Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (221)

Search Parameters:
Keywords = railway operation and management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9888 KiB  
Article
WeatherClean: An Image Restoration Algorithm for UAV-Based Railway Inspection in Adverse Weather
by Kewen Wang, Shaobing Yang, Zexuan Zhang, Zhipeng Wang, Limin Jia, Mengwei Li and Shengjia Yu
Sensors 2025, 25(15), 4799; https://doi.org/10.3390/s25154799 - 4 Aug 2025
Viewed by 182
Abstract
UAV-based inspections are an effective way to ensure railway safety and have gained significant attention. However, images captured during complex weather conditions, such as rain, snow, or fog, often suffer from severe degradation, affecting image recognition accuracy. Existing algorithms for removing rain, snow, [...] Read more.
UAV-based inspections are an effective way to ensure railway safety and have gained significant attention. However, images captured during complex weather conditions, such as rain, snow, or fog, often suffer from severe degradation, affecting image recognition accuracy. Existing algorithms for removing rain, snow, and fog have two main limitations: they do not adaptively learn features under varying weather complexities and struggle with managing complex noise patterns in drone inspections, leading to incomplete noise removal. To address these challenges, this study proposes a novel framework for removing rain, snow, and fog from drone images, called WeatherClean. This framework introduces a Weather Complexity Adjustment Factor (WCAF) in a parameterized adjustable network architecture to process weather degradation of varying degrees adaptively. It also employs a hierarchical multi-scale cropping strategy to enhance the recovery of fine noise and edge structures. Additionally, it incorporates a degradation synthesis method based on atmospheric scattering physical models to generate training samples that align with real-world weather patterns, thereby mitigating data scarcity issues. Experimental results show that WeatherClean outperforms existing methods by effectively removing noise particles while preserving image details. This advancement provides more reliable high-definition visual references for drone-based railway inspections, significantly enhancing inspection capabilities under complex weather conditions and ensuring the safety of railway operations. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

19 pages, 1951 KiB  
Article
System for the Acquisition and Analysis of Maintenance Data of Railway Traffic Control Devices
by Mieczysław Kornaszewski, Waldemar Nowakowski and Roman Pniewski
Appl. Sci. 2025, 15(15), 8305; https://doi.org/10.3390/app15158305 - 25 Jul 2025
Viewed by 191
Abstract
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, [...] Read more.
A particularly important activity carried out by railway infrastructure managers to maintain railway devices in full working order is the diagnostic process. It increases the level of railway safety. The diagnostic process involves collecting information about the equipment through inspections, tests, functional trials, parameter measurements, and analysis of the working environment, followed by comparing the obtained information with the required parameters or permissible conditions. This activity also enables the formulation of a technical diagnosis regarding the current ability of the devices to perform its intended functions, taking into account the impact of its technical condition on railway traffic safety. This is especially important in the case of railway traffic control devices, as these devices are largely responsible for ensuring railway traffic safety. The collection of data on the condition of railway traffic control devices in the form of Big Data sets and diagnostic inference is an effective factor in making operational decisions for such devices. It enables the acquisition of complete information about the actual course of the exploitation process and allows for obtaining reliable information necessary to manage this process, particularly in the areas of diagnostics forecasting of devices conditions, renewal, and organization of maintenance and repair facilities. To support this, a service data acquisition and analysis system for railway traffic control devices (SADEK) was developed. This system can serve as a software platform for maintenance needs in the railway sector. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

