Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = random Fourier feature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 19710 KiB  
Article
Hybrid EEG Feature Learning Method for Cross-Session Human Mental Attention State Classification
by Xu Chen, Xingtong Bao, Kailun Jitian, Ruihan Li, Li Zhu and Wanzeng Kong
Brain Sci. 2025, 15(8), 805; https://doi.org/10.3390/brainsci15080805 - 28 Jul 2025
Viewed by 434
Abstract
Background: Decoding mental attention states from electroencephalogram (EEG) signals is crucial for numerous applications such as cognitive monitoring, adaptive human–computer interaction, and brain–computer interfaces (BCIs). However, conventional EEG-based approaches often focus on channel-wise processing and are limited to intra-session or subject-specific scenarios, lacking [...] Read more.
Background: Decoding mental attention states from electroencephalogram (EEG) signals is crucial for numerous applications such as cognitive monitoring, adaptive human–computer interaction, and brain–computer interfaces (BCIs). However, conventional EEG-based approaches often focus on channel-wise processing and are limited to intra-session or subject-specific scenarios, lacking robustness in cross-session or inter-subject conditions. Methods: In this study, we propose a hybrid feature learning framework for robust classification of mental attention states, including focused, unfocused, and drowsy conditions, across both sessions and individuals. Our method integrates preprocessing, feature extraction, feature selection, and classification in a unified pipeline. We extract channel-wise spectral features using short-time Fourier transform (STFT) and further incorporate both functional and structural connectivity features to capture inter-regional interactions in the brain. A two-stage feature selection strategy, combining correlation-based filtering and random forest ranking, is adopted to enhance feature relevance and reduce dimensionality. Support vector machine (SVM) is employed for final classification due to its efficiency and generalization capability. Results: Experimental results on two cross-session and inter-subject EEG datasets demonstrate that our approach achieves classification accuracy of 86.27% and 94.01%, respectively, significantly outperforming traditional methods. Conclusions: These findings suggest that integrating connectivity-aware features with spectral analysis can enhance the generalizability of attention decoding models. The proposed framework provides a promising foundation for the development of practical EEG-based systems for continuous mental state monitoring and adaptive BCIs in real-world environments. Full article
Show Figures

Figure 1

21 pages, 5735 KiB  
Article
Estimation of Tomato Quality During Storage by Means of Image Analysis, Instrumental Analytical Methods, and Statistical Approaches
by Paris Christodoulou, Eftichia Kritsi, Georgia Ladika, Panagiota Tsafou, Kostantinos Tsiantas, Thalia Tsiaka, Panagiotis Zoumpoulakis, Dionisis Cavouras and Vassilia J. Sinanoglou
Appl. Sci. 2025, 15(14), 7936; https://doi.org/10.3390/app15147936 - 16 Jul 2025
Viewed by 355
Abstract
The quality and freshness of fruits and vegetables are critical factors in consumer acceptance and are significantly affected during transport and storage. This study aimed to evaluate the quality of greenhouse-grown tomatoes stored for 24 days by combining non-destructive image analysis, spectrophotometric assays [...] Read more.
The quality and freshness of fruits and vegetables are critical factors in consumer acceptance and are significantly affected during transport and storage. This study aimed to evaluate the quality of greenhouse-grown tomatoes stored for 24 days by combining non-destructive image analysis, spectrophotometric assays (including total phenolic content and antioxidant and antiradical activity assessments), and attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy. Additionally, water activity, moisture content, total soluble solids, texture, and color were evaluated. Most physicochemical changes occurred between days 14 and 17, without major impact on overall fruit quality. A progressive transition in peel hue from orange to dark orange, and increased surface irregularity of their textural image were noted. Moreover, the combined use of instrumental and image analyses results via multivariate analysis allowed the clear discrimination of tomatoes according to storage days. In this sense, tomato samples were effectively classified by ATR-FTIR spectral bands, linked to carotenoids, phenolics, and polysaccharides. Machine learning (ML) models, including Random Forest and Gradient Boosting, were trained on image-derived features and accurately predicted shelf life and quality traits, achieving R2 values exceeding 0.9. The findings demonstrate the effectiveness of combining imaging, spectroscopy, and ML for non-invasive tomato quality monitoring and support the development of predictive tools to improve postharvest handling and reduce food waste. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

