From Dimness to Glossiness—Characteristics of the Spring Rapeseed Mutant Form without Glaucous Bloom (Brassica napus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Characteristics of Wild-Type Plants
2.3. Seed Treatment with Chemical Mutagens and Obtaining of Mutant Lines
2.4. Biochemical Analysis
2.5. Scanning Electron Microscopy
3. Results
3.1. Obtaining of Mutant Glossy Plants
3.2. Influence of Abiotic Factors (Humidity, lighting, Heat) on the Manifestation of the “Glossy” Trait
3.3. Morphological Features of Glossy Mutant Plants
3.4. Comparative Study of Lignin, Cellulose and Hemicellulose Content in Shoots and Seeds of Wild Type and Mutant Plants
3.5. Comparative Analysis of the Content of Sinapine and Sinapic Acid in the Seeds of Wild-Type Plants and Mutant Plants without Wax Bloom
3.6. Biochemical Characteristics of Seeds of Wild-Type Plants and Mutant M6 Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Singh, S.K.; Geng, S.; Zhang, S.; Yuan, L. Genome-wide analysis of glycerol-3-phosphate O-acyltransferase gene family and functional characterization of two cutin group GPATs in Brassica napus. Planta 2020, 251, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Zeng, A.; Xu, Y.; Song, L.; Li, J.; Yan, J. Validation of suitable reference genes for qRT-PCR in cabbage (Brassica oleracea L.) under different abiotic stress experimental conditions. J. Plant. Biochem. Biotechnol. 2020, 4, 1–12. [Google Scholar] [CrossRef]
- Martignago, D.; Rico-Medina, A.; Blasco-Escaméz, D.; Fontanet-Manzaneque, J.B.; Caño-Delgado, A.I. Drought resistance by engineering plant tissue-specific responses. Front. Plant. Sci. 2019, 10, 1676. [Google Scholar] [CrossRef] [PubMed]
- Jetter, R.; Kunst, L.; Samuels, A.L. Composition of plant cuticular waxes. In Biology of the Plant Cuticle; Riederer, M., Müller, C., Eds.; Blackwell: Oxford, UK, 2006; pp. 145–181. [Google Scholar]
- Yeats, T.H.; Rose, J.K.C. The formation and function of plant cuticles. Plant. Physiol. 2013, 163, 5–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, V.; Guzman-Delgado, P.; Graca, J.; Santos, S.; Gil, L. Cuticle structure in relation to chemical composition: Re-assessing the prevailing model. Front. Plant. Sci. 2016, 7, 427. [Google Scholar] [CrossRef] [Green Version]
- Mofikoya, A.O.; Yli-Pirilä, P.; Kivimäenpää, M.; Blande, J.D.; Virtanen, A.; Holopainen, J.K. Deposition of α-pinene oxidation products on plant surfaces affects plant VOC emission and herbivore feeding and oviposition. Environ. Pollut. 2020, 263, 114437. [Google Scholar] [CrossRef]
- Stępiński, D.; Kwiatkowska, M.; Wojtczak, A.; Polit, J.T.; Domínguez, E.; Heredia, A.; Popłońska, K. The role of cutinsomes in plant cuticle formation. Cells 2020, 9, 1778. [Google Scholar] [CrossRef]
- Samuels, L.; Kunst, L.; Jetter, R. Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annu. Rev. Plant. Biol. 2008, 59, 683–707. [Google Scholar] [CrossRef] [Green Version]
- Kunst, L.; Samuels, A.L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 2003, 42, 51–80. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiang, Y.; Liu, Y.; Xu, Y.; Li, S.; Guo, Y.; Jetter, R.; Ni, Y. Exogenous hormones influence Brassica napus leaf cuticular wax deposition and cuticle function. PeerJ 2020, 8, e9264. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, S.; Xu, Y.; Li, S.; Zhang, S.; Yuan, Z.; Li, J.; Ni, Y. Overexpression of BnKCS1–1, BnKCS1–2, and BnCER1–2 promotes cuticular wax production and increases drought tolerance in Brassica napus. Crop J. 2020, 8, 26–37. [Google Scholar] [CrossRef]
