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Abstract: Rapeseed oil-extracted expeller cake mostly contains protein. Various approaches have
been used to isolate, detect and measure proteins in rapeseeds, with a particular focus on seed storage
proteins (SSPs). To maximize the protein yield and minimize hazardous chemical use, isolation costs
and the loss of seed material, optimization of the extraction method is pivotal. For some studies, it is
also necessary to minimize or avoid seed-to-seed cross-contamination for phenotyping and single-
tissue type analysis to know the exact amount of any bioactive component in a single seed, rather
than a mixture of multiple seeds. However, a simple and robust method for single rapeseed seed
protein extraction (SRPE) is unavailable. To establish a strategy for optimizing SRPE for downstream
gel-based protein analysis, yielding the highest amount of SSPs in the most economical and rapid way,
a variety of different approaches were tested, including variations to the seed pulverization steps,
changes to the compositions of solvents and reagents and adjustments to the protein recovery steps.
Following SRPE, 1D-SDS-PAGE was used to assess the quality and amount of proteins extracted.
A standardized SRPE procedure was developed and then tested for yield and reproducibility. The
highest protein yield and quality were obtained using a ball grinder with stainless steel beads in
Safe-Lock microcentrifuge tubes with methanol as the solvent, providing a highly efficient, economic
and effective method. The usefulness of this SRPE was validated by applying the procedure to extract
protein from different Brassica oilseeds and for screening an ethyl methane sulfonate (EMS) mutant
population of Brassica rapa R-0-18. The outcomes provide useful methodology for identifying and
characterizing the SSPs in the SRPE.

Keywords: protein extraction; seed proteins; Brassica rapa; 2S albumin like napins; 11/12S globulin
like cruciferins; 1D SDS-PAGE; EMS mutant population

1. Introduction

Seeds of rapeseed species Brassica rapa, B. napus and B. juncea are utilized primar-
ily for oil production. This globally important agronomic and bioeconomic crop is the
second-largest cultivated oilseed around the world, supplying about 15% of the global con-
sumption of edible vegetable oils [1,2]. In addition to oil production, Brassica crop species
are consumed as edible leafy vegetables, stems, roots, buds, flowers and seeds, includ-
ing B. rapa (rapeseed, European turnip, turnip rape, field mustard, Chinese cabbage and
mizuna), B. oleracea (broccoli, cabbage, Chinese kale, kale rape, cauliflower and kohlrabi),
B. nigra (black or brown mustard), B. napus (winter oilseed, kohlrabi, cauliflower, broccoli
and Chinese kale), B. juncea (Asian mustard) and Sinapis alba L. (white mustard) [3–6].
Demographic and lineage analyses suggested that these species might have evolved from
a common ancestor and have similar seed morphologies [4]. The proteins constitute up to
50% of the seed and remain in the seed meal following oil extraction as a waste stream prod-
uct [7]. These proteins contain high levels of sulfur-containing amino acids (40–49 mg/g of
protein) [6,8–14], and their balanced amino acid profiles make them as nutritionally rich as
those of animal proteins [15]. The nutritional attributes of this abundant natural resource
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from residual press cakes make them particularly valued for use in livestock feed, but these
proteins could also potentially be used in human food products, helping to meet the global
demands for nutritious proteins in vegetarian, flexitarian or vegan diets [16,17]. Moreover,
the potential beneficial functional properties of these proteins, such as high solubility, water
and fat binding, foaming, film forming and gelling abilities, make them sought after in the
food processing industry [12,15,16].

The major proteins in the Brassica seed are the 2S albumins (napins), 12S globulins
(cruciferins) and the recently confirmed 7S vicilins, which together constitute around
80–90% of the total protein in the seed [18–20]. There is much interest in being able to
manipulate seed storage proteins and elevate the overall content of proteins in the seeds,
but also to adjust the ratio of napins/cruciferins. Reduction in the amount of napin in the
seed is desired as this protein has been linked directly to allergenic responses and shown
to account for the high incidence of allergies to mustard condiments [21–23].

