sensing field, such as novel doping strategies and the fabrication of miniaturized gas sensors for room-temperature operation. Full article
Show Figures

Figure 1

26 pages, 9960 KiB  
Article
Lanthanum Recovery from Aqueous Solutions by Adsorption onto Silica Xerogel with Iron Oxide and Zinc Oxide
by Ionuţ Bălescu, Mihaela Ciopec, Adina Negrea, Nicoleta Sorina Nemeş, Cătălin Ianăşi, Orsina Verdes, Mariana Suba, Paula Svera, Bogdan Pascu, Petru Negrea and Alina Ramona Buzatu
Gels 2025, 11(5), 314; https://doi.org/10.3390/gels11050314 - 23 Apr 2025
Viewed by 642
Abstract
From the lanthanide group, part of the rare earth elements (REEs), lanthanum is one of the most important elements given its application potential. Although it does not have severe toxicity to the environment, its increased usage in advanced technologies and medical fields and [...] Read more.
From the lanthanide group, part of the rare earth elements (REEs), lanthanum is one of the most important elements given its application potential. Although it does not have severe toxicity to the environment, its increased usage in advanced technologies and medical fields and scarce natural reserves point to the necessity also of recovering lanthanum from diluted solutions. Among the multiple methods for separation and purification, adsorption has been recognized as one of the most promising because of its simplicity, high efficiency, and large-scale availability. In this study, a xerogel based on silicon and iron oxides doped with zinc oxide and polymer (SiO2@Fe2O3@ZnO) (SFZ), obtained by the sol–gel method, was considered as an adsorbent material. Micrography indicates the existence of particles with irregular geometric shapes and sizes between 16 μm and 45 μm. Atomic force microscopy (AFM) reveals the presence of dimples on the top of the material. The specific surface area of the material, calculated by the Brunauer–Emmet–Teller (BET) method, indicates a value of 53 m2/g, with C constant at a value of 48. In addition, the Point of Zero Charge (pHpZc) of the material was determined to be 6.7. To establish the specific parameters of the La(III) adsorption process, static studies were performed. Based on experimental data, kinetic, thermodynamic, and equilibrium studies, the mechanism of the adsorption process was established. The maximum adsorption capacity was 6.7 mg/g, at a solid/liquid ratio = 0.1 g:25 mL, 4 < pH < 6, 298 K, after a contact time of 90 min. From a thermodynamic point of view, the adsorption process is spontaneous, endothermic, and occurs at the adsorbent–adsorbate interface. The Sips model is the most suitable for describing the observed adsorption process, indicating a complex interaction between La(III) ions and the adsorbent material. The material can be reused as an adsorbent material, having a regeneration capacity of more than 90% after the first cycle of regeneration. The material was reused 3 times with considerable efficiency. Full article
Show Figures

Graphical abstract

17 pages, 14985 KiB  
Article
Effect of Yttrium Oxide on Microstructure and Oxidation Behavior of Cr/FeCrAl Coatings Fabricated by Extreme High-Speed Laser Cladding Process: An Experimental Approach
by Tian Liang, Jian Liu, Chi Zhan, Shaoyuan Peng and Jibin Pu
Materials 2025, 18(8), 1821; https://doi.org/10.3390/ma18081821 - 16 Apr 2025
Viewed by 481
Abstract
Zr-4 alloy tubes, as the primary cladding material in nuclear reactor cores, face the critical challenge of oxidative attack in 1200 °C steam environments. To address this issue, high-temperature oxidation-resistant coatings fabricated via extreme high-speed laser cladding (EHLA) present a promising mitigation strategy. [...] Read more.
Zr-4 alloy tubes, as the primary cladding material in nuclear reactor cores, face the critical challenge of oxidative attack in 1200 °C steam environments. To address this issue, high-temperature oxidation-resistant coatings fabricated via extreme high-speed laser cladding (EHLA) present a promising mitigation strategy. In this study, Y2O3-modified (0.0–5.0 wt.%) Cr/FeCrAl composite coatings were designed and fabricated on Zr-4 substrates using the EHLA process, followed by systematic investigation of Y doping effects on coating microstructures and steam oxidation resistance (1200 °C, H2O atmosphere). Experimental results demonstrate that Y2O3 doping remarkably enhanced the oxidation resistance, with optimal performance achieved at 2.0 wt.% Y2O3 (31% oxidation mass gain compared to the substrate after 120-min exposure). Microstructural analysis reveals that the dense grain boundary network facilitates rapid surface diffusion of Al, promoting continuous Al2O3 protective film formation. Additionally, Y segregation at grain boundaries suppressed outward diffusion of Cr3+ cations, effectively inhibiting void formation at the oxide-coating interface and improving interfacial stability. The developed rare-earth-oxide-doped composite coating via extreme high-speed laser cladding process shows promising applications in surface-strengthening engineering for nuclear reactor Zr-4 alloy cladding tubes, providing both theoretical insights and technical references for the design of high-temperature oxidation-resistant coatings in nuclear industry. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

