Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,198)

Search Parameters:
Keywords = radio communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1804 KiB  
Review
Recent Progress on Underwater Wireless Communication Methods and Applications
by Zhe Li, Weikun Li, Kai Sun, Dixia Fan and Weicheng Cui
J. Mar. Sci. Eng. 2025, 13(8), 1505; https://doi.org/10.3390/jmse13081505 - 5 Aug 2025
Abstract
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication [...] Read more.
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication (UWOC), each designed to address specific challenges posed by complex underwater environments. Acoustic communication, while effective for long-range transmission, is constrained by ambient noise and high latency; recent innovations in noise reduction and data rate enhancement have notably improved its reliability. RF communication offers high-speed, short-range capabilities in shallow waters, but still faces challenges in hardware miniaturization and accurate channel modeling. UWOC has emerged as a promising solution, enabling multi-gigabit data rates over medium distances through advanced modulation techniques and turbulence mitigation. Additionally, bio-inspired approaches such as electric field communication provide energy-efficient and robust alternatives under turbid conditions. This paper further examines the practical integration of these technologies in underwater platforms, including autonomous underwater vehicles (AUVs), highlighting trade-offs between energy efficiency, system complexity, and communication performance. By synthesizing recent advancements, this review outlines the advantages and limitations of current underwater communication methods and their real-world applications, offering insights to guide the future development of underwater communication systems for robotic and vehicular platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 1738 KiB  
Article
Evaluation of Optimal Visible Wavelengths for Free-Space Optical Communications
by Modar Dayoub and Hussein Taha
Telecom 2025, 6(3), 57; https://doi.org/10.3390/telecom6030057 - 4 Aug 2025
Abstract
Free-space optical (FSO) communications have emerged as a promising complement to conventional radio-frequency (RF) systems due to their high bandwidth, low interference, and license-free spectrum. Visible-light FSO communication, using laser diodes or LEDs, offers potential for short-range data links, but performance is highly [...] Read more.
Free-space optical (FSO) communications have emerged as a promising complement to conventional radio-frequency (RF) systems due to their high bandwidth, low interference, and license-free spectrum. Visible-light FSO communication, using laser diodes or LEDs, offers potential for short-range data links, but performance is highly wavelength-dependent under varying atmospheric conditions. This study presents an experimental evaluation of three visible laser diodes at 650 nm (red), 532 nm (green), and 405 nm (violet), focusing on their optical output power, quantum efficiency, and modulation behavior across a range of driving currents and frequencies. A custom laboratory testbed was developed using an Atmega328p microcontroller and a Visual Basic control interface, allowing precise control of current and modulation frequency. A silicon photovoltaic cell was employed as the optical receiver and energy harvester. The results demonstrate that the 650 nm red laser consistently delivers the highest quantum efficiency and optical output, with stable performance across electrical and modulation parameters. These findings support the selection of 650 nm as the most energy-efficient and versatile wavelength for short-range, cost-effective visible-light FSO communication. This work provides experimentally grounded insights to guide wavelength selection in the development of energy-efficient optical wireless systems. Full article
(This article belongs to the Special Issue Optical Communication and Networking)
Show Figures

Figure 1

19 pages, 1107 KiB  
Article
A Novel Harmonic Clocking Scheme for Concurrent N-Path Reception in Wireless and GNSS Applications
by Dina Ibrahim, Mohamed Helaoui, Naser El-Sheimy and Fadhel Ghannouchi
Electronics 2025, 14(15), 3091; https://doi.org/10.3390/electronics14153091 - 1 Aug 2025
Viewed by 216
Abstract
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, [...] Read more.
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, enabling simultaneous downconversion without modification of the passive mixer topology. The receiver employs a 4-path passive mixer configuration to enhance harmonic selectivity and provide flexible frequency planning.The architecture is implemented on a printed circuit board (PCB) and validated through comprehensive simulation and experimental measurements under continuous wave and modulated signal conditions. Measured results demonstrate a sensitivity of 55dBm and a conversion gain varying from 2.5dB to 9dB depending on the selected harmonic pair. The receiver’s performance is further corroborated by concurrent (dual band) reception of real-world signals, including a GPS signal centered at 1575 MHz and an LTE signal at 1179 MHz, both downconverted using a single 393 MHz LO. Signal fidelity is assessed via Normalized Mean Square Error (NMSE) and Error Vector Magnitude (EVM), confirming the proposed architecture’s effectiveness in maintaining high-quality signal reception under concurrent multiband operation. The results highlight the potential of harmonic-selective clocking to simplify multiband receiver design for wireless communication and global navigation satellite system (GNSS) applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

