Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (481)

Search Parameters:
Keywords = rainfall time resolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1707 KB  
Article
Qualitative Model for Hurricane-Induced Debris Flow Prediction: A Case Study of the Impact of Hurricane Maria (2017) in Puerto Rico
by Yuri Gorokhovich, Ivan V. Morozov, Günay Erpul, Chia-Ying Lee, Carolynne Hultquist and Zola Qingyang Yin
Geomatics 2026, 6(1), 15; https://doi.org/10.3390/geomatics6010015 - 5 Feb 2026
Abstract
This study applies a qualitative Geographic Information Systems model that integrates satellite-derived wind and rainfall data to predict potential debris-flow locations in Puerto Rico triggered by Hurricane Maria (2017). A key innovation of the model is the use of wind-driven rainfall (WDR), calculated [...] Read more.
This study applies a qualitative Geographic Information Systems model that integrates satellite-derived wind and rainfall data to predict potential debris-flow locations in Puerto Rico triggered by Hurricane Maria (2017). A key innovation of the model is the use of wind-driven rainfall (WDR), calculated at multiple elevation levels using satellite wind data and Global Precipitation Measurement (GPM) precipitation at three time steps. WDR replaces the conventional use of total rainfall commonly applied in landslide modeling. A second innovation is the use of WDR slope exposure to hurricane direction in place of a standard aspect parameters. The model assumes that WDR was the primary trigger of debris flows during the hurricane. Predicted debris-flow locations were compared with mapped debris-flow inventories using threshold distances of 1000, 500, and 250 m. Prediction rates ranged from 30 to 100%, and success ratios from 10 to 90%, depending on elevation and distance thresholds, with the best performance at 500 and 1000 m ranges. Model performance could be enhanced through higher-resolution satellite observations of wind, soil moisture, and precipitation, supporting potential real-time hazard applications. Model limitations include its empirical nature, qualitative structure, and current applicability to equatorial or sub-equatorial regions affected by hurricanes or typhoons. Further testing and regional calibration are recommended. Full article
Show Figures

Figure 1

22 pages, 4381 KB  
Article
Impact of Rainfall on Driving Speed: Combining Radar-Based Measurements and Floating Car Data
by Nico Becker, Uwe Ulbrich and Henning W. Rust
Future Transp. 2026, 6(1), 38; https://doi.org/10.3390/futuretransp6010038 - 3 Feb 2026
Viewed by 34
Abstract
It is known that rainfall leads to a reduction in driving speed. However, the results of various studies are inconsistent regarding the amount of speed reduction. In this study, we combine high-resolution radar-based rainfall estimates for three days with heavy rainfall with driving [...] Read more.
It is known that rainfall leads to a reduction in driving speed. However, the results of various studies are inconsistent regarding the amount of speed reduction. In this study, we combine high-resolution radar-based rainfall estimates for three days with heavy rainfall with driving speeds derived from floating car data on 1.5 million road sections in Germany. Using linear regression models, we investigate the functional relationship between rainfall and driving speeds depending on road section characteristics like speed limit and number of lanes. We find that the speed reduction due to rainfall is higher at road section with higher speed limits and on multi-lane roads. On highway road section with speed limits of 130 km/h, for example, heavy rainfall of more than 8 L/m2 in five minutes leads to an average speed reduction of more than 30%, although estimates at very high rainfall intensities are subject to increased uncertainty due to data sparsity. Cross-validation shows that including rainfall as a predictor for driving speed reduces mean squared errors by up 14% in general and up to 50% in heavy rainfall conditions. Furthermore, rainfall as a continuous variable should be preferred over categorical variables for a parsimonious model. Our results demonstrate that parsimonious, interpretable models combining radar rainfall data with floating car data can capture systematic rainfall-related speed reductions across a wide range of road types. However, the analysis should be interpreted strictly as a descriptive, event-specific study. It does not support generalizable inference across time, seasons, or broader traffic conditions. To make this approach suitable for operational applications such as real-time speed prediction, route planning, and traffic management, larger multi-event datasets and the consideration of effects like weekday structure and diurnal demand patterns are required to better constrain effects under heavy rainfall conditions. Full article
23 pages, 1844 KB  
Article
Short-Term Forecast of Tropospheric Zenith Wet Delay Based on TimesNet
by Xuan Zhao, Shouzhou Gu, Jinzhong Mi, Jianquan Dong, Long Xiao and Bin Chu
Sensors 2026, 26(3), 991; https://doi.org/10.3390/s26030991 - 3 Feb 2026
Viewed by 126
Abstract
The tropospheric zenith wet delay (ZWD) serves as a pivotal parameter for atmospheric water vapour inversion. By converting it into precipitable water vapour, high-temporal-resolution atmospheric humidity monitoring becomes feasible, providing crucial support for enhancing short-term rainfall forecast accuracy. However, ZWD exhibits significant non-stationarity [...] Read more.
The tropospheric zenith wet delay (ZWD) serves as a pivotal parameter for atmospheric water vapour inversion. By converting it into precipitable water vapour, high-temporal-resolution atmospheric humidity monitoring becomes feasible, providing crucial support for enhancing short-term rainfall forecast accuracy. However, ZWD exhibits significant non-stationarity due to complex influencing factors, and traditional models struggle to achieve precise predictions across all scenarios owing to limitations in local feature extraction. This article employs a ZWD prediction method based on the dynamic temporal decomposition module of TimesNet, re-constructing one-dimensional high-frequency ZWD time series into two-dimensional tensors to overcome the technical limitations of conventional models. Comprehensively considering topographical characteristics, climatic features, and seasonal factors, experiments were conducted using 30 s ZWD data from 20 IGS stations. This dataset comprised four consecutive days of PPP solutions for each season in 2023. Through comparative experiments with CNN-ATT and Informer models, the global prediction accuracy, seasonal adaptability, and topographical robustness of TimesNet were systematically evaluated. Results demonstrate that under the input-prediction window configuration where each can achieve the optimal accuracy, TimesNet achieves an average seasonal Root Mean Square Error (RMSE) of 5.73 mm across all seasonal station samples, outperforming Informer (7.89 mm) and CNN-ATT (10.02 mm) by 27.4% and 42.8%, respectively. It maintains robust performance under the most challenging conditions—including summer severe convection, high-altitude terrain, and climatically variable maritime zones—while achieving sub-5 mm precision in stable environments. This provides a reliable algorithmic foundation for short-term precipitation forecasting in Global Navigation Satellite System (GNSS) real-time meteorology. Full article
Show Figures

