Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = rapeseed protein isolates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3172 KiB  
Article
Optimization of Protein Extraction from Rapeseed Oil Cake by Dephenolization Process for Scale-Up Application Using Artificial Neural Networks
by Branislava Đermanovć, Jelena Vujetić, Tea Sedlar, Danka Dragojlović, Ljiljana Popović, Predrag Kojić, Pavle Jovanov and Bojana Šarić
Foods 2025, 14(10), 1762; https://doi.org/10.3390/foods14101762 - 16 May 2025
Cited by 2 | Viewed by 804
Abstract
Rapeseed proteins, due to their quality and wide availability, have great potential for application in human nutrition. However, their high content of antinutritional compounds poses significant economic and environmental challenges for food industry applications. To overcome these obstacles, various extraction and modification techniques, [...] Read more.
Rapeseed proteins, due to their quality and wide availability, have great potential for application in human nutrition. However, their high content of antinutritional compounds poses significant economic and environmental challenges for food industry applications. To overcome these obstacles, various extraction and modification techniques, including enzymatic and ultrasound-assisted methods, were used to enhance protein functionality and improve both nutritional and sensory properties. In this study, the effects of dephenolization on the structural, physicochemical, and functional properties of rapeseed protein isolate obtained from defatted rapeseed cake were investigated through four different protocols. All obtained protein isolates (PIs) exhibited high protein purity (above 65%), with a notable difference in extraction yield. Furthermore, the extraction process was optimized using an artificial neural network (ANN) model, which demonstrated high predictive performance. The optimal extraction conditions for the dephenolization of rapeseed oil cake were 84% ethanol concentration, a solid-to-liquid ratio of 1/60 w/v, and 15 min of ultrasound treatment, resulting in an impressive protein purity of 90.68% with a yield of 29.17%. The obtained proteins were further characterized and compared in terms of protein profile (FTIR and SDS-PAGE), amino acid composition, solubility, and digestibility. The protein isolate (PI) obtained under optimized conditions displayed superior functional properties, underscoring the relevance and necessity of a data-driven, mathematical approach for scale-up and industrial implementation. Full article
(This article belongs to the Special Issue Application of Bioinformatics in Food Science)
Show Figures

Graphical abstract

16 pages, 2116 KiB  
Article
Adsorption of Sinapine from Rapeseed Protein Production Effluent to Cation Exchange Resins
by Fatima Zahra Kdah, Arnaud Aymes, Luna Beau, Armelle Ropars, Jean-Pol Frippiat and Romain Kapel
Separations 2025, 12(1), 10; https://doi.org/10.3390/separations12010010 - 7 Jan 2025
Viewed by 935
Abstract
Sinapine adsorption was studied on four weak cation exchanges at pHs ranging from 2 to 8. The best adsorption rate was observed with C106 resin at pH 4 (95.25%). The adsorption kinetics followed a pseudo-second-order model while the isotherm data better fitted the [...] Read more.
Sinapine adsorption was studied on four weak cation exchanges at pHs ranging from 2 to 8. The best adsorption rate was observed with C106 resin at pH 4 (95.25%). The adsorption kinetics followed a pseudo-second-order model while the isotherm data better fitted the Langmuir model. The ΔG°, ΔH°, and ΔS° values (−25.834 kJ·mol−1, −24.428 kJ·mol−1, and 0.004 kJ·mol−1·K−1) revealed that the adsorption process was spontaneous and exothermic. Acidified ethanol showed a better desorption rate (75.41%), while virtually no (3.32%) or low (31.14%) sinapine desorption was observed with 50% ethanol and 0.1 M HCl solution, respectively. This indicated that sinapine adsorption took place throughout both ionic and hydrophobic interactions. Very close sinapine adsorption performances were observed with an effluent of the patented rapeseed protein isolate process. Two-step desorption using 50% ethanol, then acidified ethanol, yielded a highly purified neutral sinapine-derivative phenol fraction (75.23%) in the first elution fraction and sinapine (98.85%) in the second one. Full article
Show Figures