21 pages, 3747 KiB  
Article
An Optimized Multi-Stage Framework for Soil Organic Carbon Estimation in Citrus Orchards Based on FTIR Spectroscopy and Hybrid Machine Learning Integration
by Yingying Wei, Xiaoxiang Mo, Shengxin Yu, Saisai Wu, He Chen, Yuanyuan Qin and Zhikang Zeng
Agriculture 2025, 15(13), 1417; https://doi.org/10.3390/agriculture15131417 - 30 Jun 2025
Viewed by 456
Abstract
Soil organic carbon (SOC) is a critical indicator of soil health and carbon sequestration potential. Accurate, efficient, and scalable SOC estimation is essential for sustainable orchard management and climate-resilient agriculture. However, traditional visible–near-infrared (Vis–NIR) spectroscopy often suffers from limited chemical specificity and weak [...] Read more.
Soil organic carbon (SOC) is a critical indicator of soil health and carbon sequestration potential. Accurate, efficient, and scalable SOC estimation is essential for sustainable orchard management and climate-resilient agriculture. However, traditional visible–near-infrared (Vis–NIR) spectroscopy often suffers from limited chemical specificity and weak adaptability in heterogeneous soil environments. To overcome these limitations, this study develops a five-stage modeling framework that systematically integrates Fourier Transform Infrared (FTIR) spectroscopy with hybrid machine learning techniques for non-destructive SOC prediction in citrus orchard soils. The proposed framework includes (1) FTIR spectral acquisition; (2) a comparative evaluation of nine spectral preprocessing techniques; (3) dimensionality reduction via three representative feature selection algorithms, namely the Successive Projections Algorithm (SPA), Competitive Adaptive Reweighted Sampling (CARS), and Principal Component Analysis (PCA); (4) regression modeling using six machine learning algorithms, namely the Random Forest (RF), Support Vector Regression (SVR), Gray Wolf Optimized SVR (SVR-GWO), Partial Least Squares Regression (PLSR), Principal Component Regression (PCR), and the Back-propagation Neural Network (BPNN); and (5) comprehensive performance assessments and the identification of the optimal modeling pathway. The results showed that second-derivative (SD) preprocessing significantly enhanced the spectral signal-to-noise ratio. Among feature selection methods, the SPA reduced over 300 spectral bands to 10 informative wavelengths, enabling efficient modeling with minimal information loss. The SD + SPA + RF pipeline achieved the highest prediction performance (R2 = 0.84, RMSE = 4.67 g/kg, and RPD = 2.51), outperforming the PLSR and BPNN models. This study presents a reproducible and scalable FTIR-based modeling strategy for SOC estimation in orchard soils. Its adaptive preprocessing, effective variable selection, and ensemble learning integration offer a robust solution for real-time, cost-effective, and transferable carbon monitoring, advancing precision soil sensing in orchard ecosystems. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