Genetic manipulation of seed phenotypic traits, such as the amount of napin protein,
are relatively straightforward with today’s technology, including the use of ethyl methane
sulfonate (EMS) mutant populations, antisense RNA [24], reverse genetics by Targeting
Induced Local Lesions in Genomes (TILLING) [25–27] or CRISPR-Cas9-targeted mutagen-
esis [28]. These approaches would require screening mutant populations for alterations
in protein levels and, unless seeds have gone through multiple generations, they would
still be segregated for traits of interest. It is not until the F6 generation that each seed on
the resulting panicle can be considered nearly genetically identical [29]. Therefore, it is
essential to develop protein extraction methods that allow for the analysis of individual
seeds, rather than pooling populations of seeds where there could be a mixing of traits.

The nutritional values of rapeseed proteins were explored over the last few decades,
and the major seed storage proteins of cruciferin and napin were first identified and
characterized physicochemically about twenty years back [30–33]. Vicilins have only
recently been confirmed to be present in the seeds of rapeseed [19,20]. Being cheaper than
soybean with a well-balanced essential and sulfur-containing amino acid ratio, and having
equivalent nutritional value to milk, eggs and some animal proteins, rapeseed proteins
could be an effective alternative to soybean in the food industry for human use [34].
Various approaches have been used to isolate, detect and measure proteins in seeds, with a
particular focus on seed storage proteins. To maximize the yield of protein and minimize
the use of hazardous chemicals, isolation costs and loss of seed material, optimization of
the extraction method is pivotal. For some studies, like phenotyping and single-tissue
type analysis, it is also important to minimize or avoid seed-to-seed cross-contamination
in order to know the exact amount of any bioactive component in a single seed. This
is the particular case for pilot-scale field experiments, green house and growth chamber
experiments, analysis of small and endangered seed species and proteome profiling of
seeds where the sample size is very low and/or the analysis of high-abundance storage
proteins in individual seeds is crucial [35–37]. In plant breeding approaches, single seed
analysis is always desired, with minimal sample preparation because of limited seed
availability [38,39]. Consequently, it becomes necessary to extract material from a single
seed rather than a mixture of multiple seeds.

In this study, a practical, robust, efficient and inexpensive high-throughput single-seed
extraction protocol was developed and applied to a forward genetic screening approach of
the M3 progeny of an EMS-generated TILLING population in B. rapa genotype R-o-18 [26]
for mutants which had alterations in their seed protein profiles.

2. Materials and Methods
2.1. Seed Materials and Mutant Screening

To establish an effective and widely applicable method to extract and analyze protein
from individual Brassica seeds, four commercially grown Brassica species, namely Brassica
fruticulosa, B. juncea (GK120054, Canadian Forge), B. nigra and B. rapa, were collected
from the Southern Cross Plant Science seed repository. At the initial stage of the method
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development, single-seed extraction of protein was compared to extraction from either
a pool of two or five seeds to determine feasibility and protein yield. Following the
establishment of a method, two biological replicates of single seeds were sampled from each
of 2192 accession packages of the B. rapa genotype R-o-18 mutant TILLING population [26],
obtained from the non-genetically modified M3 line of an M0 line that was chemically
mutated with EMS, collected in the summer of 2010 at the University of Nottingham,
Sutton Bonington campus, United Kingdom. This population had an estimated mutation
density of 1 per 60 kb, a number sufficient to ensure a mutation in every gene. These
genotypes were chosen due to their similar developmental ontogeny to a rapeseed crop,
making them well suited for studying traits with relevance to the yield and quality of
rapeseed [26] and because of the availability of the B. rapa genome (The Brassica rapa
Genome Sequencing Project Consortium [40]). Using this mutant population, a forward
genetic screen to identify mutants with altered seed storage protein compositions was
carried out. Single-seed weight was measured using an OHAUS analytical balance (Ohaus
Corporation, Parsippany, NJ, USA).