16 pages, 3616 KiB  
Article
A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications
by Xinju Wang, Lihan Tong, Peng Chen, Lu Liu, Yutong Yin and Haowei Zhang
Appl. Sci. 2025, 15(15), 8499; https://doi.org/10.3390/app15158499 (registering DOI) - 31 Jul 2025
Viewed by 119
Abstract
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current [...] Read more.
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current (DC) bias circuit is designed to minimize the interaction between the radio frequency (RF) signal and the DC source, allowing control of the LC dielectric constant via bias voltage. This enables multi-band operation to improve communication capacity and quality for x-band devices. The polarization conversion (PC) structure employs an orthogonal anisotropic design, utilizing logarithmic functions to create two pairs of bowtie microstrip patches for linear-to-circular polarization conversion (LCPC). Simulation results show that for x-polarized incident waves, with an LC dielectric constant of εr = 2.8, left- and right-handed circularly polarized (LHCP and RHCP) waves are achieved in the frequency ranges of 8.15–8.46 GHz and 9.84–12.52 GHz, respectively. For εr = 3.9, LHCP and RHCP are achieved in 9–9.11 GHz and 9.86–11.81 GHz, respectively, and for εr = 4.6, they are in 8.96–9.11 GHz and 9.95–11.51 GHz. In the case of y-polarized incident waves, the MS reflects the reverse CP waves within the same frequency ranges. Measured results show that at εr = 2.8, the axial ratio (AR) is below 3 dB in the frequency ranges 8.16–8.46 GHz and 9.86–12.48 GHz, with 3 dB AR relative bandwidth (ARBW) of 3.61% and 23.46%, respectively. For εr = 4.6, the AR < 3 dB in the frequency range of 9.78–11.34 GHz, with a 3 dB ARBW of 14.77%. Finally, the measured and simulated results are compared to validate the proposed design, which can be applied to various applications within the corresponding operating frequency band. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

12 pages, 2500 KiB  
Article
Deep Learning-Based Optical Camera Communication with a 2D MIMO-OOK Scheme for IoT Networks
by Huy Nguyen and Yeng Min Jang
Electronics 2025, 14(15), 3011; https://doi.org/10.3390/electronics14153011 - 29 Jul 2025
Viewed by 324
Abstract
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as [...] Read more.
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as a result of worries about possible health problems connected to high-frequency radiofrequency transmission. Using the visible light spectrum is one promising approach; three cutting-edge technologies are emerging in this regard: Optical Camera Communication (OCC), Light Fidelity (Li-Fi), and Visible Light Communication (VLC). In this paper, we propose a Multiple-Input Multiple-Output (MIMO) modulation technology for Internet of Things (IoT) applications, utilizing an LED array and time-domain on-off keying (OOK). The proposed system is compatible with both rolling shutter and global shutter cameras, including commercially available models such as CCTV, webcams, and smart cameras, commonly deployed in buildings and industrial environments. Despite the compact size of the LED array, we demonstrate that, by optimizing parameters such as exposure time, camera focal length, and channel coding, our system can achieve up to 20 communication links over a 20 m distance with low bit error rate. Full article
(This article belongs to the Special Issue Advances in Optical Communications and Optical Networks)
Show Figures

Figure 1

21 pages, 3942 KiB  
Article
Experimental Demonstration of Terahertz-Wave Signal Generation for 6G Communication Systems
by Yazan Alkhlefat, Amr M. Ragheb, Maged A. Esmail, Sevia M. Idrus, Farabi M. Iqbal and Saleh A. Alshebeili
Optics 2025, 6(3), 34; https://doi.org/10.3390/opt6030034 - 28 Jul 2025
Viewed by 495
Abstract
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while [...] Read more.
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while maintaining low latency and high efficiency. In this work, we present a novel photonic method for generating sub-THz vector signals within the THz band, employing a semiconductor optical amplifier (SOA) and phase modulator (PM) to create an optical frequency comb, combined with in-phase and quadrature (IQ) modulation techniques. We demonstrate, both through simulation and experimental setup, the generation and successful transmission of a 0.1 THz vector. The process involves driving the PM with a 12.5 GHz radio frequency signal to produce the optical comb; then, heterodyne beating in a uni-traveling carrier photodiode (UTC-PD) generates the 0.1 THz radio frequency signal. This signal is transmitted over distances of up to 30 km using single-mode fiber. The resulting 0.1 THz electrical vector signal, modulated with quadrature phase shift keying (QPSK), achieves a bit error ratio (BER) below the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 103. To the best of our knowledge, this is the first experimental demonstration of a 0.1 THz photonic vector THz wave based on an SOA and a simple PM-driven optical frequency comb. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