28 pages, 4356 KiB  
Article
Hyperspectral Image Classification Based on Fractional Fourier Transform
by Jing Liu, Lina Lian, Yuanyuan Li and Yi Liu
Remote Sens. 2025, 17(12), 2065; https://doi.org/10.3390/rs17122065 - 15 Jun 2025
Viewed by 724
Abstract
To effectively utilize the rich spectral information of hyperspectral remote sensing images (HRSIs), the fractional Fourier transform (FRFT) feature of HRSIs is proposed to reflect the time-domain and frequency-domain characteristics of a spectral pixel simultaneously, and an FRFT order selection criterion is also [...] Read more.
To effectively utilize the rich spectral information of hyperspectral remote sensing images (HRSIs), the fractional Fourier transform (FRFT) feature of HRSIs is proposed to reflect the time-domain and frequency-domain characteristics of a spectral pixel simultaneously, and an FRFT order selection criterion is also proposed based on maximizing separability. Firstly, FRFT is applied to the spectral pixels, and the amplitude spectrum is taken as the FRFT feature of HRSIs. The FRFT feature is mixed with the pixel spectral to form the presented spectral and fractional Fourier transform mixed feature (SF2MF), which contains time–frequency mixing information and spectral information of pixels. K-nearest neighbor, logistic regression, and random forest classifiers are used to verify the superiority of the proposed feature. A 1-dimensional convolutional neural network (1D-CNN) and a two-branch CNN network (Two-CNNSF2MF-Spa) are designed to extract the depth SF2MF feature and the SF2MF-spatial joint feature, respectively. Moreover, to compensate for the defect that CNN cannot effectively capture the long-range features of spectral pixels, a long short-term memory (LSTM) network is introduced to be combined with CNN to form a two-branch network C-CLSTMSF2MF for extracting deeper and more efficient fusion features. A 3D-CNNSF2MF model is designed, which firstly performs the principal component analysis on the spa-SF2MF cube containing spatial information and then feeds it into the 3-dimensional convolutional neural network 3D-CNNSF2MF to extract the SF2MF-spatial joint feature effectively. The experimental results of three real HRSIs show that the presented mixed feature SF2MF can effectively improve classification accuracy. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

15 pages, 4413 KiB  
Article
Fault Diagnosis Systems for Robots: Acoustic Sensing-Based Identification of Detached Components for Fault Localization
by Woonghee Yeo and Mitsuharu Matsumoto
Appl. Sci. 2025, 15(12), 6564; https://doi.org/10.3390/app15126564 - 11 Jun 2025
Cited by 1 | Viewed by 545
Abstract
As robotic systems become more prevalent in daily life and industrial environments, ensuring their reliability through autonomous self-diagnosis is becoming increasingly important. This study investigates whether acoustic sensing can serve as a viable foundation for such self-diagnostic systems by examining its effectiveness in [...] Read more.
As robotic systems become more prevalent in daily life and industrial environments, ensuring their reliability through autonomous self-diagnosis is becoming increasingly important. This study investigates whether acoustic sensing can serve as a viable foundation for such self-diagnostic systems by examining its effectiveness in localizing structural faults. This study focuses on developing a fault diagnosis framework for robots using acoustic sensing technology. The objective is to design a simple yet accurate system capable of identifying fault locations and types of robots based solely on sound data, without relying on traditional sensors or cameras. To achieve this, sweep signals were applied to a modular robot, and acoustic responses were collected under various structural configurations over five days. Frequency-domain features were extracted using the Fast Fourier Transform (FFT), and classification was performed using five machine learning models: Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbors (KNN), XGBoost, and Multi-Layer Perceptron (MLP). Among these, MLP achieved the highest accuracy (71.4%), followed by SVM (65.7%), LightGBM (62.9%), KNN (60%), XGBoost (57.1%), and RF (51.4%). These results demonstrate the feasibility of diagnosing structural changes in robots using acoustic sensing alone, even with a compact hardware setup and limited training data. These findings suggest that acoustic sensing can provide a practical and efficient approach for robot fault diagnosis, offering potential applications in environments where conventional diagnostic tools are impractical. The study highlights the advantages of incorporating acoustic sensing into fault diagnosis systems and underscores its potential for developing accessible and effective diagnostic solutions for robotics. Full article
(This article belongs to the Special Issue New Technology Trends in Smart Sensing)
Show Figures