Figure 1

23 pages, 11849 KB  
Article
The Impact of Climate Change and Land Use on Soil Erosion Using the RUSLE Model in the Tigrigra Watershed (Azrou Region, Middle Atlas, Morocco)
by Jihane Saouita, Abdellah El-Hmaidi, Habiba Ousmana, Hind Ragragui, My Hachem Aouragh, Hajar Jaddi, Anas El Ouali and Abdelaziz Abdallaoui
Sustainability 2026, 18(3), 1276; https://doi.org/10.3390/su18031276 - 27 Jan 2026
Viewed by 327
Abstract
Soil erosion is largely driven by climate change and land use dynamics. The objective of this study is to assess the dynamic variation in erosion under the combined effects of precipitation and land use change in the Tigrigra watershed, located in the mountainous [...] Read more.
Soil erosion is largely driven by climate change and land use dynamics. The objective of this study is to assess the dynamic variation in erosion under the combined effects of precipitation and land use change in the Tigrigra watershed, located in the mountainous region of the Middle Atlas. The RUSLE (Revised Universal Soil Loss Equation) model is used in the methodological approach to estimate soil loss based on various parameters such as precipitation, soil, topography, land cover, and conservation practices. Geographic Information Systems (GIS) and remote sensing tools are essential for applying this method. In addition, the CA-Markov model (cellular automata), which models and predicts land use changes over time, is used to project future land cover scenarios that influence soil erosion dynamics. The research focuses on four previous periods (1991–2000, 2001–2010, 2011–2015, and 2016–2023), as well as a future period (2024–2050), considering two climate scenarios, RCP 2.6 and RCP 4.5. Precipitation data from local weather stations and the CMIP5 climate model were used to calculate the R factor (precipitation erosivity). Land cover analysis was performed using Landsat satellite images (30 m resolution) integrated into the CA-Markov model to calculate the C factor (land cover management). The results show that erosion has gradually decreased over both past and future periods, mainly due to variations in precipitation and vegetation cover. It should be noted that the period from 1991–2000 to 2016–2023 shows higher erosion compared to the future periods, with a maximum value of 17.83 t/ha/year recorded between 1991 and 2000. For the future period 2024–2050, a continuous decrease in erosion is observed under both scenarios, with an average value of 15.30 t/ha/year for the RCP2.6 scenario and 15.86 t/ha/year for the RCP4.5 scenario, with erosion remaining slightly higher under RCP4.5. Overall, erosion decreases across both historical (1991–2023) and projected (2024–2050) periods due to reduced rainfall erosivity. The northern part of the basin is particularly prone to erosion due to the low vegetation cover. The results indicate that areas susceptible to erosion require conservation measures to reduce soil loss. Implementing sustainable agricultural practices is crucial for maintaining long-term soil health and preventing degradation. However, some limitations of the study, such as the lack of data on conservation practices and daily precipitation, might affect the overall robustness of the findings. Full article
Show Figures