- Philippe, G.; Sorensen, I.; Jiao, C.; Sun, X.; Fei, Z.; Domozych, D.S.; Rose, J.K. Cutin and suberin: Assembly and origins of specialized lipidic cell wall scaffolds. Curr. Opin. Plant. Biol. 2020, 55, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Ye, Z.H. Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Sci. 2014, 229, 193–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.; Choi, H.; An, G. Roles of lignin biosynthesis and regulatory genes in plant development. J. Integr. Plant Biol. 2015, 57, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.A.; Campbell, M.M. The genetic control of lignin deposition during plant growth and development. New Phytol. 2004, 164, 17–30. [Google Scholar] [CrossRef]
- Wang, J.; Jian, H.; Wei, L.; Qu, C.; Xu, X.; Lu, K.; Qian, W.; Li, J.; Li, M.; Liu, L. Genome-wide analysis of seed acid detergent lignin (ADL) and hull content in rapeseed (Brassica napus L.). PLoS ONE 2015, 10, e0145045. [Google Scholar] [CrossRef]
- Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin biosynthesis and structure. Plant Physiol. 2010, 153, 895–905. [Google Scholar] [CrossRef] [Green Version]
- Barros, J.; Serk, H.; Granlund, I.; Pesquet, E. The cell biology of lignification in higher plants. Ann. Bot. 2015, 115, 1053–1074. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.I.; Ciesielski, P.N.; Donohoe, B.S.; Chapple, C.; Li, X. Chemically induced conditional rescue of the reduced epidermal fluorescence8 mutant of Arabidopsis reveals rapid restoration of growth and selective turnover of secondary metabolite pools. Plant Physiol. 2014, 164, 584–595. [Google Scholar] [CrossRef] [Green Version]
- Ruel, K.; Berrio-Sierra, J.; Derikvand, M.M.; Pollet, B.; Thevenin, J.; Lapierre, C.; Jouanin, L.; Joseleau, J.P. Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol. 2009, 184, 99–113. [Google Scholar] [CrossRef]
- Velasco, L.; Mollers, C. Nondestructive assessment of sinapic acid esters in Brassica species: II. Evaluation of germplasm and identification of phenotypes with reduced levels. Crop Sci. 1998, 38, 1650–1654. [Google Scholar] [CrossRef]
- Milkowski, C.; Strack, D. Sinapate esters in brassicaceous plants: Biochemistry, molecular biology, evolution and metabolic engineering. Planta 2010, 232, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Hannoufa, A.; Pillai, B.V.S.; Chellamma, S. Genetic enhancement of Brassica napus seed quality. Transgenic Res. 2014, 23, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Singer, S.D.; Weselake, R.J. Development of low-linolenic acid Brassica oleracea lines through seed mutagenesis and molecular characterization of mutants. Theor. Appl. Genet. 2013, 126, 1587–1598. [Google Scholar] [CrossRef] [PubMed]
- Lagercrantz, U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 1998, 150, 1217–1228. [Google Scholar] [PubMed]
- Lysak, M.A.; Koch, M.A.; Pecinka, A.; Schubert, I. Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005, 15, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Swaminathan, M.S. A comparison of mutation induction in diploids and polyploids. In The Use of Induced Mutation in Plants Breeding. Radiation Mutation Organ; FAO/IAEA: Vienna, Austria, 1964; pp. 619–641. [Google Scholar]