Figure 1

13 pages, 1567 KiB  
Article
Influence of In Vitro Digestion on Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Activity of Plant-Protein Hydrolysates Obtained from Agro-Industrial By-Products
by Raúl Pérez-Gálvez, Carmen Berraquero-García, J. Lizeth Ospina-Quiroga, F. Javier Espejo-Carpio, M. Carmen Almécija, Antonio Guadix, Pedro J. García-Moreno and Emilia M. Guadix
Foods 2024, 13(17), 2691; https://doi.org/10.3390/foods13172691 - 26 Aug 2024
Cited by 3 | Viewed by 1388
Abstract
This study investigates the production of protein hydrolysates with dipeptidyl peptidase-IV (DPP-IV) inhibitory activity from agro-industrial by-products, namely olive seed, sunflower seed, rapeseed, and lupin meals, as well as from two plant protein isolates such as pea and potato. Furthermore, the effect of [...] Read more.
This study investigates the production of protein hydrolysates with dipeptidyl peptidase-IV (DPP-IV) inhibitory activity from agro-industrial by-products, namely olive seed, sunflower seed, rapeseed, and lupin meals, as well as from two plant protein isolates such as pea and potato. Furthermore, the effect of simulated gastrointestinal digestion on the DPP-IV inhibitory activity of all the hydrolysates was evaluated. Overall, the lowest values of IC50 (1.02 ± 0.09 – 1.24 ± 0.19 mg protein/mL) were observed for the hydrolysates with a high proportion of short-chain [< 1 kDa] peptides (i.e., olive seed, sunflower seed, and lupin) or high content of proline (i.e., rapeseed). Contrarily, the IC50 of the pea and potato hydrolysates was significantly higher (1.50 ± 0.13 – 1.93 ± 0.13 mg protein/mL). In vitro digestion led to an increase in peptides <1 kDa for almost all hydrolysates (except olive and sunflower seed meals), which was noticeable for rapeseed, pea, and potato hydrolysates. Digestion did not significantly modify the DPP-IV inhibitory activity of olive, sunflower, rapeseed, and potato hydrolysates, whereas a significant decrease in IC50 value was obtained for pea hydrolysate and a significant increase in IC50 was obtained for lupin hydrolysate. Thus, this work shows the potential of agro-industrial by-products for the production of protein hydrolysates exhibiting DPP-IV inhibition. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

15 pages, 16155 KiB  
Article
Bacillus amyloliquefaciens AK-12 Helps Rapeseed Establish a Protection against Brevicoryne brassicae
by Shixiong Qian, Ayesha Ahmed, Pengbo He, Pengfei He, Shahzad Munir, Mengyuan Xia, Chaoyun Tang, Ping Tang, Zaiqiang Wang, Rizwan Khan, Xingyu Li, Yixin Wu and Yueqiu He
Int. J. Mol. Sci. 2023, 24(21), 15893; https://doi.org/10.3390/ijms242115893 - 2 Nov 2023
Cited by 4 | Viewed by 1827
Abstract
Aphids are a serious threat to rapeseed (Brassica napus L.) production, and cause unmanageable loss. Therefore, effective prevention and management strategies are urgently required to avoid losses. Bacillus amyloliquefaciens AK-12 isolated from a dead aphid with aphicidal activity was tagged with a [...] Read more.
Aphids are a serious threat to rapeseed (Brassica napus L.) production, and cause unmanageable loss. Therefore, effective prevention and management strategies are urgently required to avoid losses. Bacillus amyloliquefaciens AK-12 isolated from a dead aphid with aphicidal activity was tagged with a green fluorescent protein through a natural transformation. The transformed strains were checked for stability and growth, and the best-performing strain was tested for its colonization inside and outside the rapeseed plant. The stability of AK-12-GFP reached more than 95%, and the growth curve was consistent with that of AK-12. After 30 days of treatment, the colonization of 1 × 106 CFU/g was recorded in rapeseed leaves. Interestingly, AK-12 reduced the aphid transmission rate compared with the control and improved the growth of the rapeseed seedlings. Meanwhile, the AK-12 strain also exhibited phosphorus, potassium-solubilizing, and nitrogen-fixing activity, and produced 2.61 µg/mL of IAA at 24 h. Regulation in the activity of four enzymes was detected after the AK-12 treatment. Phenylalanine ammonia lyase (PAL) was recorded at a maximum of 86.84 U/g after 36 h, and catalase (CAT) decreased after 48 h; however, peroxidase (POD) and polyphenol oxidase (PPO) reached the maximum within 12 h of AK-12 application. Additionally, important resistance genes related to these enzymes were upregulated, indicating the activation of a defense response in the rapeseed against aphids. In conclusion, defense enzymes and defense-related gene activation could improve the pest resistance in rapeseed, which has good application prospects for the future to be developed into biopesticide. Full article
Show Figures