Figure 1

10 pages, 3827 KiB  
Communication
Dynamic Observation of Ultrashort Pulses with Chaotic Features in a Tm-Doped Fiber Laser with a Single Mode Fiber–Grade Index Multimode Fiber–Single Mode Fiber Structure
by Zhenhong Wang, Zexin Zhou, Yubo Ji, Qiong Zeng, Yufeng Song, Geguo Du and Hongye Li
Photonics 2025, 12(5), 465; https://doi.org/10.3390/photonics12050465 - 9 May 2025
Viewed by 509
Abstract
In this study, we have demonstrated an ultrafast Tm-doped fiber laser utilizing the nonlinear multimode interference (NL-MMI) effect, with a single mode fiber–grade index multimode fiber–single mode fiber (SMF-GIMF-SMF) structure serving as the saturable absorber (SA). In addition to stable pulses, mode-locked pulses [...] Read more.
In this study, we have demonstrated an ultrafast Tm-doped fiber laser utilizing the nonlinear multimode interference (NL-MMI) effect, with a single mode fiber–grade index multimode fiber–single mode fiber (SMF-GIMF-SMF) structure serving as the saturable absorber (SA). In addition to stable pulses, mode-locked pulses with chaotic features can be obtained in this fiber laser, characterized by a high average output power and pulse energy, resembling noise-like pulses. By employing the time-stretch dispersive Fourier transform (TS-DFT) technology, it can be seen that the sub-pulses constituting these pulses exhibit noisy characteristics with random intensities and energies. Furthermore, the numerical simulations elucidate the corresponding generation mechanism and dynamic evolution. These findings significantly enhance the comprehension of pulse dynamics and offer novel insights into the technological development and application prospects of ultrafast fiber lasers. Full article
(This article belongs to the Special Issue Advances in Nonlinear Optics: From Fundamentals to Applications)
Show Figures

Figure 1

17 pages, 4290 KiB  
Article
Predictive Maintenance for Cutter System of Roller Laminator
by Ssu-Han Chen, Chen-Wei Wang, Andres Philip Mayol, Chia-Ming Jan and Tzu-Yi Yang
Mathematics 2025, 13(8), 1264; https://doi.org/10.3390/math13081264 - 11 Apr 2025
Viewed by 641
Abstract
In the era of Industry 4.0, equipment maintenance is shifting toward data-driven strategies. Traditional methods rely on usage time or cycle counts to estimate component lifespan. This often causes early replacement of parts, leading to increased production costs. This study focuses on the [...] Read more.
In the era of Industry 4.0, equipment maintenance is shifting toward data-driven strategies. Traditional methods rely on usage time or cycle counts to estimate component lifespan. This often causes early replacement of parts, leading to increased production costs. This study focuses on the cutter system of a roller laminator used in printed circuit board (PCB) manufacturing. An accelerometer is used to collect vibration signals under normal and abnormal states. Fast Fourier transform (FFT) is used to convert time-domain data into the frequency domain, then key statistical features from critical frequency bands are extracted as independent variables. The study applies logistic regression (LR), random forest (RF), and support vector machine (SVM) for predictive modeling of the cutting tool’s condition. The results show that the prediction accuracies of these models are 87.55%, 93.77%, and 94.94%, respectively, with SVM performing the best. Full article
(This article belongs to the Special Issue Applied Statistics in Management Sciences)
Show Figures

Figure 1

16 pages, 3968 KiB  
Article
Winter Wheat Yield Prediction and Influencing Factors Analysis Based on FourierGNN–Random Forest Combined Modeling
by Jianqin Ma, Yijian Chen, Bifeng Cui, Yu Ding, Xiuping Hao, Yan Zhao, Junsheng Li and Xianrui Su
Agronomy 2025, 15(3), 641; https://doi.org/10.3390/agronomy15030641 - 3 Mar 2025
Cited by 1 | Viewed by 1180
Abstract
In order to investigate the changes in winter wheat yield and the factors influencing it, five meteorological factors—such as rainfall and soil moisture—collected from the experimental area between 2010 and 2022 were used as characteristic features. A combined model of GNN (Graph Neural [...] Read more.
In order to investigate the changes in winter wheat yield and the factors influencing it, five meteorological factors—such as rainfall and soil moisture—collected from the experimental area between 2010 and 2022 were used as characteristic features. A combined model of GNN (Graph Neural Network), based on the Fourier transform and the Random Forest algorithm was developed to predict winter wheat yield. Matrix multiplication in Fourier space was performed to predict yield, while the Random Forest algorithm was employed to quantify the contribution of various yield factors to winter wheat yield. The combined model effectively captured the dynamic dependencies between yield factors and time series, improving predictive accuracy by 5.00%, 10.00%, and 27.00%, and reducing the root mean square error by 26.26%, 29.31%, and 88.20%, respectively, compared to the StemGNN, Informer, and Random Forest models. The predicted outputs ranged from 520 to 720 g/m2, with an average error of 2.69% compared to the actual measure outputs. Under the insufficient real-time irrigation mode, winter wheat yield was highest at 90% irrigation upper limit and 70% irrigation lower limit, with a medium fertilization level (850 mg/kg). The yield showed an overall decreasing trend as both irrigation limits and fertilizer application decreased. Rainfall and soil moisture were the most significant factors influencing winter wheat yield, followed by air temperature and evapotranspiration. Solar radiation and sunshine duration had the least impact. The results of this study provide a valuable reference for accurately predicting winter wheat yield. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