33 pages, 12748 KiB  
Article
Computational and Experimental Investigation of Additively Manufactured Lattice Heat Sinks for Liquid-Cooling Railway Power Electronics
by Ahmad Batikh, Jean-Pierre Fradin and Antonio Castro Moreno
Energies 2025, 18(14), 3753; https://doi.org/10.3390/en18143753 - 15 Jul 2025
Viewed by 305
Abstract
This study investigates the performance of lattice-structured heat sinks based on BCCz unit cells in comparison to conventional straight-fin and pin-fin designs. Various lattice configurations were explored. Numerical simulations and experimental evaluations were carried out to analyze thermal resistance, pressure drop, and temperature [...] Read more.
This study investigates the performance of lattice-structured heat sinks based on BCCz unit cells in comparison to conventional straight-fin and pin-fin designs. Various lattice configurations were explored. Numerical simulations and experimental evaluations were carried out to analyze thermal resistance, pressure drop, and temperature distribution under different operating conditions. Among the designs, the BCCz configuration with a circular cross-section was identified as the most promising candidate for integration into the final heat sink demonstrator, offering reliable and consistent performance. A prototype using the BCCz lattice structure was additively manufactured, alongside a conventional design for comparison. The results highlight the superior heat dissipation capabilities of lattice structures, achieving up to a 100% improvement in thermal performance at high flow rates and up to 300% at low flow rates compared to a conventional straight-fin heat sink. However, the pressure drop generated by the lattice structures remains a challenge that must be addressed. This work underscores the potential of optimized lattice-based heat exchangers to meet the severe thermal management requirements of railway power electronics. Full article
Show Figures

Figure 1

31 pages, 2113 KiB  
Article
Electric Multiple Unit Spare Parts Vendor-Managed Inventory Contract Mechanism Design
by Ziqi Shao, Jie Xu and Cunjie Lei
Systems 2025, 13(7), 585; https://doi.org/10.3390/systems13070585 - 15 Jul 2025
Viewed by 175
Abstract
As electric multiple unit (EMU) operations and maintenance demands have expanded, spare parts supply chain management has become increasingly crucial. This study emphasizes the supply challenges of EMU spare parts, including inadequate minimum inventory levels and prolonged response times. Redesigning the OEM–railway bureau [...] Read more.
As electric multiple unit (EMU) operations and maintenance demands have expanded, spare parts supply chain management has become increasingly crucial. This study emphasizes the supply challenges of EMU spare parts, including inadequate minimum inventory levels and prolonged response times. Redesigning the OEM–railway bureau vendor-managed inventory (VMI) model contract incentive and penalty system is the key goal. Connecting the spare parts supply system with its characteristics yields a game theory model. This study analyzes and compares the equilibrium strategies and profits of supply chain members under different mechanisms for managing critical spare parts. The findings demonstrate that mechanism contracts can enhance supply chain performance in a Pareto-improving manner. An in-depth analysis of downtime loss costs, procurement challenges, and order losses reveals their effects on supply chain coordination and profit allocation, providing railway bureaus and OEMs with a theoretical framework for supply chain decision-making. This study offers theoretical justification and a framework for decision-making on cooperation between OEMs and railroad bureaus in the management of spare parts supply chains, particularly for extensive EMU operations. Full article
(This article belongs to the Section Supply Chain Management)
Show Figures

Figure 1

16 pages, 10934 KiB  
Article
Visualization Monitoring and Safety Evaluation of Turnout Wheel–Rail Forces Based on BIM for Sustainable Railway Management
by Xinyi Dong, Yuelei He and Hongyao Lu
Sensors 2025, 25(14), 4294; https://doi.org/10.3390/s25144294 - 10 Jul 2025
Viewed by 368
Abstract
With China’s high-speed rail network undergoing rapid expansion, turnouts constitute critical elements whose safety and stability are essential to railway operation. At present, the efficiency of wheel–rail force safety monitoring conducted in the small hours reserved for the construction and maintenance of operating [...] Read more.
With China’s high-speed rail network undergoing rapid expansion, turnouts constitute critical elements whose safety and stability are essential to railway operation. At present, the efficiency of wheel–rail force safety monitoring conducted in the small hours reserved for the construction and maintenance of operating lines without marking train operation lines is relatively low. To enhance the efficiency of turnout safety monitoring, in this study, a three-dimensional BIM model of the No. 42 turnout was established and a corresponding wheel–rail force monitoring scheme was devised. Collision detection for monitoring equipment placement and construction process simulation was conducted using Navisworks, such that the rationality of cable routing and the precision of construction sequence alignment were improved. A train wheel–rail force analysis program was developed in MATLAB R2022b to perform signal filtering, and static calibration was applied to calculate key safety evaluation indices—namely, the coefficient of derailment and the rate of wheel load reduction—which were subsequently analyzed. The safety of the No. 42 turnout and the effectiveness of the proposed monitoring scheme were validated, theoretical support was provided for train operational safety and turnout maintenance, and technical guidance was offered for whole-life-cycle management and green, sustainable development of railway infrastructure. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