- Rapoport, J.A. Carbonyl compounds and the mechanism of chemical mutation. Dokl. Akad. Nauk Ussr 1946, 54, 65–70. (In Russian) [Google Scholar]
- Rapoport, J.A.; Zoz, N.N.; Makarova, S.I.; Salnikova, T.V. (Eds.) Super-Mutagens; Nauka: Moscow, Russia, 1966; pp. 124–156. (In Russian) [Google Scholar]
- Chaudhary, J.; Deshmukh, R.; Sonah, H. Mutagenesis approaches and their role in crop improvement. Plants 2019, 8, 467. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Meena, H.P.; Meena, P.D.; Kumar, A.; Gupta, R.; Jambhulkar, S.; Singh, D. Determination of LD50 of ethyl methanesulfonate (EMS) for induction of mutations in rapeseed-mustard. J. Oilseed Brassica 2016, 7, 77–82. [Google Scholar]
- Spasibionek, S. New mutants of winter rapeseed (Brassica napus L.) with changed fatty acid composition. Plant Breed. 2006, 125, 259–267. [Google Scholar] [CrossRef]
- Mikolajczyk, K.; Dabert, M.; Karlowski, W.M.; Spasibionek, S.; Nowakowska, J.; Cegielska-Taras, T.; Bartkowiak-Broda, I. Allele-specific SNP markers for the new low linolenic mutant genotype of winter oilseed rape. Plant Breed. 2010, 129, 502–507. [Google Scholar] [CrossRef]
- Wittkop, B.; Snowdon, R.J.; Friedt, W. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 2009, 170, 131–140. [Google Scholar] [CrossRef]
- Thurling, M.; Depittayanan, V. EMS induction of early flowering mutants in spring rapeseed (Brassica napus). Plant Breed. 1992, 108, 177–184. [Google Scholar] [CrossRef]
- Kosolapov, V.M.; Draganov, N.F.; Chujkov, V.A. Metody Analiza Kormov; Ugreshskaya Typography: Moscow, Russia, 2011; pp. 177–187. (In Russian) [Google Scholar]
- Shepherd, T.; Griffiths, D.W. The effects of stress on plant cuticular waxes. New Phytol. 2006, 171, 469–499. [Google Scholar] [CrossRef] [PubMed]
- Zeisler-Diehl, V.V.; Barthlott, W.; Schreiber, L. Plant cuticular waxes: Composition, function, and interactions with microorganisms. In Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology; Wilkes, H., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Qiao, P.; Bourgault, R.; Mohammadi, M.; Matschi, S.; Philippe, G.; Smith, L.G.; Gore, M.A.; Molina, I.; Scanlon, M.J. Transcriptomic network analyses shed light on the regulation of cuticle development in maize leaves. Proc. Natl. Acad. Sci. USA 2020, 117, 12464–12471. [Google Scholar] [CrossRef] [PubMed]
- Laila, R.; Robin, A.H.K.; Yang, K.; Park, J.I.; Suh, M.C.; Kim, J.; Nou, I.S. Developmental and genotypic variation in leaf wax content and composition, and in expression of wax biosynthetic genes in Brassica oleracea var. capitata. Front. Plant Sci. 2017, 7, 1972. [Google Scholar] [CrossRef] [Green Version]
- Pu, Y.; Gao, J.; Guo, Y.; Liu, T.; Zhu, L.; Xu, P.; Yi, B.; Wen, J.; Tu, J.; Ma, C.; et al. A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus. BMC Plant Biol. 2013, 13, 215. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, W.; Li, W. Genetic interactions underlying the biosynthesis and inhibition of beta-diketones in wheat and their impact on glaucousness and cuticle permeability. PLoS ONE 2013, 8, e54129. [Google Scholar]
- Liu, D.; Dong, X.; Liu, Z.; Tang, J.; Zhuang, M.; Zhang, Y.; Lv, H.; Liu, Y.; Li, Z.; Fang, Z.; et al. Fine mapping and candidate gene identification for wax biosynthesis locus, BoWax1 in Brassica oleracea L. var. capitata. Front. Plant Sci. 2018, 9, 309. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Liu, D.; Liu, Z.; Yang, L.; Fang, Z.; Liu, Y.; Zhuang, M.; Zhang, Y.; Lu, H.; Yi, D.; et al. Preliminary study of the characteristics of several glossy cabbage (Brassica oleracea var. capitata L.) mutants. Hortic. Plant J. 2015, 1, 93–100. [Google Scholar]