Figure 1

20 pages, 1908 KB  
Article
Research on Real-Time Rainfall Intensity Monitoring Methods Based on Deep Learning and Audio Signals in the Semi-Arid Region of Northwest China
by Yishu Wang, Hongtao Jiang, Guangtong Liu, Qiangqiang Chen and Mengping Ni
Atmosphere 2026, 17(2), 131; https://doi.org/10.3390/atmos17020131 - 26 Jan 2026
Viewed by 264
Abstract
With the increasing frequency extreme weather events associated with climate change, real-time monitoring of rainfall intensity is critical for water resource management, disaster warning, and other applications. Traditional methods, such as ground-based rain gauges, radar, and satellites, face challenges like high costs, low [...] Read more.
With the increasing frequency extreme weather events associated with climate change, real-time monitoring of rainfall intensity is critical for water resource management, disaster warning, and other applications. Traditional methods, such as ground-based rain gauges, radar, and satellites, face challenges like high costs, low resolution, and monitoring gaps. This study proposes a novel real-time rainfall intensity monitoring method based on deep learning and audio signal processing, using acoustic features from rainfall to predict intensity. Conducted in the semi-arid region of Northwest China, the study employed a custom-designed sound collection device to capture acoustic signals from raindrop-surface interactions. The method, combining multi-feature extraction and regression modeling, accurately predicted rainfall intensity. Experimental results revealed a strong linear relationship between sound pressure and rainfall intensity (r = 0.916, R2 = 0.838), with clear nonlinear enhancement of acoustic energy during heavy rainfall. Compared to traditional methods like CML and radio link techniques, the acoustic approach offers advantages in cost, high-density deployment, and adaptability to complex terrain. Despite some limitations, including regional and seasonal biases, the study lays the foundation for future improvements, such as expanding sample coverage, optimizing sensor design, and incorporating multi-source data. This method holds significant potential for applications in urban drainage, agricultural irrigation, and disaster early warning. Full article
Show Figures

Figure 1

22 pages, 13386 KB  
Article
Overview of the Korean Precipitation Observation Program (KPOP) in the Seoul Metropolitan Area
by Jae-Young Byon, Minseong Park, HyangSuk Park and GyuWon Lee
Atmosphere 2026, 17(2), 130; https://doi.org/10.3390/atmos17020130 - 26 Jan 2026
Viewed by 158
Abstract
Recent studies have reported a rapid increase in short-duration, high-intensity rainfall over the Seoul Metropolitan Area (SMA), primarily associated with mesoscale convective systems (MCSs), highlighting the need for high-resolution and multi-platform observations for accurate forecasting. To address this challenge, the Korea Meteorological Administration [...] Read more.
Recent studies have reported a rapid increase in short-duration, high-intensity rainfall over the Seoul Metropolitan Area (SMA), primarily associated with mesoscale convective systems (MCSs), highlighting the need for high-resolution and multi-platform observations for accurate forecasting. To address this challenge, the Korea Meteorological Administration (KMA) established the Korean Precipitation Observation Program (KPOP), an intensive observation network integrating radar, wind lidar, wind profiler, and storm tracker measurements. This study introduces the design and implementation of the KPOP network and evaluates its observational and forecasting value through a heavy rainfall event that occurred on 17 July 2024. Wind lidar data and weather charts reveal that a strong low-level southwesterly jet and enhanced moisture transport from the Yellow Sea played a key role in sustaining a quasi-stationary, line-shaped rainband over the metropolitan region, leading to extreme short-duration rainfall exceeding 100 mm h−1. To investigate the impact of KPOP observations on numerical prediction, preliminary data assimilation experiments were conducted using the Korean Integrated Model-Regional Data Assimilation and Prediction System (KIM-RDAPS) with WRF-3DVAR. The results demonstrate that assimilating wind lidar observations most effectively improved the representation of low-level moisture convergence and spatial structure of the rainband, leading to more accurate simulation of rainfall intensity and timing compared to experiments assimilating storm tracker data alone. These findings confirm that intensive, high-resolution wind observations are critical for improving initial analyses and enhancing the predictability of extreme rainfall events in densely urbanized regions such as the SMA. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