22 pages, 2953 KiB  
Article
Risk Assessment Model for Railway Track Maintenance Operations Based on Combined Weights and Nonlinear FCE
by Rui Luan and Rengkui Liu
Appl. Sci. 2025, 15(13), 7614; https://doi.org/10.3390/app15137614 - 7 Jul 2025
Viewed by 366
Abstract
Current risk assessment in railway track maintenance operations faces challenges (low spatiotemporal accuracy, limited adaptability to various scenarios, and tendency of linear fuzzy comprehensive evaluation (FCE) methods to underestimate high-risk factors). To address these, this study proposes a novel risk assessment model that [...] Read more.
Current risk assessment in railway track maintenance operations faces challenges (low spatiotemporal accuracy, limited adaptability to various scenarios, and tendency of linear fuzzy comprehensive evaluation (FCE) methods to underestimate high-risk factors). To address these, this study proposes a novel risk assessment model that integrates subjective–objective weighting techniques with a nonlinear FCE approach. By incorporating spatiotemporal information, the model enables precise localization of risk occurrence in individual maintenance operations. A comprehensive risk index system is constructed across four dimensions: human, equipment, environment, and management. The game theory combined weighting method, integrating the G1 method and entropy weight method, is employed; it balances expert judgment with data-driven analysis. A cloud model is introduced to generate risk membership matrices, accounting for the fuzziness and randomness of risk data. The nonlinear FCE framework enhances the influence of high-risk factors. Risk levels are determined using the combined weights, membership matrices, and the maximum membership principle. A case study on the Lanzhou–Xinjiang Railway demonstrates that the proposed model achieves higher consistency with actual risk conditions than conventional methods, improving assessment accuracy and reliability. This model offers a practical and effective tool for risk prevention and control in railway maintenance operations. Full article
Show Figures

Figure 1

24 pages, 798 KiB  
Article
ICRSSD: Identification and Classification for Railway Structured Sensitive Data
by Yage Jin, Hongming Chen, Rui Ma, Yanhua Wu and Qingxin Li
Future Internet 2025, 17(7), 294; https://doi.org/10.3390/fi17070294 - 30 Jun 2025
Viewed by 263
Abstract
The rapid growth of the railway industry has resulted in the accumulation of large structured data that makes data security a critical component of reliable railway system operations. However, existing methods for identifying and classifying often suffer from limitations such as overly coarse [...] Read more.
The rapid growth of the railway industry has resulted in the accumulation of large structured data that makes data security a critical component of reliable railway system operations. However, existing methods for identifying and classifying often suffer from limitations such as overly coarse identification granularity and insufficient flexibility in classification. To address these issues, we propose ICRSSD, a two-stage method for identification and classification in terms of the railway domain. The identification stage focuses on obtaining the sensitivity of all attributes. We first divide structured data into canonical data and semi-canonical data at a finer granularity to improve the identification accuracy. For canonical data, we use information entropy to calculate the initial sensitivity. Subsequently, we update the attribute sensitivities through cluster analysis and association rule mining. For semi-canonical data, we calculate attribute sensitivity by using a combination of regular expressions and keyword lists. In the classification stage, to further enhance accuracy, we adopt a dynamic and multi-granularity classified strategy. It considers the relative sensitivity of attributes across different scenarios and classifies them into three levels based on the sensitivity values obtained during the identification stage. Additionally, we design a rule base specifically for the identification and classification of sensitive data in the railway domain. This rule base enables effective data identification and classification, while also supporting the expiry management of sensitive attribute labels. To improve the efficiency of regular expression generation, we developed an auxiliary tool with the help of large language models and a well-designed prompt framework. We conducted experiments on a real-world dataset from the railway domain. The results demonstrate that ICRSSD significantly improves the accuracy and adaptability of sensitive data identification and classification in the railway domain. Full article
Show Figures