19 pages, 4184 KiB  
Article
An Online Evaluation Method for Random Number Entropy Sources Based on Time-Frequency Feature Fusion
by Qian Sun, Kainan Ma, Yiheng Zhou, Zhaoyuxuan Wang, Chaoxing You and Ming Liu
Entropy 2025, 27(2), 136; https://doi.org/10.3390/e27020136 - 27 Jan 2025
Viewed by 936
Abstract
Traditional entropy source evaluation methods rely on statistical analysis and are hard to deploy on-chip or online. However, online detection of entropy source quality is necessary in some applications with high encryption levels. To address these issues, our experimental results demonstrate a significant [...] Read more.
Traditional entropy source evaluation methods rely on statistical analysis and are hard to deploy on-chip or online. However, online detection of entropy source quality is necessary in some applications with high encryption levels. To address these issues, our experimental results demonstrate a significant negative correlation between minimum entropy values and prediction accuracy, with a Pearson correlation coefficient of −0.925 (p-value = 1.07 × 10−7). This finding offers a novel approach for assessing entropy source quality, achieving an accurate rate in predicting the next bit of a random sequence using neural networks. To further improve prediction capabilities, we also propose a novel deep learning architecture, Fast Fourier Transform-Attention Mechanism-Long Short-Term Memory Network (FFT-ATT-LSTM), that integrates a simplified soft attention mechanism with Fast Fourier Transform (FFT), enabling effective fusion of time-domain and frequency-domain features. The FFT-ATT-LSTM improves prediction accuracy by 4.46% and 8% over baseline networks when predicting random numbers. Additionally, FFT-ATT-LSTM maintains a compact parameter size of 33.90 KB, significantly smaller than Temporal Convolutional Networks (TCN) at 41.51 KB and Transformers at 61.51 KB, while retaining comparable prediction performance. This optimal balance between accuracy and resource efficiency makes FFT-ATT-LSTM suitable for online deployment, demonstrating considerable application potential. Full article
Show Figures

Figure 1

20 pages, 1816 KiB  
Article
Accurate Cardiac Duration Detection for Remote Blood Pressure Estimation Using mm-Wave Doppler Radar
by Shengze Wang, Mondher Bouazizi, Siyuan Yang and Tomoaki Ohtsuki
Sensors 2025, 25(3), 619; https://doi.org/10.3390/s25030619 - 21 Jan 2025
Cited by 3 | Viewed by 1588
Abstract
This study introduces a radar-based model for estimating blood pressure (BP) in a touch-free manner. The model accurately detects cardiac activity, allowing for contactless and continuous BP monitoring. Cardiac motions are considered crucial components for estimating blood pressure. Unfortunately, because these movements are [...] Read more.
This study introduces a radar-based model for estimating blood pressure (BP) in a touch-free manner. The model accurately detects cardiac activity, allowing for contactless and continuous BP monitoring. Cardiac motions are considered crucial components for estimating blood pressure. Unfortunately, because these movements are extremely subtle and can be readily obscured by breathing and background noise, accurately detecting these motions with a radar system remains challenging. Our approach to radar-based blood pressure monitoring in this research primarily focuses on cardiac feature extraction. Initially, an integrated-spectrum waveform is implemented. The method is derived from the short-time Fourier transform (STFT) and has the ability to capture and maintain minute cardiac activities. The integrated spectrum concentrates on energy changes brought about by short and high-frequency vibrations, in contrast to the pulse-wave signals used in previous works. Hence, the interference caused by respiration, random noise, and heart contractile activity can be effectively eliminated. Additionally, we present two approaches for estimating cardiac characteristics. These methods involve the application of a hidden semi-Markov model (HSMM) and a U-net model to extract features from the integrated spectrum. In our approach, the accuracy of extracted cardiac features is highlighted by the notable decreases in the root mean square error (RMSE) for the estimated interbeat intervals (IBIs), systolic time, and diastolic time, which were reduced by 87.5%, 88.7%, and 73.1%. We reached a comparable prediction accuracy even while our subject was breathing normally, despite previous studies requiring the subject to hold their breath. The diastolic BP (DBP) error of our model is 3.98±5.81 mmHg (mean absolute difference ± standard deviation), and the systolic BP (SBP) error is 6.52±7.51 mmHg. Full article
(This article belongs to the Special Issue Analyzation of Sensor Data with the Aid of Deep Learning)
Show Figures