24 pages, 9506 KB  
Article
An SBAS-InSAR Analysis and Assessment of Landslide Deformation in the Loess Plateau, China
by Yan Yang, Rongmei Liu, Liang Wu, Tao Wang and Shoutao Jiao
Remote Sens. 2026, 18(3), 411; https://doi.org/10.3390/rs18030411 - 26 Jan 2026
Viewed by 304
Abstract
This study conducts a landslide deformation assessment in Tianshui, Gansu Province, on the Chinese Loess Plateau, utilizing the Small Baseline Subset InSAR (SBAS-InSAR) method integrated with velocity direction conversion and Z-score clustering. The Chinese Loess Plateau is one of the most landslide-prone regions [...] Read more.
This study conducts a landslide deformation assessment in Tianshui, Gansu Province, on the Chinese Loess Plateau, utilizing the Small Baseline Subset InSAR (SBAS-InSAR) method integrated with velocity direction conversion and Z-score clustering. The Chinese Loess Plateau is one of the most landslide-prone regions in China due to frequent rains, strong topographical gradients and severe soil erosion. By constructing subsets of interferograms, SBAS-InSAR can mitigate the influence of decorrelation to a certain extent, making it a highly effective technique for monitoring regional surface deformation and identifying landslides. To overcome the limitations of the satellite’s one-dimensional Line-of-Sight (LOS) measurements and the challenge of distinguishing true landslide signals from noise, two optimization strategies were implemented. First, LOS velocities were projected onto the local steepest slope direction, assuming translational movement parallel to the slope. Second, a Z-score clustering algorithm was employed to aggregate measurement points with consistent kinematic signatures, enhancing identification robustness, with a slight trade-off in spatial completeness. Based on 205 Sentinel-1 Single-Look Complex (SLC) images acquired from 2014 to 2024, the integrated workflow identified 69 “active, very slow” and 63 “active, extremely slow” landslides. These results were validated through high-resolution historical optical imagery. Time series analysis reveals that creep deformation in this region is highly sensitive to seasonal rainfall patterns. This study demonstrates that the SBAS-InSAR post-processing framework provides a cost-effective, millimeter-scale solution for updating landslide inventories and supporting regional risk management and early warning systems in loess-covered terrains, with the exception of densely forested areas. Full article
Show Figures