Figure 1

22 pages, 6666 KiB  
Article
Secretome Analysis for a New Strain of the Blackleg Fungus Plenodomus lingam Reveals Candidate Proteins for Effectors and Virulence Factors
by Nahla A. Bouqellah, Nadia A. Elkady and Peter F. Farag
J. Fungi 2023, 9(7), 740; https://doi.org/10.3390/jof9070740 - 11 Jul 2023
Cited by 4 | Viewed by 2562
Abstract
The fungal secretome is the main interface for interactions between the pathogen and its host. It includes the most important virulence factors and effector proteins. We integrated different bioinformatic approaches and used the newly drafted genome data of P. lingam isolate CAN1 (blackleg [...] Read more.
The fungal secretome is the main interface for interactions between the pathogen and its host. It includes the most important virulence factors and effector proteins. We integrated different bioinformatic approaches and used the newly drafted genome data of P. lingam isolate CAN1 (blackleg of rapeseed fungus) to predict the secretion of 217 proteins, including many cell-wall-degrading enzymes. All secretory proteins were identified; 85 were classified as CAZyme families and 25 were classified as protease families. Moreover, 49 putative effectors were predicted and identified, where 39 of them possessed at least one conserved domain. Some pectin-degrading enzymes were noticeable as a clustering group according to STRING web analysis. The secretome of P. lingam CAN1 was compared to the other two blackleg fungal species (P. lingam JN3 and P. biglobosus CA1) secretomes and their CAZymes and effectors were identified. Orthologue analysis found that P. lingam CAN1 shared 14 CAZy effectors with other related species. The Pathogen-Host Interaction database (PHI base) classified the effector proteins in several categories where most proteins were assigned as reduced virulence and two of them termed as hypervirulence. Nowadays, in silico approaches can solve many ambiguous issues about the mechanism of pathogenicity between fungi and plant host with well-designed bioinformatics tools. Full article
(This article belongs to the Special Issue Bioinformatics in Pathogenic Fungi)
Show Figures

Figure 1

16 pages, 5798 KiB  
Article
Cloning and Functional Characterization of Cold-Inducible MYB-like 17 Transcription Factor in Rapeseed (Brassica napus L.)
by Dan Luo, Ali Raza, Yong Cheng, Xiling Zou and Yan Lv
Int. J. Mol. Sci. 2023, 24(11), 9514; https://doi.org/10.3390/ijms24119514 - 30 May 2023
Cited by 8 | Viewed by 2139
Abstract
Rapeseed (Brassica napus L.) is an important crop for edible oil, vegetables, and biofuel. Rapeseed growth and development require a minimum temperature of ~1–3 °C. Notably, frost damage occurs during overwintering, posing a serious threat to the productivity and yield of rapeseed. [...] Read more.
Rapeseed (Brassica napus L.) is an important crop for edible oil, vegetables, and biofuel. Rapeseed growth and development require a minimum temperature of ~1–3 °C. Notably, frost damage occurs during overwintering, posing a serious threat to the productivity and yield of rapeseed. MYB proteins are important transcription factors (TFs) in plants, and have been proven to be involved in the regulation of stress responses. However, the roles of the MYB TFs in rapeseed under cold stress conditions are yet to be fully elucidated. To better understand the molecular mechanisms of one MYB-like 17 gene, BnaMYBL17, in response to low temperature, the present study found that the transcript level of BnaMYBL17 is induced by cold stress. To characterize the gene’s function, the 591 bp coding sequence (CDS) from rapeseed was isolated and stably transformed into rapeseed. The further functional analysis revealed significant sensitivity in BnaMYBL17 overexpression lines (BnaMYBL17-OE) after freezing stress, suggesting its involvement in freezing response. A total of 14,298 differentially expressed genes relative to freezing response were found based on transcriptomic analysis of BnaMYBL17-OE. Overall, 1321 candidate target genes were identified based on differential expression, including Phospholipases C1 (PLC1), FCS-like zinc finger 8 (FLZ8), and Kinase on the inside (KOIN). The qPCR results confirmed that the expression levels of certain genes showed fold changes ranging from two to six when compared between BnaMYBL17-OE and WT lines after exposure to freezing stress. Furthermore, verification indicated that BnaMYBL17 affects the promoter of BnaPLC1, BnaFLZ8, and BnaKOIN genes. In summary, the results suggest that BnaMYBL17 acts as a transcriptional repressor in regulating certain genes related to growth and development during freezing stress. These findings provide valuable genetic and theoretical targets for molecular breeding to enhance freezing tolerance in rapeseed. Full article
(This article belongs to the Special Issue The Gene, Genomics, and Molecular Breeding in Cruciferae Plants)
Show Figures

