Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (257)

Search Parameters:
Keywords = rail control systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9954 KiB  
Article
Adaptive Continuous Non-Singular Terminal Sliding Mode Control for High-Pressure Common Rail Systems: Design and Experimental Validation
by Jie Zhang, Yinhui Yu, Sumin Wu, Wenjiang Zhu and Wenqian Liu
Processes 2025, 13(8), 2410; https://doi.org/10.3390/pr13082410 - 29 Jul 2025
Viewed by 186
Abstract
The High-Pressure Common Rail System (HPCRS) is designed based on fundamental hydrodynamic principles, after which this paper formally defines the key control challenges. The proposed continuous sliding mode control strategy is developed based on a non-singular terminal sliding mode framework, integrated with an [...] Read more.
The High-Pressure Common Rail System (HPCRS) is designed based on fundamental hydrodynamic principles, after which this paper formally defines the key control challenges. The proposed continuous sliding mode control strategy is developed based on a non-singular terminal sliding mode framework, integrated with an improved power reaching law. This design effectively eliminates chattering and achieves fast dynamic response with enhanced tracking precision. Subsequently, a bidirectional adaptive mechanism is integrated into the proposed control scheme to eliminate the necessity for a priori knowledge of unknown disturbances within the HPCRS. This mechanism enables real-time evaluation of the system’s state relative to a predefined detection region. To validate the effectiveness of the proposed strategy, experimental studies are conducted under three distinct operating conditions. The experimental results indicate that, compared with conventional rail pressure controllers, the proposed method achieves superior tracking accuracy, faster dynamic response, and improved disturbance rejection. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

37 pages, 1099 KiB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 290
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

25 pages, 8564 KiB  
Article
A Vision-Based Single-Sensor Approach for Identification and Localization of Unloading Hoppers
by Wuzhen Wang, Tianyu Ji, Qi Xu, Chunyi Su and Guangming Zhang
Sensors 2025, 25(14), 4330; https://doi.org/10.3390/s25144330 - 10 Jul 2025
Viewed by 322
Abstract
To promote the automation and intelligence of rail freight, the accurate identification and localization of bulk cargo unloading hoppers have become a key technical challenge. Under the technological wave driven by the deep integration of Industry 4.0 and artificial intelligence, the bulk cargo [...] Read more.
To promote the automation and intelligence of rail freight, the accurate identification and localization of bulk cargo unloading hoppers have become a key technical challenge. Under the technological wave driven by the deep integration of Industry 4.0 and artificial intelligence, the bulk cargo unloading process is undergoing a significant transformation from manual operation to intelligent control. In response to this demand, this paper proposes a vision-based 3D localization system for unloading hoppers, which adopts a single visual sensor architecture and integrates three core modules: object detection, corner extraction, and 3D localization. Firstly, a lightweight hybrid attention mechanism is incorporated into the YOLOv5 network to enable edge deployment and enhance the detection accuracy of unloading hoppers in complex industrial scenarios. Secondly, an image processing approach combining depth consistency constraint (DCC) and geometric structure constraints is designed to achieve sub-pixel level extraction of key corner points. Finally, a real-time 3D localization method is realized by integrating corner-based initialization with an RGB-D SLAM tracking mechanism. Experimental results demonstrate that the proposed system achieves an average localization accuracy of 97.07% under challenging working conditions. This system effectively meets the comprehensive requirements of automation, intelligence, and high precision in railway bulk cargo unloading processes, and exhibits strong engineering practicality and application potential. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