Figure 1

34 pages, 7175 KB  
Article
Hybrid Unsupervised–Supervised Learning Framework for Rainfall Prediction Using Satellite Signal Strength Attenuation
by Popphon Laon, Tanawit Sahavisit, Supavee Pourbunthidkul, Sarut Puangragsa, Pattharin Wichittrakarn, Pattarapong Phasukkit and Nongluck Houngkamhang
Sensors 2026, 26(2), 648; https://doi.org/10.3390/s26020648 - 18 Jan 2026
Viewed by 280
Abstract
Satellite communication systems experience significant signal degradation during rain events, a phenomenon that can be leveraged for meteorological applications. This study introduces a novel hybrid machine learning framework combining unsupervised clustering with cluster-specific supervised deep learning models to transform satellite signal attenuation into [...] Read more.
Satellite communication systems experience significant signal degradation during rain events, a phenomenon that can be leveraged for meteorological applications. This study introduces a novel hybrid machine learning framework combining unsupervised clustering with cluster-specific supervised deep learning models to transform satellite signal attenuation into a predictive tool for rainfall prediction. Unlike conventional single-model approaches treating all atmospheric conditions uniformly, our methodology employs K-Means Clustering with the Elbow Method to identify four distinct atmospheric regimes based on Signal-to-Noise Ratio (SNR) patterns from a 12-m Ku-band satellite ground station at King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand, combined with absolute pressure and hourly rainfall measurements. The dataset comprises 98,483 observations collected with 30-s temporal resolutions, providing comprehensive coverage of diverse tropical atmospheric conditions. The experimental platform integrates three subsystems: a receiver chain featuring a Low-Noise Block (LNB) converter and Software-Defined Radio (SDR) platform for real-time data acquisition; a control system with two-axis motorized pointing incorporating dual-encoder feedback; and a preprocessing workflow implementing data cleaning, K-Means Clustering (k = 4), Synthetic Minority Over-Sampling Technique (SMOTE) for balanced representation, and standardization. Specialized Long Short-Term Memory (LSTM) networks trained for each identified cluster enable capture of regime-specific temporal dynamics. Experimental validation demonstrates substantial performance improvements, with cluster-specific LSTM models achieving R2 values exceeding 0.92 across all atmospheric regimes. Comparative analysis confirms LSTM superiority over RNN and GRU. Classification performance evaluation reveals exceptional detection capabilities with Probability of Detection ranging from 0.75 to 0.99 and False Alarm Ratios below 0.23. This work presents a scalable approach to weather radar systems for tropical regions with limited ground-based infrastructure, particularly during rapid meteorological transitions characteristic of tropical climates. Full article
Show Figures

Figure 1

22 pages, 6124 KB  
Article
High-Resolution Monitoring of Badland Erosion Dynamics: Spatiotemporal Changes and Topographic Controls via UAV Structure-from-Motion
by Yi-Chin Chen
Water 2026, 18(2), 234; https://doi.org/10.3390/w18020234 - 15 Jan 2026
Viewed by 361
Abstract
Mudstone badlands are critical hotspots of erosion and sediment yield, and their rapid morphological changes serve as an ideal site for studying erosion processes. This study used high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry to monitor erosion patterns on a mudstone badland platform in [...] Read more.
Mudstone badlands are critical hotspots of erosion and sediment yield, and their rapid morphological changes serve as an ideal site for studying erosion processes. This study used high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry to monitor erosion patterns on a mudstone badland platform in southwestern Taiwan over a 22-month period. Five UAV surveys conducted between 2017 and 2018 were processed using Structure-from-Motion photogrammetry to generate time-series digital surface models (DSMs). Topographic changes were quantified using DSMs of Difference (DoD). The results reveal intense surface lowering, with a mean erosion depth of 34.2 cm, equivalent to an average erosion rate of 18.7 cm yr−1. Erosion is governed by a synergistic regime in which diffuse rain splash acts as the dominant background process, accounting for approximately 53% of total erosion, while concentrated flow drives localized gully incision. Morphometric analysis shows that erosion depth increases nonlinearly with slope, consistent with threshold hillslope behavior, but exhibits little dependence on the contributing area. Plan and profile curvature further influence the spatial distribution of erosion, with enhanced erosion on both strongly concave and convex surfaces relative to near-linear slopes. The gully network also exhibits rapid channel adjustment, including downstream meander migration and associated lateral bank erosion. These findings highlight the complex interactions among hillslope processes, gully dynamics, and base-level controls that govern badland landscape evolution and have important implications for erosion modeling and watershed management in high-intensity rainfall environments. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