Figure 1

14 pages, 1487 KiB  
Article
Application of Rapeseed Meal Protein Isolate as a Supplement to Texture-Modified Food for the Elderly
by Gabriella Di Lena, Ann-Kristin Schwarze, Massimo Lucarini, Paolo Gabrielli, Altero Aguzzi, Roberto Caproni, Irene Casini, Stefano Ferrari Nicoli, Darleen Genuttis, Petra Ondrejíčková, Mahmoud Hamzaoui, Camille Malterre, Valentína Kafková and Alexandru Rusu
Foods 2023, 12(6), 1326; https://doi.org/10.3390/foods12061326 - 20 Mar 2023
Cited by 7 | Viewed by 4804
Abstract
Rapeseed meal (RSM), a by-product of rapeseed oil extraction, is currently used for low-value purposes. With a biorefinery approach, rapeseed proteins may be extracted and recovered for high-end uses to fully exploit their nutritional and functional properties. This study reports the application of [...] Read more.
Rapeseed meal (RSM), a by-product of rapeseed oil extraction, is currently used for low-value purposes. With a biorefinery approach, rapeseed proteins may be extracted and recovered for high-end uses to fully exploit their nutritional and functional properties. This study reports the application of RSM protein isolate, the main output of a biorefining process aimed at recovering high-value molecules from rapeseed meal, as a supplement to texture-modified (TM) food designed for elderly people with mastication and dysphagia problems. The compositional (macronutrients by Official Methods of Analyses, and mineral and trace element profiles using Inductively Coupled Plasma Optical Emission Spectrometry ICP-OES), nutritional and sensory evaluations of TM chicken breast, carrots and bread formulated without and with RSM protein supplementation (5% w/w) are hereby reported. The results show that the texture modification of food combined with rapeseed protein isolate supplementation has a positive impact on the nutritional and sensory profile of food, meeting the special requirements of seniors. TM chicken breast and bread supplemented with RSM protein isolate showed unaltered or even improved sensory properties and a higher nutrient density, with particular regard to proteins (+20–40%) and minerals (+10–16%). Supplemented TM carrots, in spite of the high nutrient density, showed a limited acceptability, due to poor sensory properties that could be overcome with an adjustment to the formulation. This study highlights the potentialities of RSM as a sustainable novel protein source in the food sector. The application of RSM protein proposed here is in line with the major current challenges of food systems such as the responsible management of natural resources, the valorization of agri-food by-products, and healthy nutrition with focus on elderly people. Full article
Show Figures