18 pages, 16108 KiB  
Article
Development of roCaGo for Forest Observation and Forestry Support
by Yoshinori Kiga, Yuzuki Sugasawa, Takumi Sakai, Takuma Nemoto and Masami Iwase
Forests 2025, 16(7), 1067; https://doi.org/10.3390/f16071067 - 26 Jun 2025
Viewed by 271
Abstract
This study addresses the ’last-mile’ transportation challenges that arise in steep and narrow forest terrain by proposing a novel robotic palanquin system called roCaGo. It is inspired by the mechanical principles of two-wheel-steering and two-wheel-drive (2WS/2WD) bicycles. The roCaGo system integrates front- and [...] Read more.
This study addresses the ’last-mile’ transportation challenges that arise in steep and narrow forest terrain by proposing a novel robotic palanquin system called roCaGo. It is inspired by the mechanical principles of two-wheel-steering and two-wheel-drive (2WS/2WD) bicycles. The roCaGo system integrates front- and rear-wheel-drive mechanisms, as well as a central suspension structure for carrying loads. Unlike conventional forestry machinery, which requires wide, well-maintained roads or permanent rail systems, the roCaGo system enables flexible, operator-assisted transport along narrow, unprepared mountain paths. A dynamic model of the system was developed to design a stabilization control strategy, enabling roCaGo to maintain transport stability and assist the operator during navigation. Numerical simulations and preliminary physical experiments demonstrate its effectiveness in challenging forest environments. Furthermore, the applicability of roCaGo has been extended to include use as a mobile third-person viewpoint platform to support the remote operation of existing forestry equipment; specifically the LV800crawler vehicle equipped with a front-mounted mulcher. Field tests involving LiDAR sensors mounted on roCaGo were conducted to verify its ability to capture the environmental data necessary for non-line-of-sight teleoperation. The results show that roCaGo is a promising solution for improving labor efficiency and ensuring operator safety in forest logistics and remote-controlled forestry operations. Full article
Show Figures

Figure 1

23 pages, 8211 KiB  
Article
An Experimental Study of Wheel–Rail Creep Curves Under Dry Contact Conditions Using V-Track
by Gokul J. Krishnan, Jan Moraal, Zili Li and Zhen Yang
Lubricants 2025, 13(7), 287; https://doi.org/10.3390/lubricants13070287 - 26 Jun 2025
Viewed by 458
Abstract
Friction behaviour at the wheel–rail interface is of critical importance for railway operations and maintenance and is generally characterised by creep curves. The V-Track test rig was used in this study to measure both the lateral and longitudinal creep curves with uncontaminated dry [...] Read more.
Friction behaviour at the wheel–rail interface is of critical importance for railway operations and maintenance and is generally characterised by creep curves. The V-Track test rig was used in this study to measure both the lateral and longitudinal creep curves with uncontaminated dry interface conditions, utilising contact pressures representative of operational railway wheel–rail systems. The novelties of this study are threefold. 1. With proper representations of train/track components, the V-Track tests revealed the effects of structural dynamics on measuring wheel–rail creep curves in real life. 2. Pure lateral and longitudinal creepage conditions were produced with two distinct experimental principles—displacement- and force-controlled—on the V-Track, i.e., by carefully controlling the angle of attack and the traction/braking torque, respectively, and thus the coefficient of friction from lateral and longitudinal creep curves measured on the same platform could be cross-checked. 3. The uncertainties in the measured creep curves were analysed, which was rarely addressed in previous studies on creep curve measurements. In addition, the measured creep curves were compared against the theoretical creep curves obtained from Kalker’s CONTACT. The influence of wheel rolling speed and torque direction on the creep curve characteristics was then investigated. The measurement results and findings demonstrate the reliability of the V-Track to measure wheel–rail creep curves and study the wheel–rail frictional rolling contact. Full article
(This article belongs to the Special Issue Tribology in Railway Engineering)
Show Figures