2.2. Maceration of Seeds

Pre-weighed seeds (1, 2 or 5) were placed into 2.0 mL or 1.5 mL microcentrifuge tubes
(LabCo Tube Micro 1.5 mL, Code: 650550320, LabCo, Germany; QSP 509-GRD-Q; 1.5 mL
Graduated Microcentrifuge Tube, Lot 16450048, Thermo Fisher Scientific, Waltham, MA,
USA; LabCo Tube Micro 2 mL, Code 650550335, LabCo, Germany; Reaction Tube, 2 mL,
PP, graduated, Catalogue: 623201, Greiner Bio-one, Germany; 1.5 mL conical screw cap
microtube, Catalogue# 514-Q, QSP, USA; DNA LoBind 1.5 mL tube, Catalogue: 022431021,
Eppendorf, Germany; and Safe-Lock Tubes 2.0 mL, Catalogue: 0030120094, Eppendorf,
Germany) in the presence of either a 3 mm tungsten carbide bead, (Qiagen GmbH, D-40724,
Hilden, Cat. No. 69997) or a 5 mm stainless steel bead (Qiagen GmbH, D-40724, Hilden,
Cat. No. 69989). Pre-chilled (4 ◦C) MilliQ water, methanol or 10% TCA (w/v) in 10 mL
of acetone were added prior to grinding in different volumes (50, 100, 150 and 200 µL),
and results were compared to seeds macerated in the absence of liquid. A ball grinder
(TissueLyser Qiagen, Retsch GmbH, Germany) was used to grind the seeds at a frequency of
20 oscillations per second for two min with an interval of one min, using a pre-chilled tube
adaptor. Extracted samples were centrifuged at 10,000× g for 20 min (Sigma Laboratory
Centrifuge 4K15, Osterode, Germany).

2.3. Preparation of Protein Extracts and 1D-SDS-PAGE

The supernatant was evaporated from the tubes using an Eppendorf vacuum con-
centrator (model 5301) set to 30 ◦C. The samples in tubes containing powdered ground
seed were resuspended in either a 1X or 2X concentrated Laemmli buffer (65.8 mM
Tris-HCl, pH 6.8, 2.1% SDS, 26.3% (w/v) glycerol, 0.01% bromophenol blue and 5% β-
mercaptoethanol) or a urea buffer (5 M urea, 2 M thiourea, 2% CHAPS (w/v), 2% amidosulfo-
betain-14 detergent (ASB-14)-3-10 (w/v), 40 mM Tris and 0.5% ampholytes, pH 3–10 (Bio-
Lyte, Bio-Rad) to solubilize the sample (Figure 1).

The weight of a single seed used in this optimization study ranged from 1.2 mg to
5.5 mg. It was observed that 10 µl of a sample extracted from a 2.0 mg seed produced a
reasonable banding pattern for all proteins present in seed protein extracts. Considering this
loading volume as a standard, the volumes for other seed protein extracts were calculated
and normalized to this, based on seed weight.

Resuspended samples were heated at 60 ◦C for 2 min and centrifuged at 13,000× g
for 20 min (Biofuge pico, Heraeus, Germany) prior to being loaded onto gels. Samples
were loaded onto either Mini-Protean Tris-Glycine or Tris-Tricine precast gels (Bio-Rad
Laboratories Inc., Hercules, CA, USA). The gels were run in a Bio-Rad Mini Protean Tetra
Cell system at a 100–180 constant voltage at room temperature for approximately 45–90
min in the appropriate running buffer for the gel type.
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The gels were stained overnight in a Bio–Safe™ Coomassie Stain (Bio-Rad cat #161-
0786) on a reciprocal platform shaker (MaxQ 2508, Thermo Scientific, Waltham, USA) and
de-stained with MilliQ water. Gel imaging was carried out using the Gel Doc XR imaging
system (Bio-Rad) with Image Lab Software (v.6.0.1).
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2.4. Densitometric Analysis of Stained Gels

Densitometric quantification of the protein bands on the stained gels was carried out
with digitized images using Image Lab software (Image Lab 6.0.1, Bio-Rad) and normalized
to the quantity of the closest protein molecular weight standards on the gel.

2.5. Western Blot Analysis

The presence of 2S albumin-type napins and 12S globulin-type cruciferins in the
protein extracts separated by 1D-SDS-PAGE were confirmed by western blotting [41]. Fol-
lowing SDS-PAGE, proteins were transferred electrophoretically onto prewetted polyvinyli-
dene difluoride (PVDF) membranes (BioRad Lab. Inc., Hercules, FL, USA) using a Trans-
Blot® Turbo™ Transfer System (BioRad Lab Inc. Hercules, FL, USA) at 2.5 A and 25 V for
3 min in turbo mode.