31 pages, 2310 KB  
Article
Deep Learning-Based Multi-Source Precipitation Fusion and Its Utility for Hydrological Simulation
by Zihao Huang, Changbo Jiang, Yuannan Long, Shixiong Yan, Yue Qi, Munan Xu and Tao Xiang
Atmosphere 2026, 17(1), 70; https://doi.org/10.3390/atmos17010070 - 8 Jan 2026
Viewed by 339
Abstract
High-resolution satellite precipitation products are key inputs for basin-scale rainfall estimation, but they still exhibit substantial biases in complex terrain and during heavy rainfall. Recent multi-source fusion studies have shown that simply stacking multiple same-type microwave satellite products yields only limited additional gains [...] Read more.
High-resolution satellite precipitation products are key inputs for basin-scale rainfall estimation, but they still exhibit substantial biases in complex terrain and during heavy rainfall. Recent multi-source fusion studies have shown that simply stacking multiple same-type microwave satellite products yields only limited additional gains for high-quality precipitation estimates and may even introduce local degradation, suggesting that targeted correction of a single, widely validated high-quality microwave product (such as IMERG) is a more rational strategy. Focusing on the mountainous, gauge-sparse Lüshui River basin with pronounced relief and frequent heavy rainfall, we use GPM IMERG V07 as the primary microwave product and incorporate CHIRPS, ERA5 evaporation, and a digital elevation model as auxiliary inputs to build a daily attention-enhanced CNN–LSTM (A-CNN–LSTM) bias-correction framework. Under a unified IMERG-based setting, we compare three network architectures—LSTM, CNN–LSTM, and A-CNN–LSTM—and test three input configurations (single-source IMERG, single-source CHIRPS, and combined IMERG + CHIRPS) to jointly evaluate impacts on corrected precipitation and SWAT runoff simulations. The IMERG-driven A-CNN–LSTM markedly reduces daily root-mean-square error and improves the intensity and timing of 10–50 mm·d−1 rainfall events; the single-source IMERG configuration also outperforms CHIRPS-including multi-source setups in terms of correlation, RMSE, and performance across rainfall-intensity classes. When the corrected IMERG product is used to force SWAT, daily Nash-Sutcliffe Efficiency increases from about 0.71/0.70 to 0.85/0.79 in the calibration/validation periods, and RMSE decreases from 87.92 to 60.98 m3 s−1, while flood peaks and timing closely match simulations driven by gauge-interpolated precipitation. Overall, the results demonstrate that, in gauge-sparse mountainous basins, correcting a single high-quality, widely validated microwave product with a small set of heterogeneous covariates is more effective for improving precipitation inputs and their hydrological utility than simply aggregating multiple same-type satellite products. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

25 pages, 7922 KB  
Article
Generation of Rainfall Maps from GK2A Satellite Images Using Deep Learning
by Yerim Lim, Yeji Choi, Eunbin Kim, Yong-Jae Moon and Hyun-Jin Jeong
Remote Sens. 2026, 18(2), 188; https://doi.org/10.3390/rs18020188 - 6 Jan 2026
Viewed by 327
Abstract
Accurate rainfall monitoring is essential for mitigating hydrometeorological disasters and understanding hydrological changes under climate change. This study presents a deep learning-based rainfall estimation framework using multispectral GEO-KOMPSAT-2A (GK2A) satellite imagery. The analysis primarily focuses on daytime observations to take advantage of visible [...] Read more.
Accurate rainfall monitoring is essential for mitigating hydrometeorological disasters and understanding hydrological changes under climate change. This study presents a deep learning-based rainfall estimation framework using multispectral GEO-KOMPSAT-2A (GK2A) satellite imagery. The analysis primarily focuses on daytime observations to take advantage of visible channel information, which provides richer representations of cloud characteristics during daylight conditions. The core model, Model-HSP, is built on the Pix2PixCC architecture and trained with Hybrid Surface Precipitation (HSP) data from weather radar. To further enhance accuracy, an ensemble model (Model-ENS) integrates the outputs of Model-HSP and a radar based Model-CMX, leveraging their complementary strengths for improved generalization, robustness, and stability across rainfall regimes. Performance was evaluated over two periods—a one year period from May 2023 to April 2024 and the August 2023 monsoon season—at 2 km and 4 km spatial resolutions, using RMSE and CC as quantitative metrics. Case analyses confirmed the superior capability of Model-ENS in capturing rainfall distribution, intensity, and temporal evolution across diverse weather conditions. These findings show that deep learning greatly enhances GEO satellite rainfall estimation, enabling real-time, high-resolution monitoring even in radar sparse or limited coverage regions, and offering strong potential for global and regional hydrometeorological and climate research applications. Full article
(This article belongs to the Special Issue Advance of Radar Meteorology and Hydrology II)
Show Figures