Graphical abstract

15 pages, 2064 KiB  
Article
Optimization of Selective Hydrolysis of Cruciferins for Production of Potent Mineral Chelating Peptides and Napins Purification to Valorize Total Rapeseed Meal Proteins
by Nastassia Kaugarenia, Sophie Beaubier, Erwann Durand, Arnaud Aymes, Pierre Villeneuve, François Lesage and Romain Kapel
Foods 2022, 11(17), 2618; https://doi.org/10.3390/foods11172618 - 29 Aug 2022
Cited by 2 | Viewed by 2220
Abstract
Preventing oxidation and microbial spoilage are both major concerns in food industries. In this context, this study aimed to valorize the total rapeseed meal proteins with controlled enzymatic proteolysis to generate potent mineral-chelating peptides from cruciferins while keeping intact the antimicrobial napins. Implementation [...] Read more.
Preventing oxidation and microbial spoilage are both major concerns in food industries. In this context, this study aimed to valorize the total rapeseed meal proteins with controlled enzymatic proteolysis to generate potent mineral-chelating peptides from cruciferins while keeping intact the antimicrobial napins. Implementation of proteolysis of total rapeseed protein isolate with the Prolyve® enzyme highlighted an interesting selective hydrolysis of the cruciferins. Hence, the mechanism of this particular hydrolysis was investigated through a Design of Experiments method to obtain a model for the prediction of kinetics (cruciferin degradation and napin purity) according to the operating conditions applied. Then, multicriteria optimization was implemented to maximize the napin purity and yield while minimizing both enzymatic cost and reaction time. Antioxidant assays of the peptide fraction obtained under the optimal conditions proved the high metal-chelating activity preservation (EC50 = 247 ± 27 µg) for more than three times faster production. This fraction might counteract lipid oxidation or serve as preventing agents for micronutrient deficiencies, and the resulting purified napins may have applications in food safety against microbial contamination. These results can greatly help the development of rapeseed meal applications in food industries. Full article
(This article belongs to the Special Issue High-Value Products from Food Wastes)
Show Figures

Figure 1

14 pages, 3606 KiB  
Article
Multifunctionality of Rapeseed Meal Protein Isolates Prepared by Sequential Isoelectric Precipitation
by Radoslav Georgiev, Hristo Kalaydzhiev, Petya Ivanova, Cristina L. M. Silva and Vesela I. Chalova
Foods 2022, 11(4), 541; https://doi.org/10.3390/foods11040541 - 14 Feb 2022
Cited by 10 | Viewed by 3255
Abstract
Rapeseed meal is a by-product of the oil-producing industry with a currently underestimated application. Two protein isolates, PI2.5–8.5 or PI10.5–2.5, were obtained from industrial rapeseed meal after treatment with an aqueous ethanol solution. The alkaline-extracted proteins were sequentially precipitated by [...] Read more.
Rapeseed meal is a by-product of the oil-producing industry with a currently underestimated application. Two protein isolates, PI2.5–8.5 or PI10.5–2.5, were obtained from industrial rapeseed meal after treatment with an aqueous ethanol solution. The alkaline-extracted proteins were sequentially precipitated by two different modes, from pH 10.5 to 2.5, and vice versa, from 2.5 to 8.5, with a step of 1 pH unit. The preparation approach influenced both the functional and antioxidant properties of the isolates. The PI10.5–2.5 exhibited higher water and oil absorption capacities than PI2.5–8.5, reaching 2.68 g H2O/g sample and 2.36 g oil/g sample, respectively. The emulsion stability of the PI2.5–8.5, evaluated after heating at 80 °C, was either 100% or close to 100% for all pH values studied (from 2 to 10), except for pH 6 where it reached 93.87%. For the PI10.5–2.5, decreases in the emulsion stability were observed at pH 8 (85.71%) and pH 10 (53.15%). In the entire concentration range, the PI10.5–2.5 exhibited a higher scavenging ability on 2,2-diphenyl-1-picryl hydrazyl (DPPH) and hydroxyl radicals than PI2.5–8.5 as evaluated by DPPH and 2-deoxyribose assays, respectively. At the highest concentration studied, 1.0%, the neutralization of DPPH radicals by PI10.5–2 reached half of that exhibited by synthetic antioxidant butylhydroxytoluene (82.65%). At the same concentration, the inhibition of hydroxyl radicals by PI10.5–2 (71.25%) was close to that achieved by mannitol (75.62%), which was used as a positive control. Established antioxidant capacities add value to the protein isolates that can thus be used as both emulsifiers and antioxidants. Full article
(This article belongs to the Special Issue Food By-Products as a Source of Proteins and Peptides)
Show Figures