After transferring, the membrane was rapidly stained with Ponceau S stain (1%
Ponceau S (w/v) (P 3504-10G, Bio-Rad, Hercules, FL, USA) in 5% acetic acid) on an orbital
shaker for 1 min, then washed with MilliQ water to ensure the correct transfer of the
proteins. The membranes were then blocked with 5% skim milk in Tris-buffered saline,
(TBS) solution for 2 h on a shaker and then incubated in a blocking solution containing
a primary antibody overnight at room temperature. Primary antibodies against either
cruciferin or napin [42,43] were used at dilutions of 1/50,000 and 1/10,000, respectively.
After incubation with the primary antibody, the blots were washed 3 times (TBS, TBS +
0.1% Tween 20 and TBS) for 15 min and then incubated in horse-radish peroxidase (HRP)
goat anti-rabbit IgG (H&L) HRP-conjugated secondary antibody (WesternSure HRP Goat
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Anti-Rabbit IgG—Cat-926-8011, Lot-C4110701, LiCOR®, Lincoln, USA). Chemiluminescent
detection was performed using the WesternSure Chemiluminence kit (LiCOR®, Catalog
No. 1 520 709) according to the manufacturer’s specifications. The membrane was then
scanned and digitized using a LiCOR® C-Digit scanner (LI-COR Biotechnology) coupled
with Image Studio v. 4 software.

3. Results and Discussions

A single-seed protein extraction protocol was developed and optimized for the extrac-
tion of protein from B. rapa seeds to provide sufficient high-quality samples for downstream
analysis. Optimization involved varying the microcentrifuge tube type, bead type and seed
number and testing a range of common extraction buffers, then comparing their protein
solubilizations in the presence of either an SDS sample buffer or a urea buffer. The extracted
proteins were then separated by SDS-PAGE using either a Tris-Glycine or Tris-Tricine gel
buffer system. This optimized method is robust, reproducible, efficient and inexpensive,
allowing high-throughput single-seed extraction for the agronomically important crop of
rapeseed.

3.1. Optimization of the Extraction Method

A range of common microcentrifuge tubes were tested for their ability to withstand
the high mechanical force required to grind the seeds (Figure 1). The best-performing tubes
were the 2.0 mL Safe-Lock tubes with rounded bottoms and hinged lock lids, as these could
withstand the high shaking force and rotation of the grinder with no mechanical damage,
and there was no unintended opening during grinding. Other conventional and screwcap
tubes were either unable to withstand the grinding force, resulting in cracks or breakage or,
in some cases, the lids opened during the process.

Seed grinding was carried out in the presence of either 3 mm tungsten carbide beads
or 5 mm stainless steel beads, with one bead per tube. The 5 mm stainless steel beads were
found to effectively pulverize the seed, resulting in a uniform, fine, floury particulate. In
contrast, the 3 mm tungsten carbide beads were too small and did not effectively grind
the seed material in the tip of the tube, resulting in large unground particles. It was also
observed that the smooth and polished surface of the stainless-steel bead generated a lower
static coefficient of friction [44].

Analysis of the protein profiles on 1D-SDS-PAGE gels indicated that an optimal
banding pattern, especially in the low molecular weight range below 60 kDa, where
monomers of seed storage proteins were expected to separate, was observed for single-seed
protein extracts as compared with multiple seed extracts (Figure 2A). The weight of a single
seed ranged from 1.2 mg to 5.5 mg, and it was found that a single seed within that weight
range contained sufficient protein to detect clear and defined bands when separated by
SDS-PAGE. However, the use of seeds with weights below 1.2 mg resulted in faint protein
banding (data not shown). Increasing the seed number per tube resulted in difficulty
solubilizing the extracted material, most likely due to increased oil release causing pasting,
and a larger particle size of the sample due to poor grinding, as a result of a lack of space in
the tube. This resulted in streaking or aggregates of proteins in the lanes when the samples
were separated by SDS-PAGE (Figure 2A). The use of different extraction buffers also gave
varying results, with seeds ground in the presence of methanol providing an efficient and
economical option, producing a fine, powdery particulate that was easy to resuspend and
evaporated quickly during the drying process. Seed disruption using methanol as the
solvent also produced clean, clear, well-resolved protein bands on the gel (Figure 2B), with
little difference to those observed for either of the other extraction buffers that involved
more complex preparation with several additional steps and were more costly.