- Koornneef, M.; Hanhart, C.J.; Thiel, F. A genetic and phenotypic description of eceriferum (cer) mutants in Arabidopsis thaliana. J. Hered. 1989, 80, 118–122. [Google Scholar] [CrossRef]
- Chen, X.; Goodwin, S.M.; Boroff, V.L.; Liu, X.; Jenks, M.A. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 2003, 15, 1170–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurata, T.; Kawabata-Awai, C.; Sakuradani, E.; Shimizu, S.; Okada, K.; Wada, T. The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis. Plant J. 2003, 36, 55–56. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, A.; Mayfield, J.A.; Miley, N.L.; Chau, S.; Fischer, R.L.; Preuss, D. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 2000, 12, 2001–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, M.; Davis, E.; Gardner, D.; Cai, X.; Wu, Y. Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta 2006, 224, 1185–1196. [Google Scholar] [CrossRef] [PubMed]
- Schilmiller, A.L.; Stout, J.; Weng, J.K.; Humphreys, J.; Ruegger, M.O.; Chapple, C. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J. 2009, 60, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and biological functions in plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef] [Green Version]
- Clauss, K.; von Roepenack-Lahaye, E.; Böttcher, C.; Roth, M.R.; Welti, R.; Erban, A.; Kopka, J.; Scheel, D.; Milkowski, C.; Strack, D. Overexpression of sinapine esterase BnSCE3 in oilseed rape seeds triggers global changes in seed metabolism. Plant Physiol. 2011, 155, 1127–1145. [Google Scholar] [CrossRef] [Green Version]
- Mittasch, J.; Böttcher, C.; Frolov, A.; Strack, D.; Milkowski, C. Reprogramming the phenylpropanoid metabolism in seeds of oilseed rape by suppressing the orthologs of reduced epidermal fluorescence1. Plant Physiol. 2013, 161, 1656–1669. [Google Scholar] [CrossRef] [Green Version]
- Karssen, C.M.; Brinkhorst-van der Swan, D.L.C.; Breekland, A.E.; Koornneef, M. Induction of dormancy during seed development by endogenous abscisic acid: Studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 1983, 157, 158–165. [Google Scholar] [CrossRef]
- Martin, L.B.B.; Romero, P.; Fich, E.A.; Domozych, D.S.; Rose, J.K.C. Cuticle biosynthesis in tomato leaves is developmentally regulated by abscisic acid. Plant. Physiol. 2017, 174, 1384–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Time, min | А% H2O (0.1% H3PO4) | B% MeOH |
---|---|---|
0.0 | 90 | 10 |
8.0 | 70 | 30 |
25.0 | 20 | 80 |
26.0 | 0 | 100 |
30.0 | 0 | 100 |
30.1 | 90 | 10 |
35.0 | 90 | 10 |
Line Number | Plant Height, cm | Plant Width, cm | Number of Shoots, pcs. Branching Order, | Silique/Spout Length, cm | Number of Seeds in Silique, pcs. | Seed Production, g/Plant | |
---|---|---|---|---|---|---|---|
I | II; * III | ||||||
Wild type | 93.9 ± 4.3 a | 28.3 ± 5.1 a | 4.5 ± 0.8 a | 6.3 ± 0.5 a | 7.3 ± 0.4 a/ 0.9 ± 0.2 a | 25 ± 3.8 a | 20.9 ± 1.7 a |
1159 (Gs) | 75.4 ± 8.4 b | 31.7 ± 10.7 a | 5.6 ± 1.4 b | 18.7 ± 3.2 b; * 10.1 ± 0.6 | 5.4 ± 0.5 b/ 0.8 ± 0.2 a | 13 ± 2.1 b | 3.6 ± 1.0 b |
1169 (Gs) | 80.1 ± 6.6 c | 19.3 ± 5.6 b | 8.8 ± 1.9 b | 15.2 ± 2.2 b; * 13.5 ± 2.0 | 6.2 ± 0.5 a/ 0.8 ± 0.1 | 21.8 ± 3.3 a | 3.9 ± 1.0 b |