21 pages, 22568 KiB  
Article
Properties Evaluation of a Novel Entropy-Stabilized Ceramic (La0.25Ce0.25Nd0.25Sm0.25)Ti2Al9O19 with Enhanced CMAS Corrosion Resistance for Thermal Barrier Coating Applications
by Fuxing Ye, Ziqi Song, Fanwei Meng and Sajid Ali
Materials 2025, 18(8), 1778; https://doi.org/10.3390/ma18081778 - 13 Apr 2025
Viewed by 511
Abstract
In this work, a novel potential thermal barrier coating material entropy-stabilized titanium–aluminum oxide (La0.25Ce0.25Nd0.25Sm0.25)Ti2Al9O19 (META) was successfully synthesized by the solid-state reaction method, and its thermophysical properties, phase stability, infrared [...] Read more.
In this work, a novel potential thermal barrier coating material entropy-stabilized titanium–aluminum oxide (La0.25Ce0.25Nd0.25Sm0.25)Ti2Al9O19 (META) was successfully synthesized by the solid-state reaction method, and its thermophysical properties, phase stability, infrared emissivity, mechanical properties, and CMAS corrosion resistance were systematically investigated. The results demonstrated that META exhibits low thermal conductivity at 1100 °C (1.84 W·(m·K)−1), with a thermal expansion coefficient (10.50 × 10−6 K−1, 1000–1100 °C) comparable to yttria-stabilized zirconia (YSZ). Furthermore, META displayed desirable thermal stability, high emissivity within the wavelength range of 2.5–10 μm, and improved mechanical properties. Finally, META offers superior corrosion resistance due to its excellent infiltration inhibiting. The bi-layer structure on the corrosion surface prevents the penetration of the molten CMAS. Additionally, doping small-radius rare-earth elements thermodynamically stabilizes the reaction layer. The results of this study indicate that (La0.25Ce0.25Nd0.25Sm0.25)Ti2Al9O19 has the potential to be a promising candidate for thermal barrier coating materials. Full article
Show Figures

Figure 1

30 pages, 12475 KiB  
Article
Optimizing Sputtered SnO2:Dy Thin Films for NO2 Gas Detection
by Marwen Mezyen, Nabila Bitri, Ibtissem Riahi, Fatma Chaabouni and Eduard Llobet
Chemosensors 2025, 13(4), 121; https://doi.org/10.3390/chemosensors13040121 - 1 Apr 2025
Viewed by 984
Abstract
Notwithstanding the success of SnO2 as a fundamental material for gas sensing, it has often been criticized for its cross-sensitivity and high operational temperatures. Therefore, in this study, RF-sputtered SnO2 thin films were subjected to a modification process through doping with [...] Read more.
Notwithstanding the success of SnO2 as a fundamental material for gas sensing, it has often been criticized for its cross-sensitivity and high operational temperatures. Therefore, in this study, RF-sputtered SnO2 thin films were subjected to a modification process through doping with a rare earth element, dysprosium (Dy), and subsequently deposited onto two different types of substrates: alumina and glass substrates. All thin films underwent a comprehensive series of characterizations aimed at ensuring their suitability as NO2 sensors. The dysprosium doping levels ranged from 1 to 7 wt.% in increments of 2% (wt.%). X-ray patterns showed that all deposited films exhibited the tetragonal rutile structure of SnO2. The optical band gap energy (Eg) increased with Dy doping, while the Urbach energy decreased with Dy doping. Field emission scanning electron microscopy (FESEM) revealed highly compacted grainy surfaces with high roughness for alumina substrate thin films, which also exhibited higher resistivity that increased with the levels of Dy doping. Energy-dispersive X-ray spectroscopy (EDX) analyses confirmed the stoichiometry of both types of thin films. Gas sensing tests were conducted at different operating temperatures, where the highest response to nitrogen dioxide, over 42%, was recorded for the higher dopant level at 250 °C. Moreover, the sensor’s selectivity toward nitrogen dioxide traces was evaluated by introducing interfering gases at higher concentrations. However, the sensors showed also significant responses when operated at room temperature. Also, we have demonstrated that higher stability is related to the temperature of the sensors and Dy ratio. Hence, a detailed discussion of the gas-sensing mechanisms was undertaken to gain a deeper insight into the NO2 sensitivity exhibited by the Dy-doped SnO2 layer. Full article
Show Figures