Figure 1

30 pages, 7377 KiB  
Article
Gas–Solid Coupling Dynamic Modeling and Transverse Vibration Suppression for Ultra-High-Speed Elevator
by Jiacheng Jiang, Chengjin Qin, Pengcheng Xia and Chengliang Liu
Actuators 2025, 14(7), 319; https://doi.org/10.3390/act14070319 - 25 Jun 2025
Viewed by 226
Abstract
When in operation, ultra-high-speed elevators encounter transverse vibrations due to uneven guide rails and airflow disturbances, which can greatly undermine passenger comfort. To alleviate these adverse effects and boost passenger comfort, a gas–solid coupling dynamic model for ultra-high-speed elevator cars is constructed, and [...] Read more.
When in operation, ultra-high-speed elevators encounter transverse vibrations due to uneven guide rails and airflow disturbances, which can greatly undermine passenger comfort. To alleviate these adverse effects and boost passenger comfort, a gas–solid coupling dynamic model for ultra-high-speed elevator cars is constructed, and a vibration suppression approach is proposed. To start with, the flow field model of the elevator car-shaft under different motion states is simulated, and the calculation formula of air excitation is derived. Next, by incorporating the flow field excitation into the four degrees of freedom dynamic model of the separation between the car and the frame, a transverse vibration model of the elevator car based on gas–solid coupling is established. Finally, an LQR controller is used to suppress elevator transverse vibration, and a multi-objective optimization algorithm is applied to optimize the parameters of the weight matrix to obtain the optimal solution of the LQR controller. A set of controllers with moderate control cost and system performance meeting the requirements was selected, and the effectiveness of the controller was verified. Compared with other methods, the proposed LQR-based method has greater advantages in suppressing the transverse vibration of ultra-high-speed elevators. This work provides an effective solution for enhancing the ride comfort of ultra-high-speed elevators and holds potential for application in the vibration control of high-speed transportation systems. Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
Show Figures

Figure 1

13 pages, 2706 KiB  
Article
In Situ Contact-Separation TENG for High-Speed Rail Wind Monitoring
by Guangzheng Wang, Depeng Fu, Yuankun Li and Xiaoxiong Wang
Nanomaterials 2025, 15(11), 839; https://doi.org/10.3390/nano15110839 - 30 May 2025
Viewed by 435
Abstract
Triboelectric nanogenerators have attracted extensive attention as they can complete sensing during energy conversion, triggering a series of self-powered designs. Traditional TENG bipolar independent fabrication technology requires secondary motion control, which limits its application scenarios. In this work, we propose a flag-type TENG [...] Read more.
Triboelectric nanogenerators have attracted extensive attention as they can complete sensing during energy conversion, triggering a series of self-powered designs. Traditional TENG bipolar independent fabrication technology requires secondary motion control, which limits its application scenarios. In this work, we propose a flag-type TENG prepared using in situ electrospinning technology, in which the connecting region is obtained by electrospinning deposition of PVDF on nylon as the receiving electrode. The active area is isolated with silicone oil paper. After electrospinning, the silicone oil paper was removed, and the distance between the nylon and PVDF is far beyond the van der Waals range. Thus, contact separation can be effectively carried out under the action of wind. The device has been proven to be able to be used for monitoring wind conditions at high-speed rail stations and enables completely self-powered monitoring of the wind level using self-powered LED coding. The device no longer relies on additional batteries or wires to work, providing additional ideas for future self-powered system design. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

13 pages, 3176 KiB  
Communication
The Design of a Closed-Loop Piezoelectric Friction–Inertia XY Positioning Platform with a Centimeter Travel Range
by Zheng-Rong Guo, Hong-Sheng Tan, Chin-Shun Chang, Ing-Shouh Hwang, En-Te Hwu and Hsien-Shun Liao
Actuators 2025, 14(6), 265; https://doi.org/10.3390/act14060265 - 28 May 2025
Viewed by 392
Abstract
Friction–inertia piezoelectric actuators can perform long-range positioning with nanometer resolution. However, friction and inertia are not easy to control and can influence the actuator’s performance. The present study proposes a friction–inertia-type piezoelectric XY positioning platform with a simple structure, which uses magnets to [...] Read more.
Friction–inertia piezoelectric actuators can perform long-range positioning with nanometer resolution. However, friction and inertia are not easy to control and can influence the actuator’s performance. The present study proposes a friction–inertia-type piezoelectric XY positioning platform with a simple structure, which uses magnets to provide stable normal force and friction. Sliders and rails were used to provide long travel ranges of 80 mm and 70 mm in the X and Y directions, respectively. Compact optical encoders were installed on the platform to enhance the positioning accuracy. With a three-phase positioning strategy involving both stepping and closed-loop methods, the system achieved a positioning accuracy of 3 µm (0.03%) and a repeatability of 325 nm (0.0033%) over a 10 mm long travel range. The positioning resolution was 4.7 nm, which was primarily limited by optical encoder noise under the closed-loop control mode. An astigmatic optical profilometer was used for the wide-range and high-resolution surface imaging of the XY positioning platform. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