Figure 1

27 pages, 13231 KiB  
Article
PosE-Enhanced Point Transformer with Local Surface Features (LSF) for Wood–Leaf Separation
by Xin Lu, Ruisheng Wang, Huaiqing Zhang, Ji Zhou and Ting Yun
Forests 2024, 15(12), 2244; https://doi.org/10.3390/f15122244 - 20 Dec 2024
Cited by 1 | Viewed by 1263
Abstract
Wood–leaf separation from forest LiDAR point clouds is a challenging task due to the complex and irregular structures of tree canopies. Traditional machine vision and deep learning methods often struggle to accurately distinguish between fine branches and leaves. This challenge arises primarily from [...] Read more.
Wood–leaf separation from forest LiDAR point clouds is a challenging task due to the complex and irregular structures of tree canopies. Traditional machine vision and deep learning methods often struggle to accurately distinguish between fine branches and leaves. This challenge arises primarily from the lack of suitable features and the limitations of existing position encodings in capturing the unique and intricate characteristics of forest point clouds. In this work, we propose an innovative approach that integrates Local Surface Features (LSF) and a Position Encoding (PosE) module within the Point Transformer (PT) network to address these challenges. We began by preprocessing point clouds and applying a machine vision technique, supplemented by manual correction, to create wood–leaf-separated datasets of forest point clouds for training. Next, we introduced Point Feature Histogram (PFH) to construct LSF for each point network input, while utilizing Fast PFH (FPFH) to enhance computational efficiency. Subsequently, we designed a PosE module within PT, leveraging trigonometric dimensionality expansion and Random Fourier Feature-based Transformation (RFFT) for nuanced feature analysis. This design significantly enhances the representational richness and precision of forest point clouds. Afterward, the segmented branch point cloud was used to model tree skeletons automatically, while the leaves were incorporated to complete the digital twin. Our enhanced network, tested on three different types of forests, achieved up to 96.23% in accuracy and 91.51% in mean intersection over union (mIoU) in wood–leaf separation, outperforming the original PT by approximately 5%. This study not only expands the limits of forest point cloud research but also demonstrates significant improvements in the reconstruction results, particularly in capturing the intricate structures of twigs, which paves the way for more accurate forest resource surveys and advanced digital twin construction. Full article
(This article belongs to the Special Issue Forest Parameter Detection and Modeling Using Remote Sensing Data)
Show Figures