The solubilization buffer used to resuspend the ground seed protein extracts prior
to SDS-PAGE also proved to be important for obtaining clear protein banding and well-
defined separation of the napin and cruciferin proteins (Figure 2B). The sample buffer
containing SDS resulted in better resolution of the napin proteins than that observed using
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the sample buffer containing urea (red arrow). This may indicate that SDS is better able
to denature napin proteins than urea. Urea interacts mainly with aromatic and nonpolar
amino acid residues and, less frequently with polar charged amino acids [45], which may
be a key factor in reducing napin, which is highly water soluble.
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PAGE electrophoretic banding pattern of B. rapa protein extracts from seeds (one, two and five). (B) 1-D-SDS PAGE
electrophoretic banding pattern of B. rapa protein extracts using different sample buffers of different strengths (1X and
2X SDS). The red arrow indicates the position of the napin proteins. (C) 1-D-SDS PAGE electrophoretic banding pattern
of B. rapa protein extracts using different gel buffer systems (either Tris-Glycine or Tris-Tricine). The blue arrow shows
the Tris-Glycine buffer system provided optimal separation for proteins in the range of 25–120 kDa, while the red arrow
indicates the Tris-Tricine buffer system allowed resolution of low molecular weight proteins in the range of 2–25 kDa. The
Tris-Tricine gels gave much better resolution of the low molecular weight napin proteins (red arrow). Composed gel images
are representative of three biological replicates.
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As expected, the gel buffer system also influenced the resolution of proteins on the
gels (Figure 2C). Tris-Glycine provided optimal separation for proteins in the range of
25–120 kDa (blue arrow), while the Tris-Tricine buffer system allowed for the resolution of
low molecular weight proteins in the range of 2–25 kDa (red arrow) [46]. In Figure 2C, the
seed protein extracts separated on Tris-Tricine gels gave a much better resolution of the
low molecular weight napin proteins (red arrow).

3.2. Use of the Single-Seed Protein Extraction Method in Seeds of Other Brassica Species

In order to determine the versatility of the method developed for protein extraction
from single seeds of B. rapa, the method was applied to analyze the protein content of other
Brassica oilseeds, including Brassica fruticulosa, B. juncea, and B. nigra (Figure 3). In all cases,
the protein extracts showed clear and well-resolved bands, the characteristic two triplets
for cruciferin and a single doublet for napin, highlighting the usefulness of the method
across a range of species differing in pigmentation and oil content [23].
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3.3. Confirmation of the Identity of Napin and Cruciferin Proteins by Western Blotting

In order to confirm the identity of the 2S albumin-type napins and 12S globulin-type
cruciferins in the gels, western blot analysis was performed using anti-cruciferin and anti-
napin polyclonal antibodies directed against gel-purified Arabidopsis proteins [47–49]. In



Agronomy 2021, 11, 107 8 of 14

this optimized single seed method, it was found that both the large and small subunits of
napin reacted with the antibody, as well as a higher molecular weight protein, which may
correspond to the preprocessed protein (Figure 4) [50], while the anti-cruciferin antibody
reacted with a triplet of proteins in the range of 27–32 kD, corresponding to the alpha
subunits [43].
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3.4. Application of Single-Seed Protein Extraction Method to Identify Seed Storage Protein
Mutants in Brassica rapa

A proof of principle strategy was developed to show the effectiveness and relevance
of the single-seed protein extraction protocol for screening mutagenized M3 populations
of B. rapa seeds to identify changes in seed storage proteins by 1D-SDS-PAGE, with a
particular focus on cruciferin and napin proteins. Screening can be accomplished by a
simple process, due to the high abundance of those proteins in the seed extracts and their
characteristic protein profiles: two triplets for cruciferin between 15–32 kDa, and a single
doublet for napin between 5–10 kDa following gel electrophoresis [23]. Alterations to the
seed storage protein abundance or ratio through the use of mutational technologies has
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been carried out in several crops, where changes in gene expression resulted in changes in
protein abundance [51–55].

In this study, single-seed protein extracts, corresponding to single accessions from the
mutant population, were obtained, and the protein was separated by 1D-SDS-PAGE. The
protein profile was directly compared to extracts obtained from wild-type seeds or other
accessions separated on the same gels. Observation of the gels identified several extracts
which exhibited some alterations in the characteristic protein profile. These included two
accessions which showed changes in the abundance of cruciferins, one accession that had
alterations in napin content and an additional accession that showed reduced amounts of a
high molecular weight (85–90 kDa) protein (Figure 5). Accession numbers for each seed
extract were marked on the tops of the gels. The accession numbers for the mutant lines
with altered protein profiles were indicated with red text.
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extraction from the seed packets of Accession 0947 for protein extraction, which had been 
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Figure 5. 1D-SDS PAGE of seed protein extracts obtained from accessions of the ethyl methane sulfonate (EMS) mutant
population. Accession numbers for each seed extract were marked on the tops of the gels. (A), accession 1487 compared to
accessions 3278 and 2922. (B), accession 3457 compared to accession 3386. (C), accession 118 compared to accession 1132
and (D), accession 0947 compared to accessinos 0846 and 1044. The accession numbers of mutant lines with altered protein
profiles are indicated by red text. They were directly compared to extracts obtained from wild-type seeds or other accessions
separated on the same gels.