28 pages, 3106 KiB  
Article
Integrated Control Strategies of EGR System and Fuel Injection Pressure to Reduce Emissions and Fuel Consumption in a DI Engine Fueled with Diesel-WCOME Blends and Neat Biodiesel
by Giorgio Zamboni and Massimo Capobianco
Energies 2025, 18(11), 2791; https://doi.org/10.3390/en18112791 - 27 May 2025
Viewed by 373
Abstract
A wide experimental campaign was developed on an automotive turbocharged diesel engine, using two blends between diesel oil and waste cooking oil methyl esters (WCOME) and neat biodiesel. A conventional B7 diesel oil was considered as a reference fuel. The two blends, respectively, [...] Read more.
A wide experimental campaign was developed on an automotive turbocharged diesel engine, using two blends between diesel oil and waste cooking oil methyl esters (WCOME) and neat biodiesel. A conventional B7 diesel oil was considered as a reference fuel. The two blends, respectively, included 40 and 70% of WCOME, on a volumetric basis. The influence of biodiesel was analyzed by testing the engine in two part-load operating conditions, applying proper control strategies to the exhaust gas recirculation (EGR) circuit and rail pressure, to assess the interactions between the engine management and the tested fuels. The variable nozzle turbine (VNT) was controlled to obtain a constant level of intake pressure in the two experimental points. Referring to biodiesel effects at constant operating mode, higher WCOME content generally resulted in better efficiency and soot emission, while NOX emission was negatively affected. EGR activation allowed for limited NO formation but with penalties in soot emission. Furthermore, interactions between the EGR circuit and turbocharger operations and control led to higher fuel consumption and lower efficiency. Finally, the increase in rail pressure corresponded to better soot emission and penalties in NOX emission. Combining all these effects, the selection of EGR rate and rail pressure values higher than the standard levels resulted in better efficiency, NOX, and soot emissions when comparing blends and neat biodiesel to conventional B7, granting advantages not only with regard to greenhouse gas emissions. Combustion parameters were also assessed, showing that combustion stability and combustion noise were not negatively affected by biodiesel use. Combustion duration was reduced when using WCOME and its blend, even if the center of combustion was slightly shifted along the expansion stroke. The main contribution of this investigation to the scientific and technical knowledge on biodiesel application to internal combustion engines is related to the development of tests on diesel–biodiesel blends with high WCOME content or neat WCOME, identifying their effects on NOX emissions, the definition of integrated strategies of HP EGR system, fuel rail pressure, and VNT for the simultaneous reduction in NOX and soot emissions, and the detailed assessment of the influence of biodiesel on a wide range of combustion parameters. Full article
(This article belongs to the Special Issue Performance and Emissions of Advanced Fuels in Combustion Engines)
Show Figures