Figure 1

16 pages, 1747 KiB  
Article
Augmented and Virtual Reality for Improving Safety in Railway Infrastructure Monitoring and Maintenance
by Marina Ricci, Nicola Mosca and Maria Di Summa
Sensors 2025, 25(12), 3772; https://doi.org/10.3390/s25123772 - 17 Jun 2025
Viewed by 480
Abstract
The highly demanding safety standards adopted in the railway context imply that cutting-edge technologies must limit accidents. This paper presents the human-centered outcomes of the VRAIL project, an industrial research project aiming to use enabling technologies and develop methodologies for operators directly involved [...] Read more.
The highly demanding safety standards adopted in the railway context imply that cutting-edge technologies must limit accidents. This paper presents the human-centered outcomes of the VRAIL project, an industrial research project aiming to use enabling technologies and develop methodologies for operators directly involved in infrastructure management in the railway field. Developing integrated monitoring systems and applications that exploit Augmented Reality (AR) and Virtual Reality (VR) becomes crucial to support the awareness of planning and maintenance operators required to comply with high-quality standards. This paper addresses the abovementioned issue by proposing the development of two different prototype applications in both AR and VR for railway infrastructure data management. These environments will provide the planning operator with a complete platform to explore, use to plan maintenance interventions, and gather detailed reports to improve the overall safety of the railway line effectively. Full article
Show Figures

Figure 1

32 pages, 1122 KiB  
Article
Expected Challenges and Anticipated Benefits of Implementing Remote Train Control and Automatic Train Operation: A Tramway Case Study
by Xavier Morin, Nils O. E. Olsson and Albert Lau
Future Transp. 2025, 5(2), 73; https://doi.org/10.3390/futuretransp5020073 - 6 Jun 2025
Viewed by 1279
Abstract
The digital transformation of the railway industry is necessary for addressing growing challenges and advancing its sustainable development. Digital technologies include Automatic Train Operation (ATO) and Remote Train Control (RTC), which offer opportunities to potentially optimize operations and enhance safety. Both technologies, however, [...] Read more.
The digital transformation of the railway industry is necessary for addressing growing challenges and advancing its sustainable development. Digital technologies include Automatic Train Operation (ATO) and Remote Train Control (RTC), which offer opportunities to potentially optimize operations and enhance safety. Both technologies, however, could pose significant challenges that need to be addressed in order to capture the anticipated benefits in an urban public street environment. This study thus bridges the gap between theory and practice by exploring the projected benefits and challenges of implementing RTC and ATO through a case study of a European public transport operator deploying these technologies in tramway operations. Employing a case study methodology, the research draws on 44 semi-structured interviews with stakeholders from the operator and its supplier. The findings highlight significant anticipated benefits, including increased productivity, improved safety, and enhanced sustainability. Yet, prospective challenges such as regulatory hurdles, technical complexities, and organizational changes pose barriers to implementation. Key obstacles include ensuring robust connectivity, addressing cybersecurity concerns, and managing workforce transitions. This study underscores the importance of collaborative approaches, stakeholder engagement, and incremental deployment to mitigate risks and maximize the impact of automation technologies. By providing actionable insights into the practical adoption of RTC and ATO, this research supports the development of advanced urban transport systems. Full article
Show Figures