Accession 1487 showed an absence of the lower napin band in the doublet at 5 kDa
(Figure 5A, red). Both accessions 3457 and 118 showed clear alterations in the protein
bands associated with cruciferins. A reduced abundance of all three cruciferin proteins
in the top triplet, corresponding to the three alpha chain proteins [47], was observed,
and the two higher molecular weight proteins of the beta chain proteins [47,56,57] also
decreased in abundance (Figure 5B,C, red arrows). Interestingly, there was no change in
abundance of the cruciferin protein corresponding to the lowest molecular weight beta 3
protein (Figure 5B,C, green arrow) [58]. Accession 0947 showed reduced amounts of a high
molecular weight protein of 90 kDa (Figure 5D, red arrow) whose function is unknown.

Screening of individual seeds from M3 mutant lines could allow for the selection of
mutant segregants (Figure 6). Two single M3 seeds were selected randomly for protein
extraction from the seed packets of Accession 0947 for protein extraction, which had been
identified as showing alterations in the protein profile compared with the other accessions
separated on the same gels (Figure 5D). In another instance, only one of the two seeds
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showed the mutant phenotype (Figure 6). A protein band of approximately 90 kDa with an
unknown identity and function was missing from one of the two accessions, specifically
Accession 208B (red arrow). This demonstrates the importance of not pooling seed extracts
when working with segregating lines, as these changes would be masked if seeds were
combined, and any alterations would be more difficult to identify. Mutants identified in
this study using the single-seed approach will require validation by a map-based cloning
approach.
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In all cases of mutants reported in this study, there appeared to be no obvious com-
pensation for the reduced expression of protein, in that no other proteins in the extracts
appeared to be increased. Similar results were observed for an Arabidopsis seed mu-
tant with reduced cruciferin, which showed an overall reduction in protein filling in the
seed [51]. However, the mutants of barley seed storage protein C-hordein showed in-
creased levels of D-hordein, indicating compensation of seed protein amounts to maintain
protein filling of the seed [59]. Similarly, soybean mutants lacking the α′ and α subunits
of β-conglycinin and G1, G2, G4 and G5 glycinin showed preferential accumulation of
the β-subunit of β-conglycinin and an overall increase in the abundance of several other
proteins, suggesting maintenance of the overall nitrogen content of the seed [60]. A reduc-
tion in the amount of napin caused an increase in the content of cruciferin in Canola-grade
rapeseed (B. napus) [36,60], as well as a lower accumulation of amino acid cysteine and
lysine [24,61–64]. The results of this study also validate the use of TILLING to generate
and identify specific mutations in the target gene encoding a particular protein or proteins
of crop genomes, including B. rapa [25]. Further work will determine if the lack of seed
storage proteins in the B. rapa mutants identified in this study would decrease the seed
germination efficiency or seedling establishment. The availability of B. rapa seed storage
mutants will provide a valuable tool to develop lines that show altered cruciferin/napin
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ratios, which can be utilized to deliver an optimized protein source to increase the value of
the seed meal waste. It remains to be determined if there are alterations in the oil content
in these lines.

4. Conclusions

To be able to efficiently characterize the protein of a single seed extract and, at the
same time, achieve the maximum protein yield from large cohorts of samples in a high
throughput screening, a reproducible method has been optimized by varying multiple
factors governing the extraction. The results suggest that sufficient protein could be
obtained from a single seed for use in downstream gel-based protein separation techniques.
The key benefits of this protocol are its high yield, high quality and cost effectiveness.
Moreover, the samples can be used directly in multiple downstream analyses, including
for mass spectrometry. The study offers a protocol to obtain protein from a single seed for
the first time, providing a means to screen and identify seed protein mutants with altered
protein profiles. This method will aid in the understanding of the biological mechanisms
which determine the synthesis, regulation, trafficking and deposition of seed storage
proteins in a seed.
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