Figure 1

19 pages, 7772 KiB  
Article
Influence of Steel Oxidation on the Behavior of the Wheel–Rail Electrical Contact in Dynamic Conditions
by Luna Haydar, Florent Loete, Frédéric Houzé, Karim Slimani, Fabien Guiche and Philippe Testé
Appl. Sci. 2025, 15(10), 5760; https://doi.org/10.3390/app15105760 - 21 May 2025
Viewed by 330
Abstract
The safe management of traffic on rail networks requires that trains can be reliably located at all times. In many countries, this is achieved by electrically identifying their presence using ‘track circuits’ at regular intervals along each track: these devices detect when the [...] Read more.
The safe management of traffic on rail networks requires that trains can be reliably located at all times. In many countries, this is achieved by electrically identifying their presence using ‘track circuits’ at regular intervals along each track: these devices detect when the wheels and axles of a train short-circuit the two rails (they are said to ‘shunt’ them) and the information is passed on to the signaling system. The quality of the electrical contacts between the rails and the wheels obviously plays a decisive role in the correct operation of this detection principle. The occurrence of high wheel–rail contact resistances can lead to malfunctions, known as ‘deshunting’, in which the system is unable for a certain period of time to conclude whether a train is present or absent on a section of track. This type of potentially risky event must obviously be avoided at all costs. In this article, we present the second part of a study devoted to the degradation of the wheel–rail contact resulting from steel oxidation, using a scaled-down home-made test bench that reproduces the real contact in the laboratory under controlled conditions. Following on from the first part, which dealt with the static characterization of the contact studied in the direct current, we are now tackling its dynamic characterization (rolling contact) under AC electrical conditions close to those of a track circuit. These new investigations again involve different degrees of rail oxidation, and analyze the influence of parameters such as contact force, speed, and current intensity. Full article
Show Figures

Figure 1

15 pages, 4479 KiB  
Article
Impact of Ethanol–Diesel Blend on CI Engine Performance and Emissions
by Mieczysław Sikora, Piotr Orliński and Mateusz Bednarski
Energies 2025, 18(9), 2277; https://doi.org/10.3390/en18092277 - 29 Apr 2025
Viewed by 440
Abstract
The aim of this study was to assess the impact of adding ethanol to diesel fuel on particulate matter (PM) and nitrogen oxides (NOx) emissions in the Perkins 854E compression-ignition engine. Tests were carried out under European Stationary Cycle (ESC) conditions using the [...] Read more.
The aim of this study was to assess the impact of adding ethanol to diesel fuel on particulate matter (PM) and nitrogen oxides (NOx) emissions in the Perkins 854E compression-ignition engine. Tests were carried out under European Stationary Cycle (ESC) conditions using the Horiba Mexa 1230 PM analyzer (HORIBA, Ltd., Kyoto, Japan) for particulate measurement and the AVL CEB II analyzer (AVL, Graz, Austria) for NOx concentration. The engine under investigation featured direct injection, turbocharging, a common-rail fuel supply system, and complied with the Stage IIIB/Tier 4 emission standard. Two types of fuel were used: conventional diesel fuel (DF) and diesel with a 10% ethanol additive by volume (DFE10). In addition to emissions measurements, key engine performance parameters, such as torque, effective power, and fuel consumption, were analyzed. The ESC test was specifically chosen to isolate the influence of the fuel’s properties by avoiding the effects of changes in combustion control strategies. Due to the lower calorific value of DFE10 compared to DF, a slight increase in fuel consumption was observed under certain operating conditions. Nevertheless, overall engine performance remained largely unchanged. The test results showed that the use of DFE10 led to a significant 44% reduction in particulate matter emissions and a moderate 2.2% decrease in NOx emissions compared to conventional diesel fuel. These findings highlight the potential of ethanol as a diesel fuel additive to reduce harmful exhaust emissions without negatively affecting the performance of modern diesel engines. Full article
Show Figures