Figure 1

19 pages, 28467 KiB  
Article
Development and Characterization of Extrudates Based on Rapeseed and Pea Protein Blends Using High-Moisture Extrusion Cooking
by Izalin Zahari, Ferawati Ferawati, Jeanette K. Purhagen, Marilyn Rayner, Cecilia Ahlström, Amanda Helstad and Karolina Östbring
Foods 2021, 10(10), 2397; https://doi.org/10.3390/foods10102397 - 9 Oct 2021
Cited by 49 | Viewed by 7736
Abstract
Rapeseed protein is not currently utilized for food applications, although it has excellent physicochemical, functional, and nutritional properties similar to soy protein. Thus, the goal of this study was to create new plant-based extrudates for application as high-moisture meat analogs from a 50:50 [...] Read more.
Rapeseed protein is not currently utilized for food applications, although it has excellent physicochemical, functional, and nutritional properties similar to soy protein. Thus, the goal of this study was to create new plant-based extrudates for application as high-moisture meat analogs from a 50:50 blend of rapeseed protein concentrate (RPC) and yellow pea isolate (YPI) using high-moisture-extrusion (HME) cooking with a twin-screw extruder to gain a better understanding of the properties of the protein powders and resulting extrudates. The effects of extrusion processing parameters such as moisture content (60%, 63%, 65%, 70%), screw speed (500, 700, and 900 rpm), and a barrel temperature profile of 40–80–130–150 °C on the extrudates’ characteristics were studied. When compared to the effect of varying screw speeds, targeted moisture content had a larger impact on textural characteristics. The extrudates had a greater hardness at the same moisture content when the screw speed was reduced. The specific mechanical energy (SME) increased as the screw speed increased, while increased moisture content resulted in a small reduction in SME. The lightness (L*) of most samples was found to increase as the target moisture content increased from 60% to 70%. The RPC:YPI blend was equivalent to proteins produced from other sources and comparable to the FAO/WHO standard requirements. Full article
Show Figures

Figure 1

21 pages, 3084 KiB  
Article
Identification and Capture of Phenolic Compounds from a Rapeseed Meal Protein Isolate Production Process By-Product by Macroporous Resin and Valorization Their Antioxidant Properties
by Tuong Thi Le, Xavier Framboisier, Arnaud Aymes, Armelle Ropars, Jean-Pol Frippiat and Romain Kapel
Molecules 2021, 26(19), 5853; https://doi.org/10.3390/molecules26195853 - 27 Sep 2021
Cited by 11 | Viewed by 3330
Abstract
In this study, phenolic compounds from an aqueous protein by-product from rapeseed meal (RSM) were identified by HPLC-DAD and HPLC-ESI-MS, including sinapine, sinapic acid, sinapoyl glucose, and 1,2-di-sinapoyl gentibiose. The main phenolic compound in this by-product was sinapine. We also performed acid hydrolysis [...] Read more.
In this study, phenolic compounds from an aqueous protein by-product from rapeseed meal (RSM) were identified by HPLC-DAD and HPLC-ESI-MS, including sinapine, sinapic acid, sinapoyl glucose, and 1,2-di-sinapoyl gentibiose. The main phenolic compound in this by-product was sinapine. We also performed acid hydrolysis to convert sinapine, and sinapic acid derivatives present in the permeate, to sinapic acid. The adsorption of phenolic compounds was investigated using five macroporous resins, including XAD4, XAD7, XAD16, XAD1180, and HP20. Among them, XAD16 showed the highest total phenolic contents adsorption capacities. The adsorption behavior of phenolic compounds was described by pseudo-second-order and Langmuir models. Moreover, thermodynamics tests demonstrated that the adsorption process of phenolic compounds was exothermic and spontaneous. The highest desorption ratio was obtained with 30% (v/v) and 70% (v/v) ethanol for sinapine and sinapic acid, respectively, with a desorption ratio of 63.19 ± 0.03% and 94.68 ± 0.013%. DPPH and ABTS tests revealed that the antioxidant activity of the hydrolyzed fraction was higher than the non-hydrolyzed fraction and higher than the one of vitamin C. Antioxidant tests demonstrated that these phenolic compounds could be used as natural antioxidants, which can be applied in the food industry. Full article
Show Figures