Figure 1

30 pages, 8675 KiB  
Article
Assessment of the Railway Line Capacity on the Railway Network Using a New Innovative Method
by Vladimír Ľupták, Milan Dedík, Peter Morihladko, Peter Šulko and Lumír Pečený
Sustainability 2025, 17(10), 4476; https://doi.org/10.3390/su17104476 - 14 May 2025
Viewed by 583
Abstract
Nowadays, it is essential to contribute to sustainable transport to the maximum extent possible. Therefore, a significant emphasis is placed on environmentally friendly modes of transport, especially railway transport. For this reason, it is very important to ensure sufficient capacity of the railway [...] Read more.
Nowadays, it is essential to contribute to sustainable transport to the maximum extent possible. Therefore, a significant emphasis is placed on environmentally friendly modes of transport, especially railway transport. For this reason, it is very important to ensure sufficient capacity of the railway infrastructure and high-quality railway transport operations. Railway transport control, operation, and management bring several specifications and unique features. One of the most important things is to correctly determine the capacity and throughput of the railway infrastructure because it must be clear how many trains can be operated on a concrete railway line for a certain time. Therefore, the issue of railway infrastructure capacity is a relatively broad and complex topic. Currently, there are several methods and ways to determine it. However, for scientific progress and research in this field, it is necessary to look for new scientific and professional solutions to the mentioned issue with effective implementation into practice. The mentioned contribution deals with new modern progressive methods of determining the capacity of the railway line using simulations and software applications. The main objective is to establish a methodology, specifically a heuristic procedure, in which specific partial steps of a new method of determining the capacity of railway infrastructure are defined. Subsequently, this new way of determining it is directly applied and explained on the specific railway line Bratislava–Komárno, which is located in southwestern Slovakia. The first part of the paper contains a theoretical framework and a brief explanation of the issue, including current used methods, as well as current scientific and professional manuscripts and papers that deal with this topic. Subsequently, the mentioned railway line is described, including the current operational problems arising on it due to insufficient current capacity. As part of the results, the proposal part is presented, including a universal heuristic procedure, which includes partial steps of the new methodology with application to the mentioned railway line. The discussions present its theoretical and practical benefits and topics for the further development of this issue. However, the most significant benefit will be the more effective identification of bottlenecks in railway operations, which will improve its smoothness and will have a significant impact on sustainable development and its aspects in the field of transport. Full article
Show Figures

Figure 1

29 pages, 1358 KiB  
Article
Exploring Behavioral Intentions and Sustainability Perspectives for the China–Laos High-Speed Rail Service Among Thai People: A Comparative Study of Urban and Rural Zones
by Thanapong Champahom, Dissakoon Chonsalasin, Kestsirin Theerathitichaipa, Fareeda Watcharamaisakul, Sajjakaj Jomnonkwao, Vatanavongs Ratanavaraha and Rattanaporn Kasemsri
Infrastructures 2025, 10(5), 116; https://doi.org/10.3390/infrastructures10050116 - 8 May 2025
Cited by 1 | Viewed by 2435
Abstract
The Belt and Road Initiative’s infrastructure development faces significant challenges in understanding and addressing the divergent perceptions between urban and rural populations, particularly regarding high-speed rail projects. This study investigates the behavioral intentions and sustainability perspectives regarding the China–Laos High-Speed Rail Service among [...] Read more.
The Belt and Road Initiative’s infrastructure development faces significant challenges in understanding and addressing the divergent perceptions between urban and rural populations, particularly regarding high-speed rail projects. This study investigates the behavioral intentions and sustainability perspectives regarding the China–Laos High-Speed Rail Service among Thai people, with particular focus on urban–rural differences. While the China–Laos railway became operational in December 2021, it is important to note that the high-speed rail extension into Thailand is not yet in operation and remains in the planning and development stage. Using survey data from 2866 respondents (1301 urban and 1565 rural) across 22 Thai provinces, this study employs structural equation modeling to examine relationships between perceived benefits, service quality, cultural factors, emotional aspects, and behavioral intentions. The findings reveal significant urban–rural disparities in infrastructure acceptance patterns. Urban residents demonstrate stronger relationships between perceived benefits and attitudes (β = 0.260) compared to rural residents (β = 0.170), while rural populations show substantially stronger responses to cultural factors (β = 0.365 vs. β = 0.309). Service quality more strongly influences behavioral intentions in rural areas (β = 0.154 vs. β = 0.138), suggesting varying priorities across geographical contexts. The study recommends implementing differentiated development strategies that address these urban–rural differences, including culturally sensitive rural engagement approaches and comprehensive service quality management systems. This research contributes to infrastructure development literature by empirically validating spatial heterogeneity in acceptance factors, extending theoretical frameworks on sustainability perceptions, and providing evidence-based guidance for managing urban–rural disparities in major infrastructure projects. Full article
Show Figures