Figure 1

19 pages, 1900 KiB  
Article
An Analysis of the Synergistic Effects of Air Pollutant Reduction and Carbon Mitigation in Major Emission Reduction Policies in China’s Transportation Sector
by Jingan Zhu, Ping Jiang and Yuanxiang Chen
Energies 2025, 18(8), 1980; https://doi.org/10.3390/en18081980 - 12 Apr 2025
Viewed by 488
Abstract
As of 2023, China’s transportation energy carbon emissions account for over 10%, which has a significant impact on achieving “dual carbon” goals. China has successively issued various policies to address pollution emissions in the transportation industry. This study mainly analyzes the synergistic effects [...] Read more.
As of 2023, China’s transportation energy carbon emissions account for over 10%, which has a significant impact on achieving “dual carbon” goals. China has successively issued various policies to address pollution emissions in the transportation industry. This study mainly analyzes the synergistic effects of pollution reduction and carbon reduction measures implemented in this industry. We selected 2023 as the base year, focused on promoting new energy vehicles (NEVs), advocating bus transit (ABT), and advancing rail transit (ART) as the three major emission reduction policies, and analyzed their synergistic effects on air pollutant control and greenhouse gas emission reduction. Based on national scale data on driving conditions, energy consumption, and emission factors, the synergistic emission reductions in greenhouse gases and air pollutants brought about by the three policies were first calculated. Then, using the coordinate system of synergistic control effects, cross elasticity analysis of pollutants, and normalization evaluation methods, the multi pollutant synergistic control capabilities of each policy were quantified. Quantitative results revealed that the NEV substitution policy achieved a CO2 reduction of 100.966 million tons in 2023, alongside reductions of 1.0196 million tons (CO), 59,506 tons (NOx), 103,500 tons (NMHC), 6266 tons (PM10), and 3071 tons (SO2). Based on the APeq ranking, its comprehensive benefits (APeq = 166,734.52) significantly outperform ART (APeq = 97,414.89) and ABT (APeq = 19,796.80). The main research conclusion shows that replacing private gasoline cars with new energy vehicles can have a synergistic emission reduction effect on all five types of air pollutants and greenhouse gases involved in this study, with a positive synergistic effect. Moreover, the policy development priority is relatively better based on the synergistic emission reduction equivalent. Both buses and rail transit have not brought about SO2 emission reduction, nor have they had a positive synergistic effect on SO2 and CO2 emission reduction. On this basis, buses also contribute to NOx emissions. For other air pollutants, both rail transit and buses can have a synergistic effect of reducing pollution and carbon emissions. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

95 pages, 2088 KiB  
Review
Integration of Multi-Agent Systems and Artificial Intelligence in Self-Healing Subway Power Supply Systems: Advancements in Fault Diagnosis, Isolation, and Recovery
by Jianbing Feng, Tao Yu, Kuozhen Zhang and Lefeng Cheng
Processes 2025, 13(4), 1144; https://doi.org/10.3390/pr13041144 - 10 Apr 2025
Cited by 2 | Viewed by 2516
Abstract
The subway power supply system, as a critical component of urban rail transit infrastructure, plays a pivotal role in ensuring operational efficiency and safety. However, current systems remain heavily dependent on manual interventions for fault diagnosis and recovery, limiting their ability to meet [...] Read more.
The subway power supply system, as a critical component of urban rail transit infrastructure, plays a pivotal role in ensuring operational efficiency and safety. However, current systems remain heavily dependent on manual interventions for fault diagnosis and recovery, limiting their ability to meet the growing demand for automation and efficiency in modern urban environments. While the concept of “self-healing” has been successfully implemented in power grids and distribution networks, adapting these technologies to subway power systems presents distinct challenges. This review introduces an innovative approach by integrating multi-agent systems (MASs) with advanced artificial intelligence (AI) algorithms, focusing on their potential to create fully autonomous self-healing control architectures for subway power networks. The novel contribution of this review lies in its hybrid model, which combines MASs with the IEC 61850 communication standard to develop fault diagnosis, isolation, and recovery mechanisms specifically tailored for subway systems. Unlike traditional methods, which rely on centralized control, the proposed approach leverages distributed decision-making capabilities within MASs, enhancing fault detection accuracy, speed, and system resilience. Through a thorough review of the state of the art in self-healing technologies, this work demonstrates the unique benefits of applying MASs and AI to address the specific challenges of subway power systems, offering significant advancement over existing methodologies in the field. Full article
Show Figures