Graphical abstract

14 pages, 11470 KiB  
Article
Antiproliferative Rapeseed Defatted Meal Protein and Their Hydrolysates on MCF-7 Breast Cancer Cells and Human Fibroblasts
by Romina L. Ferrero, Carmen Soto-Maldonado, Caroline Weinstein-Oppenheimer, Zaida Cabrera-Muñoz and María Elvira Zúñiga-Hansen
Foods 2021, 10(2), 309; https://doi.org/10.3390/foods10020309 - 3 Feb 2021
Cited by 11 | Viewed by 2685
Abstract
Defatted rapeseed meal (DRM) is a sub-valorized agro-industrial by-product, with a high protein content whose peptides could have potential anticancer activity against cancer cell lines. The objective of the present study is to obtain an enzymatic hydrolysate of rapeseed protein that inhibits proliferation [...] Read more.
Defatted rapeseed meal (DRM) is a sub-valorized agro-industrial by-product, with a high protein content whose peptides could have potential anticancer activity against cancer cell lines. The objective of the present study is to obtain an enzymatic hydrolysate of rapeseed protein that inhibits proliferation on a breast cancer cell line (MCF-7), but not healthy human fibroblast cells. The DRM was solubilized in an alkaline medium to obtain an alkaline rapeseed extract (RAE). Acid precipitation of the proteins contained in RAE recovered a rapeseed protein isolate (RPI). To produce protein hydrolysates, two alkaline protease and different enzyme/substrate ratios were used. All the protein hydrolysates showed antiproliferative activity on MCF-7 cells. However, only the hydrolysate recovered from the enzymatic hydrolysis of RPI (Degree of hydrolysis (DH ) between 8.5 and 9% (DH1)) did not affect human fibroblast cells, inhibiting 83.9% of MCF-7 cells’ proliferation and showing a mass yield of 22.9% (based on the initial DRM). The SDS-PAGE gel revealed that DH1 was composed mainly of 10 kDa peptides and, to a lesser extent, 5 and 2 kDa. It is concluded that DH1 is a promising peptide extract for future research as a putative anti-breast cancer agent. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

14 pages, 2869 KiB  
Article
A Single Seed Protein Extraction Protocol for Characterizing Brassica Seed Storage Proteins
by Mahmudur Rahman, Lei Liu and Bronwyn J. Barkla
Agronomy 2021, 11(1), 107; https://doi.org/10.3390/agronomy11010107 - 8 Jan 2021
Cited by 8 | Viewed by 8441
Abstract
Rapeseed oil-extracted expeller cake mostly contains protein. Various approaches have been used to isolate, detect and measure proteins in rapeseeds, with a particular focus on seed storage proteins (SSPs). To maximize the protein yield and minimize hazardous chemical use, isolation costs and the [...] Read more.
Rapeseed oil-extracted expeller cake mostly contains protein. Various approaches have been used to isolate, detect and measure proteins in rapeseeds, with a particular focus on seed storage proteins (SSPs). To maximize the protein yield and minimize hazardous chemical use, isolation costs and the loss of seed material, optimization of the extraction method is pivotal. For some studies, it is also necessary to minimize or avoid seed-to-seed cross-contamination for phenotyping and single-tissue type analysis to know the exact amount of any bioactive component in a single seed, rather than a mixture of multiple seeds. However, a simple and robust method for single rapeseed seed protein extraction (SRPE) is unavailable. To establish a strategy for optimizing SRPE for downstream gel-based protein analysis, yielding the highest amount of SSPs in the most economical and rapid way, a variety of different approaches were tested, including variations to the seed pulverization steps, changes to the compositions of solvents and reagents and adjustments to the protein recovery steps. Following SRPE, 1D-SDS-PAGE was used to assess the quality and amount of proteins extracted. A standardized SRPE procedure was developed and then tested for yield and reproducibility. The highest protein yield and quality were obtained using a ball grinder with stainless steel beads in Safe-Lock microcentrifuge tubes with methanol as the solvent, providing a highly efficient, economic and effective method. The usefulness of this SRPE was validated by applying the procedure to extract protein from different Brassica oilseeds and for screening an ethyl methane sulfonate (EMS) mutant population of Brassica rapa R-0-18. The outcomes provide useful methodology for identifying and characterizing the SSPs in the SRPE. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Graphical abstract