Figure 1

25 pages, 6322 KiB  
Article
A Convolution Auto-Encoders Network for Aero-Engine Hot Jet FT-IR Spectrum Feature Extraction and Classification
by Shuhan Du, Wei Han, Zhenping Kang, Yurong Liao and Zhaoming Li
Aerospace 2024, 11(11), 933; https://doi.org/10.3390/aerospace11110933 - 11 Nov 2024
Cited by 1 | Viewed by 780
Abstract
Aiming at classification and recognition of aero-engines, two telemetry Fourier transform infrared (FT-IR) spectrometers are utilized to measure the infrared spectrum of the areo-engine hot jet, meanwhile a spectrum dataset of six types of areo-engines is established. In this paper, a convolutional autoencoder [...] Read more.
Aiming at classification and recognition of aero-engines, two telemetry Fourier transform infrared (FT-IR) spectrometers are utilized to measure the infrared spectrum of the areo-engine hot jet, meanwhile a spectrum dataset of six types of areo-engines is established. In this paper, a convolutional autoencoder (CAE) is designed for spectral feature extraction and classification, which is composed of coding network, decoding network, and classification network. The encoder network consists of convolutional layers and maximum pooling layers, the decoder network consists of up-sampling layers and deconvolution layers, and the classification network consists of a flattened layer and a dense layer. In the experiment, data for the spectral dataset were randomly sampled at a ratio of 8:1:1 to produce the training set, validation set, and prediction set, and the performance measures were accuracy, precision, recall, confusion matrix, F1 score, ROC curve, and AUC value. The experimental result of CAE reached 96% accuracy and the prediction running time was 1.57 s. Compared with the classical PCA feature extraction and SVM, XGBoost, AdaBoost, and Random Forest classifier algorithms, as well as AE, CSAE, and CVAE deep learning classification methods, the CAE network can achieve higher accuracy and efficiency and can complete the spectral classification task. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

33 pages, 7989 KiB  
Article
Emergency Vehicle Classification Using Combined Temporal and Spectral Audio Features with Machine Learning Algorithms
by Dontabhaktuni Jayakumar, Modugu Krishnaiah, Sreedhar Kollem, Samineni Peddakrishna, Nadikatla Chandrasekhar and Maturi Thirupathi
Electronics 2024, 13(19), 3873; https://doi.org/10.3390/electronics13193873 - 30 Sep 2024
Cited by 1 | Viewed by 2518
Abstract
This study presents a novel approach to emergency vehicle classification that leverages a comprehensive set of informative audio features to distinguish between ambulance sirens, fire truck sirens, and traffic noise. A unique contribution lies in combining time domain features, including root mean square [...] Read more.
This study presents a novel approach to emergency vehicle classification that leverages a comprehensive set of informative audio features to distinguish between ambulance sirens, fire truck sirens, and traffic noise. A unique contribution lies in combining time domain features, including root mean square (RMS) and zero-crossing rate, to capture the temporal characteristics, like signal energy changes, with frequency domain features derived from short-time Fourier transform (STFT). These include spectral centroid, spectral bandwidth, and spectral roll-off, providing insights into the sound’s frequency content for differentiating siren patterns from traffic noise. Additionally, Mel-frequency cepstral coefficients (MFCCs) are incorporated to capture the human-like auditory perception of the spectral information. This combination captures both temporal and spectral characteristics of the audio signals, enhancing the model’s ability to discriminate between emergency vehicles and traffic noise compared to using features from a single domain. A significant contribution of this study is the integration of data augmentation techniques that replicate real-world conditions, including the Doppler effect and noise environment considerations. This study further investigates the effectiveness of different machine learning algorithms applied to the extracted features, performing a comparative analysis to determine the most effective classifier for this task. This analysis reveals that the support vector machine (SVM) achieves the highest accuracy of 99.5%, followed by random forest (RF) and k-nearest neighbors (KNNs) at 98.5%, while AdaBoost lags at 96.0% and long short-term memory (LSTM) has an accuracy of 93%. We also demonstrate the effectiveness of a stacked ensemble classifier, and utilizing these base learners achieves an accuracy of 99.5%. Furthermore, this study conducted leave-one-out cross-validation (LOOCV) to validate the results, with SVM and RF achieving accuracies of 98.5%, followed by KNN and AdaBoost, which are 97.0% and 90.5%. These findings indicate the superior performance of advanced ML techniques in emergency vehicle classification. Full article
(This article belongs to the Special Issue Advances in AI Engineering: Exploring Machine Learning Applications)
Show Figures