Figure 1

16 pages, 4449 KiB  
Article
The Cooling Phase Transition Behavior of 30MnNbRE Steel Studied Based on TMCP
by Shimin Guo, Hui Ma, Xirong Bao, Jia Sun, Xuejiao Tang and Xiaodong Wang
Crystals 2025, 15(4), 327; https://doi.org/10.3390/cryst15040327 - 28 Mar 2025
Viewed by 453
Abstract
The continuous cooling transformation (CCT) curves of undercooled austenite serve as crucial references for obtaining desired microstructures and properties in metallic materials (particularly deformed metals) through heat treatment. In this study, static and dynamic CCT curves were constructed for experimental steels micro-doped with [...] Read more.
The continuous cooling transformation (CCT) curves of undercooled austenite serve as crucial references for obtaining desired microstructures and properties in metallic materials (particularly deformed metals) through heat treatment. In this study, static and dynamic CCT curves were constructed for experimental steels micro-doped with rare earth element Ce by combining temperature-dilatometric curves recorded after austenitization at 900 °C with microstructural characterization and microhardness measurements. Comparative analyses were conducted on the microstructures and microhardness of three experimental steels with varying Ce contents subjected to sizing (reducing) diameter deformation at 850 °C and 950 °C. The CCT experimental results revealed that the microhardness of the tested steels increased with cooling rates. Notably, dynamic CCT specimens cooled at 50 °C/s to room temperature following superheated deformation exhibited 56.7 HV5 higher microhardness than static CCT specimens, accompanied by increased martensite content. The reduction of deformation temperature from 950 °C to 850 °C resulted in the expansion of the bainitic phase region. The incorporation of trace Ce elements demonstrated a significant enhancement in the microhardness of 30MnNbRE steel. This research proposes an effective processing route for improving strength-toughness combination in microalloyed oil well tubes: introducing trace Ce additions followed by sizing (reducing) diameter deformation at 950 °C and subsequent ultra-fast cooling at 50 °C/s to room temperature. This methodology facilitates the production of high-strength/toughness steels containing abundant martensitic microstructures. Full article
Show Figures

Figure 1

14 pages, 4858 KiB  
Article
Synthesis and Characterization of Smartphone-Readable Luminescent Lanthanum Borates Doped and Co-Doped with Eu and Dy
by Katya Hristova, Irena P. Kostova, Tinko A. Eftimov, Georgi Patronov and Slava Tsoneva
Photonics 2025, 12(2), 171; https://doi.org/10.3390/photonics12020171 - 19 Feb 2025
Cited by 1 | Viewed by 762
Abstract
Despite notable advancements in the development of borate materials, improving their luminescent efficiency remains an important focus in materials research. The synthesis of lanthanum borates (LaBO3), doped and co-doped with europium (Eu3⁺) and dysprosium (Dy3⁺), by the [...] Read more.
Despite notable advancements in the development of borate materials, improving their luminescent efficiency remains an important focus in materials research. The synthesis of lanthanum borates (LaBO3), doped and co-doped with europium (Eu3⁺) and dysprosium (Dy3⁺), by the solid-state method, has demonstrated significant potential to address this challenge due to their unique optical properties. These materials facilitate efficient energy transfer from UV-excited host crystals to trivalent rare-earth activators, resulting in stable and high-intensity luminescence. To better understand their structural and vibrational characteristics, Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy were employed to identify functional groups and molecular vibrations in the synthesized materials. Additionally, X-ray diffraction (XRD) analysis was conducted to determine the crystalline structure and phase composition of the samples. All observed transitions of Eu3⁺ and Dy3⁺ in the excitation and emission spectra were systematically analyzed and identified, providing a comprehensive understanding of their behavior. Although smartphone cameras exhibit non-uniform spectral responses, their integration into this study highlights distinct advantages, including contactless interrogation, effective UV excitation suppression, and real-time spectral analysis. These capabilities enable practical and portable fluorescence sensing solutions for applications in healthcare, environmental monitoring, and food safety. By combining advanced photonic materials with accessible smartphone technology, this work demonstrates a novel approach for developing low-cost, scalable, and innovative sensing platforms that address modern technological demands. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

35 pages, 5267 KiB  
Review
Recent Advances in Vanadate-Based Materials for Photocatalytic Hydrogen Production
by Kandasamy Sasikumar and Heongkyu Ju
Molecules 2025, 30(4), 789; https://doi.org/10.3390/molecules30040789 - 8 Feb 2025
Cited by 4 | Viewed by 1813
Abstract
Metal vanadates are a developing group of semiconducting metal oxide materials that are gaining increasing attention due to their great redox potential, effective separation of photogenerated electron–hole pairs, and tunability of structural and physicochemical properties. Their rational design as effective photocatalysts can find [...] Read more.
Metal vanadates are a developing group of semiconducting metal oxide materials that are gaining increasing attention due to their great redox potential, effective separation of photogenerated electron–hole pairs, and tunability of structural and physicochemical properties. Their rational design as effective photocatalysts can find use in various applications, including energy conversion/storage and environmental remediation. In particular, one of the viable ways to address energy-related issues can be through the sustainable production of hydrogen (H2), a clean fuel produced by photocatalysis using metal vanadates. However, the rapid recombination of photogenerated electron–hole pairs limits their practical use as effective photocatalysts, and thus, many efforts have been devoted to optimizing metal vanadates to enhance their efficiency. Herein, we provide a comprehensive review that deals with the recent development strategies of metal (Ni, Fe, Zn, Ag, In, Bi, rare earth, etc.) vanadates with the working mechanisms. Their synthesis, doping, cocatalyst loading, heterojunction creation, and carbon loading are also reviewed for photocatalytic H2 production. The challenges that metal vanadate-based photocatalysts have been facing are also discussed along with their significant potential for environmentally friendly and sustainable clean fuel production. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Chemistry 2024)
Show Figures

Graphical abstract

Back to TopTop