Figure 1

23 pages, 10682 KiB  
Article
An Improved Variable Step-Size Maximum Power Point Tracking Control Strategy with the Mutual Inductance Identification for Series–Series Wireless Power Transfer Systems
by Wenmei Hao, Cai Sun and Yi Hao
Symmetry 2025, 17(4), 564; https://doi.org/10.3390/sym17040564 - 8 Apr 2025
Viewed by 401
Abstract
Series–series (SS) wireless power transfer (WPT) systems are used in many applications because of their simple circuit structure. Compared with higher-order complex compensation topology, they are suitable for more demanding applications, such as rail trams with high power requirements but limited space for [...] Read more.
Series–series (SS) wireless power transfer (WPT) systems are used in many applications because of their simple circuit structure. Compared with higher-order complex compensation topology, they are suitable for more demanding applications, such as rail trams with high power requirements but limited space for the coupling mechanism. However, the characteristics of their voltage source also put forward higher requirements for the control strategy. Improving the dynamic response performance of an SS compensation WPT system without any communication between the primary and secondary sides is the key issue. This paper proposes an improved variable step-size maximum power point tracking control strategy with the mutual inductance identification. Compared with the conventional P&O control, it can achieve a faster response and more accurate tracking, which are very important to the WPT for rail transit. A method of the mutual inductance identification based on the weight of parameter sensitivity is proposed. Based on the results of the identified mutual inductance, to make the system transfer the maximum power, the duty ratio of the receiver is adjusted to approach the corresponding equivalent load. To deal with the change of the mutual inductance, a condition of terminating the searching process of the maximum power point and re-identifying the mutual inductance is proposed. A simulation and experimental platform is built for verification. The results show that the proposed control strategy can quickly respond to the variation of the mutual inductance and load and achieve accurate maximum power point location, which improves the performance of the SS compensation WPT system. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

28 pages, 5030 KiB  
Review
Spatio-Temporal Graphs in Transportation: Challenges, Optimization, and Prospects
by Aleksandr Rakhmangulov, Nikita Osintsev and Pavel Mishkurov
Systems 2025, 13(4), 263; https://doi.org/10.3390/systems13040263 - 8 Apr 2025
Viewed by 1224
Abstract
Intelligent and information systems in transportation record and accumulate large volumes of raw data on dynamic transportation processes. However, these data are not fully utilized for forecasting, real-time planning, and transportation management. Spatio-temporal graphs allow describing simultaneously both the structure of transportation systems [...] Read more.
Intelligent and information systems in transportation record and accumulate large volumes of raw data on dynamic transportation processes. However, these data are not fully utilized for forecasting, real-time planning, and transportation management. Spatio-temporal graphs allow describing simultaneously both the structure of transportation systems of different modes of transportation and the dynamics of transportation flows. Optimization of such graphs makes it possible to justify management decisions in real time, as well as to forecast the parameters of traffic flows and transportation processes. The purpose of the study is to identify trends in the use of spatio-temporal graphs for solving various problems in transportation, as well as the most common methods of optimization of such graphs. The sample papers studied include 114 publications from the Scopus database over 25 years, from 1999 to 2024. First, a bibliometric analysis was conducted to establish the increase in the number of publications, journals, countries, institutions, subject areas, articles, authors, and keyword matches, to understand the amount of literature generated. Secondly, a literature review was conducted based on content analysis to predict future research directions in the field. We have found that the development of deep learning methods and approaches for designing graph neural networks based on spatio-temporal graphs is a promising direction. Such methods are mostly used to solve the tasks of real-time control of urban transportation systems. There are fewer publications in areas that require in-depth knowledge of transportation technology, such as air, sea, and rail transportation. This study contributes to the expansion of scientific knowledge about methods of spatio-temporal optimization of transport systems based on bibliometric analysis. Full article
(This article belongs to the Special Issue Modeling and Optimization of Transportation and Logistics System)
Show Figures

Figure 1

Back to TopTop