Figure 1

23 pages, 36997 KiB  
Article
Enhanced Monitoring of Sub-Seasonal Land Use Dynamics in Vietnam’s Mekong Delta through Quantile Mapping and Harmonic Regression
by Nick Kupfer, Tuan Quoc Vo, Felix Bachofer, Juliane Huth, Harry Vereecken, Lutz Weihermüller and Carsten Montzka
Remote Sens. 2024, 16(19), 3569; https://doi.org/10.3390/rs16193569 - 25 Sep 2024
Cited by 1 | Viewed by 2530
Abstract
In response to economic and environmental challenges like sea-level rise, salinity intrusion, groundwater extraction, sand mining, and sinking delta phenomena, the demand for solutions to adapt to changing conditions in riverine environments has increased significantly. High-quality analyses of land use and land cover [...] Read more.
In response to economic and environmental challenges like sea-level rise, salinity intrusion, groundwater extraction, sand mining, and sinking delta phenomena, the demand for solutions to adapt to changing conditions in riverine environments has increased significantly. High-quality analyses of land use and land cover (LULC) dynamics play a critical role in addressing these challenges. This study introduces a novel high-spatial resolution satellite-based approach to identify sub-seasonal LULC dynamics in the Mekong River Delta (MRD), employing a three-year (2021–2023) Sentinel-1 and Sentinel-2 satellite data time series. The primary obstacle is discerning detailed vegetation dynamics, particularly the seasonality of rice crops, answered through quantile mapping, harmonic regression with Fourier transform, and phenological metrics as inputs to a random forest machine learning classifier. Due to the substantial data volume, Google’s cloud computing platform Earth Engine was utilized for the analysis. Furthermore, the study evaluated the relative significance of various input features. The overall accuracy of the classification is 82.6% with a kappa statistic of 0.81, determined using comprehensive reference data collected in Vietnam. While the purely pixel-based approach has limitations, it proves to be a viable method for high-spatial resolution satellite image time series classification of the MRD. Full article
Show Figures

Figure 1

11 pages, 1379 KiB  
Communication
Salivary Molecular Spectroscopy with Machine Learning Algorithms for a Diagnostic Triage for Amelogenesis Imperfecta
by Felipe Morando Avelar, Célia Regina Moreira Lanza, Sttephany Silva Bernardino, Marcelo Augusto Garcia-Junior, Mario Machado Martins, Murillo Guimarães Carneiro, Vasco Ariston Carvalho de Azevedo and Robinson Sabino-Silva
Int. J. Mol. Sci. 2024, 25(17), 9464; https://doi.org/10.3390/ijms25179464 - 30 Aug 2024
Cited by 2 | Viewed by 1422
Abstract
Amelogenesis imperfecta (AI) is a genetic disease characterized by poor formation of tooth enamel. AI occurs due to mutations, especially in AMEL, ENAM, KLK4, MMP20, and FAM83H, associated with changes in matrix proteins, matrix proteases, cell-matrix adhesion proteins, and transport proteins of enamel. [...] Read more.
Amelogenesis imperfecta (AI) is a genetic disease characterized by poor formation of tooth enamel. AI occurs due to mutations, especially in AMEL, ENAM, KLK4, MMP20, and FAM83H, associated with changes in matrix proteins, matrix proteases, cell-matrix adhesion proteins, and transport proteins of enamel. Due to the wide variety of phenotypes, the diagnosis of AI is complex, requiring a genetic test to characterize it better. Thus, there is a demand for developing low-cost, noninvasive, and accurate platforms for AI diagnostics. This case-control pilot study aimed to test salivary vibrational modes obtained in attenuated total reflection fourier-transformed infrared (ATR-FTIR) together with machine learning algorithms: linear discriminant analysis (LDA), random forest, and support vector machine (SVM) could be used to discriminate AI from control subjects due to changes in salivary components. The best-performing SVM algorithm discriminates AI better than matched-control subjects with a sensitivity of 100%, specificity of 79%, and accuracy of 88%. The five main vibrational modes with higher feature importance in the Shapley Additive Explanations (SHAP) were 1010 cm−1, 1013 cm−1, 1002 cm−1, 1004 cm−1, and 1011 cm−1 in these best-performing SVM algorithms, suggesting these vibrational modes as a pre-validated salivary infrared spectral area as a potential biomarker for AI screening. In summary, ATR-FTIR spectroscopy and machine learning algorithms can be used on saliva samples to discriminate AI and are further explored as a screening tool. Full article
(This article belongs to the Special Issue Omics Sciences for Salivary Diagnostics—2nd Edition)
Show Figures

Figure 1

Back to TopTop