1171(Gs) | 85.7 ± 9.1 а | 37.9 ± 9.1 c | 6.8 ± 1.7 b | 16.3 ± 2.5 b; 12.4 ± 3.5 | 6.0 ± 0.9 b/ 0.9 ± 0.3 | 20.0 ± 5.0 c | 6.7 ± 1.9 b |
1171 (Glc) | 88.3 ± 5.7 а | 28.8 ± 7.3 a | 6.4 ± 1.4 b | 12.2 ± 1.1 c; * 2.6 ± 0.7 | 7.4 ± 0.5 a/ 1.1 ± 0.4 | 25.2 ± 3.1 a | * 11.6 ± 3.5 c |
1175 (Glc) | 91.2 ± 6.3 а | 27.8 ± 3.3 a | 5.2 ± 0.9 b | 10.3 ± 1.5 c; * 6.2 ± 1.4 | 7.5 ± 0.5 a/ 1.0 ± 0.3 | 24.6 ± 2.2 a | 14.6 ± 2.4 c |
Genotype | Content, % | ||
---|---|---|---|
Lignin | Cellulose | Hemicellulose | |
in shoots | |||
Wild type | 5.92 ± 0.38 a | 24.2 ± 1.22 a | 6.3 ± 0.52 a |
Glaucous | 6.2 ± 0.59 a | 25.7 ± 1.14 a | 5.6 ± 0.62 a |
Glossy | 4.02 ± 0.32 b | 27.2 ± 0.89 a | 10.2 ± 1.18 b |
in seeds | |||
Wild type | 6.27 ± 0.31 a | 10.32 ± 0.63 a | 8.02 ± 1.08 a |
Glaucous | 5.68 ± 0.39 a | 8.22 ± 0.68 b | 10.82 ± 1.20 b |
Glossy | 3.42 ± 0.38 b | 8.52 ± 0.8 b | 14.4 ± 2.18 c |
Substance | Retention Time, t·min−1 | Wild Type | Line 1169 |
---|---|---|---|
Sinapine (5) | 12.58 | 313.2 ± 7.5 | 94.2 ± 2.3 |
Sinapic acid (15) | 18.17 | 42.3 ± 1.0 | 13.38 ± 0.3 |
Line | Content, % | |||||||
---|---|---|---|---|---|---|---|---|
Crude Fiber | Oil | Protein | Fatty Acids | |||||
С16:0 | С18:0 | С18:1 | С18:2 | С18:3 | ||||
Wild type | 8.9 ± 0.9 | 45.3 ± 1.2 | 25.8 ± 1.1 | 3.7 ± 0.2 | 0.6 ± 0.2 | 64.5 ± 0.8 | 19.7 ± 0.6 | 9.6 ± 0.3 |
glossy | ||||||||
1159 | 8.6 ± 1.8 | 36.7 ± 1.2 | 31.8 ± 1.9 | 4.2 ± 0.6 | 1.4 ± 0.4 | 58.9 ± 1.3 | 23.6 ± 1.0 | 9.0 ± 0.5 |
1169 | 8.2 ± 1.2 | 35.6 ± 2.8 | 29.9 ± 3.0 | 4.6 ± 0.3 | 1.5 ± 0.3 | 61.7 ± 2.2 | 21.7 ± 1,5 | 6.9 ± 0.3 |
1171 | 9.8 ± 1.1 | 28.7 ± 1.3 | 31.3 ± 2.0 | 5.2 ± 0.5 | 2.1 ± 0.2 | 59.4 ± 2.4 | 23.4 ± 1.6 | 7.1 ± 0.2 |
glaucous | ||||||||
1171 | 10.7 ± 1.8 | 33.7 ± 3.1 | 32.8 ± 2.3 | 4.01 ± 0.4 | 1.2 ± 0.03 | 59.0 ± 1.1 | 21.6 ± 0.8 | 10.5 ± 0.3 |
1175 | 12.0 ± 2.8 | 39.7 ± 1.4 | 32.3 ± 2.1 | 3.9 ± 0.2 | 1.2 ± 0.1 | 62.9 ± 0.7 | 21.3 ± 0.7 | 8.4 ± 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shirokova, A.V.; Volovik, V.T.; Zagoskina, N.V.; Zaitsev, G.P.; Khudyakova, H.K.; Korovina, L.M.; Krutius, O.N.; Nikolaeva, T.N.; Simonova, O.B.; Alekseev, A.A.; et al. From Dimness to Glossiness—Characteristics of the Spring Rapeseed Mutant Form without Glaucous Bloom (Brassica napus L.). Agronomy 2020, 10, 1563. https://doi.org/10.3390/agronomy10101563
Shirokova AV, Volovik VT, Zagoskina NV, Zaitsev GP, Khudyakova HK, Korovina LM, Krutius ON, Nikolaeva TN, Simonova OB, Alekseev AA, et al. From Dimness to Glossiness—Characteristics of the Spring Rapeseed Mutant Form without Glaucous Bloom (Brassica napus L.). Agronomy. 2020; 10(10):1563. https://doi.org/10.3390/agronomy10101563
Chicago/Turabian StyleShirokova, Anna V., Valentina T. Volovik, Natalia V. Zagoskina, Georgiy P. Zaitsev, Hatima K. Khudyakova, Larisa M. Korovina, Oleg N. Krutius, Tatiana N. Nikolaeva, Olga B. Simonova, Andrey A. Alekseev, and et al. 2020. "From Dimness to Glossiness—Characteristics of the Spring Rapeseed Mutant Form without Glaucous Bloom (Brassica napus L.)" Agronomy 10, no. 10: 1563. https://doi.org/10.3390/agronomy10101563
APA StyleShirokova, A. V., Volovik, V. T., Zagoskina, N. V., Zaitsev, G. P., Khudyakova, H. K., Korovina, L. M., Krutius, O. N., Nikolaeva, T. N., Simonova, O. B., Alekseev, A. A., & Baranova, E. N. (2020). From Dimness to Glossiness—Characteristics of the Spring Rapeseed Mutant Form without Glaucous Bloom (Brassica napus L.). Agronomy, 10(10), 1563. https://doi.org/10.3390/agronomy10101563