Graphical abstract

19 pages, 4716 KB  
Article
Simulating Rainfall for Flood Forecasting in the Upper Minjiang River
by Wenjie Zhao, Yang Zhao, Qijia Zhao, Xingping Wang, Tiantian Su and Yuan Guo
Water 2026, 18(1), 4; https://doi.org/10.3390/w18010004 - 19 Dec 2025
Viewed by 363
Abstract
The accuracy and timeliness of precipitation inputs have significant impact on flood forecasting. Upstream Minjiang River Basin is characterized by complex terrain and highly variable climatic conditions, posing a significant challenge for runoff forecasting. This study proposes a combined forecasting approach integrating numerical [...] Read more.
The accuracy and timeliness of precipitation inputs have significant impact on flood forecasting. Upstream Minjiang River Basin is characterized by complex terrain and highly variable climatic conditions, posing a significant challenge for runoff forecasting. This study proposes a combined forecasting approach integrating numerical weather prediction (NWP) models with hydrodynamic models to enhance flood process simulation. The most appropriate initial field data for the Weather Research and Forecasting Model (WRF) exist in time and space resolution. Compared with the measured series, the characteristics of precipitation forecasting are summarized from practical and scientific perspectives. InfoWorks ICM is then used to implement runoff generation calculations and flooding processes. The results indicate that the WRF model effectively simulates the spatial distribution and peak timing of precipitation in the upper Minjiang River. The model systematically underestimates both peak rainfall intensity and cumulative precipitation compared to observations. Initial field data with 0.25° spatial resolution and 3 h temporal intervals demonstrate good performance and the 10–14 h forecast period exhibits superior predictive capability in numerical simulations. Updates to elevation and land use conditions yield increased cumulative rainfall estimates, though simulated peaks remain lower than measured values. The runoff results could indicate peak flow but rely on the precipitation inputs. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

14 pages, 1155 KB  
Article
Administrative-District-Level Risk Indices for Typhoon-Induced Wind and Rainfall: Case Studies in Seoul and Busan, South Korea
by Hana Na and Woo-Sik Jung
Atmosphere 2025, 16(12), 1392; https://doi.org/10.3390/atmos16121392 - 10 Dec 2025
Viewed by 668
Abstract
Typhoon-induced hazards in South Korea exhibit strong spatial heterogeneity, requiring localized assessments to support impact-based early warning. This study develops a district-level typhoon hazard framework by integrating high-resolution meteorological fields with structural and hydrological vulnerability indicators. Two impact-oriented indices were formulated: the Strong [...] Read more.
Typhoon-induced hazards in South Korea exhibit strong spatial heterogeneity, requiring localized assessments to support impact-based early warning. This study develops a district-level typhoon hazard framework by integrating high-resolution meteorological fields with structural and hydrological vulnerability indicators. Two impact-oriented indices were formulated: the Strong Wind Risk Index (SWI), based on 3 s gust wind intensity and building-age fragility, and the Heavy Rainfall Risk Index (HRI), combining probable maximum precipitation with permeability and river-network density. Hazard levels were classified into four categories, Attention, Caution, Warning, and Danger, using district-specific percentile thresholds consistent with the THIRA methodology. Nationwide analysis across 250 districts revealed a pronounced coastal–inland gradient: mean SWI and HRI values in Busan were approximately 1.9 and 6.3 times higher than those in Seoul, respectively. Sub-district mapping further identified localized hotspots driven by topographic exposure and structural vulnerability. By establishing statistically derived, region-specific thresholds, this framework provides an operational foundation for integrating localized hazard interpretation into Korea’s Typhoon Ready System (TRS). The results strengthen the scientific basis for adaptive, evidence-based early warning and climate-resilient disaster-risk governance. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