19 pages, 4333 KiB  
Article
Transcriptomic Analysis Reveals Candidate Genes Responsive to Sclerotinia scleroterum and Cloning of the Ss-Inducible Chitinase Genes in Morus laevigata
by Huanhuan Jiang, Xiaoyun Jin, Xiaofeng Shi, Yufei Xue, Jiayi Jiang, Chenglong Yuan, Youjie Du, Xiaodan Liu, Ruifang Xie, Xuemei Liu, Lejing Li, Lijuan Wei, Chunxing Zhang, Liangjing Tong and Yourong Chai
Int. J. Mol. Sci. 2020, 21(21), 8358; https://doi.org/10.3390/ijms21218358 - 7 Nov 2020
Cited by 7 | Viewed by 2675
Abstract
Sclerotinia sclerotiorum (Ss) is a devastating fungal pathogen that causes Sclerotinia stem rot in rapeseed (Brassica napus), and is also detrimental to mulberry and many other crops. A wild mulberry germplasm, Morus laevigata, showed high resistance to Ss, but [...] Read more.
Sclerotinia sclerotiorum (Ss) is a devastating fungal pathogen that causes Sclerotinia stem rot in rapeseed (Brassica napus), and is also detrimental to mulberry and many other crops. A wild mulberry germplasm, Morus laevigata, showed high resistance to Ss, but the molecular basis for the resistance is largely unknown. Here, the transcriptome response characteristics of M. laevigata to Ss infection were revealed by RNA-seq. A total of 833 differentially expressed genes (DEGs) were detected after the Ss inoculation in the leaf of M. laevigata. After the GO terms and KEGG pathways enrichment analyses, 42 resistance-related genes were selected as core candidates from the upregulated DEGs. Their expression patterns were detected in the roots, stems, leaves, flowers, and fruits of M. laevigata. Most of them (30/42) were specifically or mainly expressed in flowers, which was consistent with the fact that Ss mainly infects plants through floral organs, and indicated that Ss-resistance genes could be induced by pathogen inoculation on ectopic organs. After the Ss inoculation, these candidate genes were also induced in the two susceptible varieties of mulberry, but the responses of most of them were much slower with lower extents. Based on the expression patterns and functional annotation of the 42 candidate genes, we cloned the full-length gDNA and cDNA sequences of the Ss-inducible chitinase gene set (MlChi family). Phylogenetic tree construction, protein interaction network prediction, and gene expression analysis revealed their special roles in response to Ss infection. In prokaryotic expression, their protein products were all in the form of an inclusion body. Our results will help in the understanding of the molecular basis of Ss-resistance in M. laevigata, and the isolated MlChi genes are candidates for the improvement in plant Ss-resistance via biotechnology. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 8952 KiB  
Article
From Dimness to Glossiness—Characteristics of the Spring Rapeseed Mutant Form without Glaucous Bloom (Brassica napus L.)
by Anna V. Shirokova, Valentina T. Volovik, Natalia V. Zagoskina, Georgiy P. Zaitsev, Hatima K. Khudyakova, Larisa M. Korovina, Oleg N. Krutius, Tatiana N. Nikolaeva, Olga B. Simonova, Andrey A. Alekseev and Ekaterina N. Baranova
Agronomy 2020, 10(10), 1563; https://doi.org/10.3390/agronomy10101563 - 14 Oct 2020
Cited by 3 | Viewed by 3288
Abstract
As a result of the treatment of “Vikros” spring canola with the chemical mutagen ethyl methanesulfonate (EMS), a high-protein mutant form without glaucous bloom (wax bloom) on leaves, shoots, and siliques was isolated. Segregation into glossy and glaucous forms was always observed in [...] Read more.
As a result of the treatment of “Vikros” spring canola with the chemical mutagen ethyl methanesulfonate (EMS), a high-protein mutant form without glaucous bloom (wax bloom) on leaves, shoots, and siliques was isolated. Segregation into glossy and glaucous forms was always observed in the progeny of glossy plants from self-pollination, and the proportion of glaucous plants could reach up to 25%. The progeny of glaucous plants were homogeneous and did not segregate. If during the period of seed germination and seedling development the soil did not dry out and remained moist, and the average daily temperature did not exceed 16 °C, then the amount of glossy plants could reach 99%. Glossy plants possessed qualities valuable for breeding forage varieties, such as the increased content of protein in seeds (more than 30%), and change phenol metabolism, чтo прoявляется a reduced amount of lignin and sinapine in comparison with the original cultivar. In addition, plants without wax coating showed weakened shoot growth, decreased pollen fertility and seed production, and reduced lignin content in the shoots. Glossy mutants are of interest for the obtaining of fodder low-sinapine and low-lignin varieties of spring rapeseed. Full article
(This article belongs to the Special Issue Defense Metabolites in Brassicas Crops)
Show Figures

Figure 1

Back to TopTop