Figure 1

24 pages, 1931 KiB  
Article
A Multi-Parameter Approach to Support Sustainable Hydraulic Risk Analysis for the Protection of Transportation Infrastructure: The Case Study of the Gargano Railways (Southern Italy)
by Ciro Apollonio, Gabriele Iemmolo, Maria Di Modugno, Marianna Apollonio, Andrea Petroselli, Fabio Recanatesi and Daniele Giannetta
Sustainability 2025, 17(9), 4151; https://doi.org/10.3390/su17094151 - 4 May 2025
Viewed by 693
Abstract
Transport networks are crucial for economic growth, yet their sustainability is increasingly threatened by natural hazards. Recent floods in Italy have highlighted the vulnerability of rail and road infrastructure, causing severe damage and economic losses. The Gargano Promontory in northern Apulia has experienced [...] Read more.
Transport networks are crucial for economic growth, yet their sustainability is increasingly threatened by natural hazards. Recent floods in Italy have highlighted the vulnerability of rail and road infrastructure, causing severe damage and economic losses. The Gargano Promontory in northern Apulia has experienced frequent hydrogeological disruptions over the past decade, significantly affecting bridges and the railway network managed by Ferrovie del Gargano s.r.l. (FdG). However, structural interventions are complex, time-consuming, costly, and involve certain risks. To enhance sustainability and comply with railway safety regulations, FdG has adopted non-structural measures to improve hydrogeological risk classification and management. Despite the prevalence of flood events, the existing literature often overlooks crucial technical aspects, which this study addresses. The HYD.RAIL (HYDraulic Risk Assessment for Infrastructure and Lane) research project aims to improve transport infrastructure resilience by refining hydraulic risk assessments and introducing new classification parameters. HYD.RAIL employs a multicriteria approach, integrating parameters defined in collaboration with railway professionals. This paper presents the initial framework, offering a methodology to identify, classify, and manage hydrogeological risks in transportation infrastructure. Compared to standard methods, which lack detailed risk classification, HYD.RAIL enables more precise flood risk mapping. For example, high-risk points were reduced from 37 to 6 locations on Line 1 and from 134 to 50 on Line 2 using HYD.RAIL. This approach enhances flood risk management efficiency, providing railway operators with a more accurate understanding of infrastructure vulnerabilities. Full article
(This article belongs to the Special Issue Urban Planning and Sustainable Land Use—2nd Edition)
Show Figures

Figure 1

18 pages, 4484 KiB  
Article
Feasibility Analysis of Monitoring Contact Wire Rupture in High-Speed Catenary Systems
by Andrea Collina, Antonietta Lo Conte and Giuseppe Bucca
Vibration 2025, 8(2), 22; https://doi.org/10.3390/vibration8020022 - 3 May 2025
Viewed by 620
Abstract
The rupture of the contact wire (CW) of a railway overhead contact line (OCL or catenary) is expected to be a rare event. However, when it occurs, and a pantograph transits under the already broken section of the CW, this can have catastrophic [...] Read more.
The rupture of the contact wire (CW) of a railway overhead contact line (OCL or catenary) is expected to be a rare event. However, when it occurs, and a pantograph transits under the already broken section of the CW, this can have catastrophic consequences for the pantograph which in turn can cause a further extension of the damaged portion on the OCL with a consequent disruption in the service and cause there to be a long time before the operating condition can be restored. Therefore, the prevention of such events through effective catenary monitoring is gaining significant attention. The purpose of this work is to investigate the feasibility of a monitoring system that can be installed at each end of an OCL section which is able to detect the occurrence of a broken CW event, sending an alert to the management traffic system, so as to stop the train traffic before the damaged catenary is reached by other trains. A nonlinear dynamic analysis is employed to model the OCL’s response following a simulated CW rupture and identify a set of variables that can be measured at the line’s extremities related to the occurrence of breakage in the CW. Several locations of the rupture of a CW section along the line are simulated to investigate the influence on the time pattern of the measured variables and consequently on the extraction of a signature. Finally, a proposed measurement setup is presented, combining accelerometers and displacement transducers, instead of the direct measurement of the axial load of the OCL conductors. Full article
(This article belongs to the Special Issue Railway Dynamics and Ground-Borne Vibrations)
Show Figures

