The Design of a Closed-Loop Piezoelectric Friction–Inertia XY Positioning Platform with a Centimeter Travel Range
Abstract
:1. Introduction
2. Instrumentation
2.1. Mechanical Design of XY Positioning Platform
- Thermal epoxy (EPO-TEK H74, Epoxy Technology, Billerica, MA, USA) was applied to the contact surfaces between the aluminum frame, piezoelectric stack, and magnets;
- The aluminum frame was mounted onto the slider and rail;
- The piezoelectric stack and magnets on the rail were carefully aligned, and a clamping screw was used to secure their positions temporarily;
- The aluminum frame was removed from the slider and rail;
- The aluminum frame was heated on a hot plate at approximately 100 °C for 25 min to cure the thermal epoxy;
- The aluminum frame was reinstalled onto the slider and rail;
- The clamping screw was removed, and the adjustable screw was used to apply a suitable preload to the piezoelectric stack.
2.2. System Configuration and Test Setup
2.3. Positioning Strategy
3. Results and Discussion
3.1. Reciprocating Motion Driven by Triangular Waveform
3.2. Stepping Motion Driven by Sawtooth Waveform
3.3. Long-Range Positioning Using Three-Phase Strategy
3.4. Optical Profilometer Imaging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, S. Review on piezoelectric, ultrasonic, and magnetoelectric actuators. J. Adv. Dielectr. 2012, 2, 1230001. [Google Scholar] [CrossRef]
- Uchino, K. Piezoelectric actuators 2006. J. Electroceram. 2007, 20, 301–311. [Google Scholar] [CrossRef]
- Marchesi, A.; Umeda, K.; Komekawa, T.; Matsubara, T.; Flechsig, H.; Ando, T.; Watanabe, S.; Kodera, N.; Franz, C.M. An ultra-wide scanner for large-area high-speed atomic force microscopy with megapixel resolution. Sci. Rep. 2021, 11, 13003. [Google Scholar] [CrossRef] [PubMed]
- Yong, Y.K.; Moheimani, S.O.R. A compact XYZ scanner for fast atomic force microscopy in constant force contact mode. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2010), Montreal, QC, Canada, 6–9 July 2010; pp. 225–230. [Google Scholar]
- Liao, H.-S.; Cheng, S.-H.; Hwu, E.-T. Development of a Resonant Scanner to Improve the Imaging Rate of Astigmatic Optical Profilometers. IEEE/ASME Trans. Mechatron. 2021, 26, 1172–1177. [Google Scholar] [CrossRef]
- Lanzano, L.; Gratton, E. Orbital Single Particle Tracking on a Commercial Confocal Microscope Using Piezoelectric Stage Feedback. Methods Appl. Fluoresc. 2014, 2, 025001. [Google Scholar] [CrossRef]
- Wu, J.-W.; Liu, W.-C.; Fu, L.-C. Novel Vertical Scanning Algorithm with Advanced Control to Increase Range and Accuracy of Differential Confocal Microscopy. IEEE Trans. Instrum. Meas. 2022, 71, 5013510. [Google Scholar] [CrossRef]
- Song, H.; Fraanje, R.; Schitter, G.; Vdovin, G.; Verhaegen, M. Controller Design for a High-Sampling-Rate Closed-Loop Adaptive Optics System with Piezo-Driven Deformable Mirror. Eur. J. Control 2011, 17, 290–301. [Google Scholar] [CrossRef]
- Doret, S.C. Simple, Low-Noise Piezo Driver with Feed-Forward for Broad Tuning of External Cavity Diode Lasers. Rev. Sci. Instrum. 2018, 89, 023102. [Google Scholar] [CrossRef]
- Syahputra, H.P.; Ko, T.J.; Chung, B.M. Development of 2-Axis Hybrid Positioning System for Precision Contouring on Micro-Milling Operation. Int. J. Mech. Eng. Educ. 2014, 28, 691–697. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Gu, Y.; Lin, J.; Lu, M.; Xu, Z.; Fu, B. Development of Piezo-Actuated Two-Degree-of-Freedom Fast Tool Servo System. Micromachines 2019, 10, 337. [Google Scholar] [CrossRef]