20 pages, 10791 KB  
Article
Developing Integrated Supersites to Advance the Understanding of Saltwater Intrusion in the Coastal Plain Between the Brenta and Adige Rivers, Italy
by Luigi Tosi, Marta Cosma, Pablo Agustín Yaciuk, Iva Aljinović, Andrea Artuso, Jadran Čarija, Cristina Da Lio, Lorenzo Frison, Veljko Srzić, Fabio Tateo and Sandra Donnici
J. Mar. Sci. Eng. 2025, 13(12), 2328; https://doi.org/10.3390/jmse13122328 - 8 Dec 2025
Viewed by 309
Abstract
Saltwater intrusion increasingly jeopardizes groundwater in low-lying coastal plains worldwide, where the combined effects of sea-level rise, land subsidence, and hydraulic regulation further exacerbate aquifer vulnerability and threaten the long-term sustainability of freshwater supplies. To move beyond sparse and fragmented piezometric observations, we [...] Read more.
Saltwater intrusion increasingly jeopardizes groundwater in low-lying coastal plains worldwide, where the combined effects of sea-level rise, land subsidence, and hydraulic regulation further exacerbate aquifer vulnerability and threaten the long-term sustainability of freshwater supplies. To move beyond sparse and fragmented piezometric observations, we propose “integrated coastal supersites”: wells equipped with multiparametric sensors and multilevel piezometers that couple high-resolution vertical conductivity–temperature–depth (CTD) profiling with continuous hydro-meteorological time series to monitor the hydrodynamic behavior of coastal aquifers and saltwater intrusion. This study describes the installation of two supersites and presents early insights from the first monitoring period, which, despite a short observation window limited to the summer season (July–September 2025), demonstrate the effectiveness of this approach. Two contrasting supersites were deployed in the coastal plain between the Brenta and Adige Rivers (Italy): Gorzone, characterized by a thick, laterally persistent aquitard, and Buoro, where the aquitard is thinner and discontinuous. Profiles and fixed sensors at both sites reveal a consistent fresh-to-saline transition in the phreatic aquifers and a secondary freshwater lens capping the confined systems. At Gorzone, the confining layer hydraulically isolates the deeper aquifer, preserving low salinity beneath a saline, tidally constrained phreatic zone. Groundwater heads oscillate by about 0.2 m, and rainfall events do not dilute salinity; instead, pressure transients—amplified by drainage regulation and inland-propagating tides—induce short-lived EC increases via upconing. Buoro shows smaller water-level variations, not always linked to rainfall, and, in contrast, exhibits partial vertical connectivity and faster dynamics: phreatic heads respond chiefly to internal drainage and local recharge, with rises rapidly damped by pumping, while salinity remains steady without episodic peaks. The confined aquifer shows buffered, delayed responses to surface forcings. Although the monitoring window is currently limited to 2025 through the summer season, these results offer compelling evidence that coastal supersites are reliable, scalable, and management-critical relevance platforms for groundwater calibration, forecasting, and long-term assessment. Full article
(This article belongs to the Special Issue Monitoring Coastal Systems and Improving Climate Change Resilience)
Show Figures

Graphical abstract

31 pages, 6021 KB  
Article
Multisource Remote Sensing and Machine Learning for Spatio-Temporal Drought Assessment in Northeast Syria
by Abdullah Sukkar, Ozan Ozturk, Ammar Abulibdeh and Dursun Zafer Seker
Sustainability 2025, 17(24), 10933; https://doi.org/10.3390/su172410933 - 7 Dec 2025
Viewed by 688
Abstract
Increasing aridity across the Middle East Region has intensified concerns about the impacts of drought in conflict-affected Northeast Syria (NES). In this study, drought dynamics and their drivers from 2000 to 2023 were analyzed by integrating ERA5-Land meteorological data, MODIS land-surface indicators, FLDAS [...] Read more.
Increasing aridity across the Middle East Region has intensified concerns about the impacts of drought in conflict-affected Northeast Syria (NES). In this study, drought dynamics and their drivers from 2000 to 2023 were analyzed by integrating ERA5-Land meteorological data, MODIS land-surface indicators, FLDAS soil moisture, and ISRIC soil properties at 250 m resolution. The integration of these multisource datasets contributes to a more comprehensive understanding of drought dynamics by combining information on weather conditions, vegetation status, and soil characteristics. The proposed drought analysis framework clarifies independent controls on meteorological, agricultural, and hydrological drought, underscoring the role of land-atmosphere feedback through soil temperature. This workflow provides a transferable approach for drought monitoring and hypothesis generation in arid regions. For this purpose, different XGBoost models were trained for the vegetation health index (VHI), the standardized precipitation-evapotranspiration index (SPEI), and surface soil-moisture anomalies, excluding target-related variables to prevent data leakage. Model interpretability was achieved using SHAP, complemented by time-series, trend, clustering, and spatial autocorrelation analyses. The models performed well (R2 = 0.86–0.90), identifying soil temperature, SPEI, relative humidity, precipitation, and soil-moisture anomalies as key predictors. Regionally, soil temperature rose (+0.069 °C yr−1), while rainfall (−1.203 mm yr−1) and relative humidity (−0.075% yr−1) declined. Spatial analyses demonstrated expanding heat hotspots and persistent soil moisture deficits. Although 2018–2019 were anomalously wet, recent years (2021–2023) exhibited severe drought. Full article
Show Figures

Figure 1

Back to TopTop