Figure 1

20 pages, 16930 KiB  
Article
Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications
by Karl Lin, Shen-En Chen, Tiefu Zhao, Nicole L. Braxtan, Xiuhu Sun and Lynn Harris
Appl. Sci. 2025, 15(9), 4987; https://doi.org/10.3390/app15094987 - 30 Apr 2025
Viewed by 612
Abstract
Inductive power transfer (IPT) systems are transforming railway infrastructure by enabling efficient, wireless energy transmission for electric locomotives equipped with Li-ion batteries. This technology eliminates the need for overhead power lines and third rails, offering financial and operational advantages over conventional electric propulsion [...] Read more.
Inductive power transfer (IPT) systems are transforming railway infrastructure by enabling efficient, wireless energy transmission for electric locomotives equipped with Li-ion batteries. This technology eliminates the need for overhead power lines and third rails, offering financial and operational advantages over conventional electric propulsion systems. Despite its potential, IPT deployment in rail applications faces significant challenges, including the fragility of materials (i.e., ferrite and Litz wires), thermal management during high-power transfers, and electromagnetic interference (EMI) on the transmitter side. This study discusses several factors affecting IPT efficiency and introduces magnetic concrete as a durable and cost-effective material solution for IPT systems. Magnetic concrete combines soft ferrite powder with water and coarse aggregates to enhance magnetic functionality while maintaining structural strength comparable to conventional concrete. Its durability and optimized magnetic properties promote consistent power transfer efficiency, making it a viable alternative to traditional ferrite cores. A comparative study has been performed on non-magnetic and magnetic concrete (with 33% ferrite powder) using both permeability tests and finite element analysis (FEA). The FEA includes both thermal and electromagnetic simulations using Ansys Maxwell (v.16), revealing that magnetic concrete can improve temperature management and EMI mitigation, and the findings underscore its potential to revolutionize IPT technology by overcoming the limitations of traditional materials and enhancing durability, cost-efficiency, and power transfer efficiency. By addressing the challenges of fragility, thermal management, and shielding of the unique coil topology design presented, this study lays the groundwork for improving IPT infrastructure in sustainable and efficient rail transport systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

20 pages, 14942 KiB  
Article
Hybrid Energy Storage System for Regenerative Braking Utilization and Peak Power Decrease in 3 kV DC Railway Electrification System
by Adam Szeląg, Włodzimierz Jefimowski, Tadeusz Maciołek, Anatolii Nikitenko, Maciej Wieczorek and Mirosław Lewandowski
Electronics 2025, 14(9), 1752; https://doi.org/10.3390/electronics14091752 - 25 Apr 2025
Viewed by 601
Abstract
This paper proposes the sizing optimization method and energy management strategy for a stationary hybrid energy storage system dedicated to a DC traction power supply system. The hybrid energy storage system consists of two modules—a supercapacitor, mainly dedicated to regenerative energy utilization, and [...] Read more.
This paper proposes the sizing optimization method and energy management strategy for a stationary hybrid energy storage system dedicated to a DC traction power supply system. The hybrid energy storage system consists of two modules—a supercapacitor, mainly dedicated to regenerative energy utilization, and a Li-ion battery, aimed to peak power reduction. The sizing method and energy management strategy proposed in this paper aim to reduce the aging effect of lithium-ion batteries. It is shown that the parameters of both modules could be sized independently. The supercapacitor module parameters are sized based on the results of a simulation determining the regenerative power, resulting in limited catenary receptivity. The simulation model of the DC electrification system is validated by comparing the results of the simulation with the measurements of 15 min average power in a 24 h cycle as average values of one year. The battery module is sized based on the statistical data of 15 min substation power value occurrences. The battery energy capacity, its maximum discharge C-rate, and the conditions determining its operation are optimized to achieve the maximum ratio of annual income resulting from peak power reduction to annual operating cost resulting from the battery aging process and total life cycle. The case study prepared for a typical 3 kV DC substation with mixed railway traffic shows that peak power could be reduced by ~1 MW, giving a ~10-year payback period for battery module installation, while the energy consumption could be decreased by 1.9 MWh/24 h, giving a ~7.5-year payback period for supercapacitor module installation. The payback period of the whole energy storage system (ESS) is ~8.4 years. Full article
(This article belongs to the Special Issue Railway Traction Power Supply, 2nd Edition)
Show Figures

Figure 1

Back to TopTop