- Muraoka, M.; Sanada, S. Displacement amplifier for piezoelectric actuator based on honeycomb link mechanism. Sens. Actuators A Phys. 2010, 157, 84–90. [Google Scholar] [CrossRef]
- Ouyang, P.R.; Zhang, W.J.; Gupta, M.M. A new compliant mechanical amplifier based on a symmetric five-bar topology. J. Mech. Des. 2008, 130, 104501. [Google Scholar] [CrossRef]
- Muhith, S.; Upadhya, A.R.; Navin, K.P.; Kulkarni, S.M.; Rao, M. Recent trends in piezoelectric actuators for precision motion and their applications: A review. Smart Mater. Struct. 2021, 30, 013002. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, X.; Wen, Z.; Ren, J.; Liu, P. A novel flexure-based vertical nanopositioning stage with large travel range. Rev. Sci. Instrum. 2015, 86, 105112. [Google Scholar] [CrossRef]
- Choi, S.B.; Han, S.S.; Han, Y.M.; Thompson, B.S. A magnification device for precision mechanisms featuring piezoactuators and flexure hinges: Design and experimental validation. Mech. Mach. Theory 2007, 42, 1184–1198. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, D.-J.; Carman, G.P. Mesoscale Actuator Device: Micro Interlocking Mechanism to Transfer Macro Load. Sens. Actuators A Phys. 1999, 73, 30–36. [Google Scholar] [CrossRef]
- Tian, X.; Quan, Q.; Wang, L.; Su, Q. An Inchworm Type Piezoelectric Actuator Working in Resonant State. IEEE Access 2018, 6, 18975–18983. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Jiang, J.; Luo, T. Development of a Novel Piezoelectric Actuator Based on Stick-Slip Principle by Using Asymmetric Constraint. Micromachines 2023, 14, 1140. [Google Scholar] [CrossRef]
- Wan, N.; Wen, J.; Hu, Y.; Kan, J.; Li, J. A parasitic type piezoelectric actuator with an asymmetrical flexure hinge mechanism. Microsyst. Technol. 2019, 26, 917–924. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Y.; Sun, Z.; Yu, H. A Novel Stick–Slip Piezoelectric Actuator Based on a Triangular Compliant Driving Mechanism. IEEE Trans. Ind. Electron. 2019, 66, 5374–5382. [Google Scholar] [CrossRef]
- Cheng, T.; He, M.; Li, H.; Lu, X.; Zhao, H.; Gao, H. A Novel Trapezoid-Type Stick–Slip Piezoelectric Linear Actuator Using Right Circular Flexure Hinge Mechanism. IEEE Trans. Ind. Electron. 2017, 64, 5545–5552. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, H.; Dong, J. A stick-slip piezoelectric actuator with measurable contact force. Mech. Syst. Signal Process. 2020, 144, 106881. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Zhao, H.; Shao, M.; Hou, P.; Xu, X. Design, Analysis and Experimental Performance of a Bionic Piezoelectric Rotary Actuator. Smart Mater. Struct. 2015, 24, 06500. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Y.; Xu, Z.; Li, X.; Wang, K. Achieving High Consistency in Forward and Reverse Motions of Stick-Slip Piezoelectric Actuator by a Symmetrical Structure and Optimized Installation Method. Microsyst. Technol. 2023, 29, 1343–1355. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, H.; Yang, Z.; Mi, J.; Fan, Z.; Wan, S.; Shi, C.; Ma, Z. A Novel Driving Principle by Means of the Parasitic Motion of the Microgripper and Its Preliminary Application in the Design of the Linear Actuator. Rev. Sci. Instrum. 2012, 83, 055002. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Gao, J.; Lu, T.; Zhou, L.; Zhang, J.; Li, X.; Tian, H. A three-legged stick-slip piezoelectric actuator inspired by haystack unloading device and its driving method. Results Eng. 2025, 26, 105146. [Google Scholar] [CrossRef]
- Koc, B.; Delibas, B. Impact force analysis in inertia-type piezoelectric motors. Actuators 2023, 12, 52. [Google Scholar] [CrossRef]
- Delibas, B.; Koc, B. Single crystal piezoelectric motor operating with both inertia and ultrasonic resonance drives. Ultrasonics 2024, 136, 107140. [Google Scholar] [CrossRef]
- Naz, S.; Xu, T.-B. A comprehensive review of piezoelectric ultrasonic motors: Classifications, characterization, fabrication, applications, and future challenges. Micromachines 2024, 15, 1170. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Morita, T. Stepping piezoelectric actuators with large working stroke for nano-positioning systems: A review. Sensors Actuators A Phys. 2019, 292, 39–51. [Google Scholar] [CrossRef]
- Peng, Y.; Peng, Y.; Gu, X.; Wang, J.; Yu, H. A review of long range piezoelectric motors using frequency leveraged method. Sensors Actuators A Phys. 2015, 235, 240–255. [Google Scholar] [CrossRef]
- Ma, L.; Xiao, J.; Zhou, S.; Sun, L. A Piezoelectric Inchworm Actuator of Linear Type Using Symmetrical Lever Amplification. Proc. Inst. Mech. Eng. Part N 2014, 229, 172–179. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, C.; Xiao, J.; Wang, K. Design and Analysis of a Piezoelectric Inchworm Actuator. J. Microbio. Robot. 2014, 9, 11–21. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Adachi, K.; Ishimine, Y.; Kato, K. Wear mode control of drive tip of ultrasonic motor for precision positioning. Wear 2004, 256, 145–152. [Google Scholar] [CrossRef]
- Lv, Q.; Yao, Z.; Jin, Y.; Liu, B. Wear evaluation of a linear piezoelectric ultrasonic motor considering temperature effect. Ultrasonics 2022, 126, 106822. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.; Zhang, Y.; Cao, Q.; Wang, C.; Chen, Z.; Gong, G.; Yang, H.; Han, D. An Ultradurable Piezoelectric Inertia Actuator via Wear-Adaptive Mechanism. IEEE Trans. Ind. Electron. 2025, Early Access. [Google Scholar] [CrossRef]
- Tang, J.; Wei, J.; Wang, Y.; Xu, Z.; Huang, H. A Novel Rotation-Structure Based Stick-Slip Piezoelectric Actuator with High Consistency in Forward and Reverse Motions. Actuators 2021, 10, 189. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Wang, K.; Liang, T.; Dong, J.; Huang, H. A stick–slip piezoelectric actuator with high consistency in forward and reverse motions. Rev. Sci. Instrum. 2020, 91, 105005. [Google Scholar] [CrossRef]
- Zhong, B.; Zhu, J.; Jin, Z.; He, H.; Wang, Z.; Sun, L. A large thrust trans-scale precision positioning stage based on the inertial stick–slip driving. Microsyst. Technol. 2019, 25, 3713–3721. [Google Scholar] [CrossRef]
- Fan, K.; Shi, R.; Feng, Z. IDM-Assisted Capacitive Displacement Sensor for Large-Range, High-Precision Positioning Systems. IEEE Trans. Ind. Electron. 2024, 71, 8047–8057. [Google Scholar] [CrossRef]
- Li, J.; Zhou, X.; Zhao, H.; Shao, M.; Li, N.; Zhang, S.; Du, Y. Development of a Novel Parasitic-Type Piezoelectric Actuator. IEEE/ASME Trans. Mechatron. 2017, 22, 541–550. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, Y.; Zhang, D.; Wang, T.; Wu, M. A novel stick-slip based linear actuator using bi-directional motion of micropositioner. Mech. Syst. Signal Process. 2019, 128, 37–49. [Google Scholar] [CrossRef]
- Chang, Q.; Liu, Y.; Deng, J.; Zhang, S.; Chen, W. Design of a precise linear-rotary positioning stage for optical focusing based on the stick-slip mechanism. Mech. Syst. Signal Process. 2022, 165, 108398. [Google Scholar] [CrossRef]
- Tian, X.; Chen, W.; Zhang, B.; Liu, Y. Restraining the backward motion of a piezoelectric stick-slip actuator with a passive damping foot. IEEE Trans. Ind. Electron. 2022, 69, 10396–10406. [Google Scholar] [CrossRef]
- Boudaoud, M.; Liang, S.; Lu, T.; Oubellil, R.; Régnier, S. Voltage/frequency rate dependent modeling for nano-robotic systems based on piezoelectric stick-slip actuators. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Daejeon, Republic of Korea, 9–14 October 2016; pp. 5297–5303. [Google Scholar]
- Oubellil, R.; Voda, A.; Boudaoud, M.; Régnier, S. Mixed stepping/scanning mode control of stick-slip SEM-integrated nano-robotic systems. Sens. Actuators A Phys. 2019, 285, 258–268. [Google Scholar] [CrossRef]
- Hwu, E.-T.; Nazaretski, E.; Chu, Y.S.; Chen, H.-H.; Chen, Y.-S.; Xu, W.; Hwu, Y. Design and characterization of a compact nano-positioning system for a portable transmission x-ray microscope. Rev. Sci. Instrum. 2013, 84, 123702. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.S.; Werner, C.; Slipets, R.; Larsen, P.E.; Hwang, I.S.; Chang, T.J.; Danzebrink, H.U.; Huang, K.Y.; Hwu, E.T. Low-cost, open-source XYZ nanopositioner for high-precision analytical applications. HardwareX 2022, 11, e00317. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-S.; Huang, G.-T.; Tu, H.-D.; Lin, T.-H.; Hwu, E.-T. A novel method for quantitative height measurement based on an astigmatic optical profilometer. Meas. Sci. Technol. 2018, 29, 10. [Google Scholar] [CrossRef]
- Liao, H.S.; Huang, Y.K.; Syu-Gu, J.Y.; Hwu, E.T. Real-Time Reflectance Measurement Using an Astigmatic Optical Profilometer. Sensors 2022, 22, 6242. [Google Scholar] [CrossRef]
- Liao, H.-S.; Guo, Z.-R.; Tan, H.-S.; Huang, K.-Y.; Hwang, I.-S.; Hwu, E.-T. Astigmatic detection system with feedback mechanism for calibrating driving waveform of piezoelectric actuators. IEEE Trans. Instrum. Meas. 2023, 72, 1007907. [Google Scholar] [CrossRef]
Material | Lead Zirconate Titanate (PZT) |
Density | 7.7 g/cm3 |
Dimensions | 6.5 mm × 6.5 mm × 10 mm |
Driving voltage range | 0 to 150 V |
Capacitance | 650 nF ± 15% |
Free stroke at 150 V | 9.1 μm ± 15% |
Blocking force at 150 V | 1000 N |
Resonant frequency | 115 kHz ± 10% |
d33 | 710 pC/N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.-R.; Tan, H.-S.; Chang, C.-S.; Hwang, I.-S.; Hwu, E.-T.; Liao, H.-S. The Design of a Closed-Loop Piezoelectric Friction–Inertia XY Positioning Platform with a Centimeter Travel Range. Actuators 2025, 14, 265. https://doi.org/10.3390/act14060265
Guo Z-R, Tan H-S, Chang C-S, Hwang I-S, Hwu E-T, Liao H-S. The Design of a Closed-Loop Piezoelectric Friction–Inertia XY Positioning Platform with a Centimeter Travel Range. Actuators. 2025; 14(6):265. https://doi.org/10.3390/act14060265
Chicago/Turabian StyleGuo, Zheng-Rong, Hong-Sheng Tan, Chin-Shun Chang, Ing-Shouh Hwang, En-Te Hwu, and Hsien-Shun Liao. 2025. "The Design of a Closed-Loop Piezoelectric Friction–Inertia XY Positioning Platform with a Centimeter Travel Range" Actuators 14, no. 6: 265. https://doi.org/10.3390/act14060265
APA StyleGuo, Z.-R., Tan, H.-S., Chang, C.-S., Hwang, I.-S., Hwu, E.-T., & Liao, H.-S. (2025). The Design of a Closed-Loop Piezoelectric Friction–Inertia XY Positioning Platform with a Centimeter Travel Range. Actuators, 14(6), 265. https://doi.org/10.3390/act14060265