19 pages, 1887 KiB  
Review
Comparative Analysis of Beamforming Techniques and Beam Management in 5G Communication Systems
by Cristina Maria Andras, Gordana Barb and Marius Otesteanu
Sensors 2025, 25(15), 4619; https://doi.org/10.3390/s25154619 - 25 Jul 2025
Viewed by 526
Abstract
The advance of 5G technology marks a significant evolution in wireless communications, characterized by ultra-high data rates, low latency, and massive connectivity across varied areas. A fundamental enabler of these capabilities is represented by beamforming, an advanced signal processing technique that focuses radio [...] Read more.
The advance of 5G technology marks a significant evolution in wireless communications, characterized by ultra-high data rates, low latency, and massive connectivity across varied areas. A fundamental enabler of these capabilities is represented by beamforming, an advanced signal processing technique that focuses radio energy to a specific user equipment (UE), thereby enhancing signal quality—crucial for maximizing spectral efficiency. The work presents a classification of beamforming techniques, categorized according to the implementation within 5G New Radio (NR) architectures. Furthermore, the paper investigates beam management (BM) procedures, which are essential Layer 1 and Layer 2 mechanisms responsible for the dynamic configuration, monitoring, and maintenance of optimal beam pair links between gNodeBs and UEs. The article emphasizes the spectral spectrogram of Synchronization Signal Blocks (SSBs) generated under various deployment scenarios, illustrating how parameters such as subcarrier spacing (SCS), frequency band, and the number of SSBs influence the spectral occupancy and synchronization performance. These insights provide a technical foundation for optimizing initial access and beam tracking in high-frequency 5G deployments, particularly within Frequency Range (FR2). Additionally, the versatility of 5G’s time-frequency structure is demonstrated by the spectrogram analysis of SSBs in a variety of deployment scenarios. These results provide insight into how different configurations affect the synchronization signals’ temporal and spectral occupancy, which directly affects initial access, cell identification, and energy efficiency. Full article
Show Figures

Figure 1

22 pages, 2422 KiB  
Article
OSIRIS4CubeSat—The World’s Smallest Commercially Available Laser Communication Terminal
by Benjamin Rödiger, Christian Roubal, Fabian Rein, René Rüddenklau, Anil Morab Vishwanath and Christopher Schmidt
Aerospace 2025, 12(8), 655; https://doi.org/10.3390/aerospace12080655 - 23 Jul 2025
Viewed by 224
Abstract
The New Space movement led to an exponential increase in the number of the smallest satellites in orbit in the last two decades. The number of required communication channels increased with that as well and revealed the limitations of classical radio frequency channels. [...] Read more.
The New Space movement led to an exponential increase in the number of the smallest satellites in orbit in the last two decades. The number of required communication channels increased with that as well and revealed the limitations of classical radio frequency channels. Free-space optical communication overcomes these challenges and has been successfully demonstrated, with operational systems in orbit on large and small satellites. The next step is to miniaturize the technology of laser communication to make it usable on CubeSats. Thus, the German Aerospace Center (DLR) developed, together with Tesat-Spacecom GmbH & Co. KG in Backnang, Germany, a highly miniaturized and power-efficient laser terminal, which is based on a potential customer’s use case. OSIRIS4CubeSat uses a new patented design that combines electronics and optomechanics into a single system architecture to achieve a high compactness following the CubeSat standard. Interfaces and software protocols that follow established standards allowed for an easy transition to the industry for a commercial mass market. The successful demonstration of OSIRIS4CubeSat during the PIXL-1 mission proved its capabilities and the advantages of free-space optical communication in the final environment. This paper gives an overview of the system architecture and the development of the single subsystems. The system’s capabilities are verified by the already published in-orbit demonstration results. Full article
(This article belongs to the Special Issue On-Board Systems Design for Aerospace Vehicles (2nd Edition))
Show Figures

Figure 1

19 pages, 43909 KiB  
Article
DualBranch-AMR: A Semi-Supervised AMR Method Based on Dual-Student Consistency Regularization with Dynamic Stability Evaluation
by Jiankun Ma, Zhenxi Zhang, Linrun Zhang, Yu Li, Haoyue Tan, Xiaoran Shi and Feng Zhou
Sensors 2025, 25(15), 4553; https://doi.org/10.3390/s25154553 - 23 Jul 2025
Viewed by 227
Abstract
Modulation recognition, as one of the key technologies in the field of wireless communications, holds significant importance in applications such as spectrum resource management, interference suppression, and cognitive radio. While deep learning has substantially improved the performance of Automatic Modulation Recognition (AMR), it [...] Read more.
Modulation recognition, as one of the key technologies in the field of wireless communications, holds significant importance in applications such as spectrum resource management, interference suppression, and cognitive radio. While deep learning has substantially improved the performance of Automatic Modulation Recognition (AMR), it heavily relies on large amounts of labeled data. Given the high annotation costs and privacy concerns, researching semi-supervised AMR methods that leverage readily available unlabeled data for training is of great significance. This study constructs a semi-supervised AMR method based on dual-student. Specifically, we first adopt a dual-branch co-training architecture to fully exploit unlabeled data and effectively learn deep feature representations. Then, we develop a dynamic stability evaluation module using strong and weak augmentation strategies to improve the accuracy of generated pseudo-labels. Finally, based on the dual-student semi-supervised framework and pseudo-label stability evaluation, we propose a stability-guided consistency regularization constraint method and conduct semi-supervised AMR model training. The experimental results demonstrate that the proposed DualBranch-AMR method significantly outperforms traditional supervised baseline approaches on benchmark datasets. With only 5% labeled data, it achieves a recognition accuracy of 55.84%, reaching over 90% of the performance of fully supervised training. This validates the superiority of the proposed method under semi-supervised conditions. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

19 pages, 2726 KiB  
Article
Lightweight Detection of Inserted Chirp Symbols in Radio Transmission from Commercial UAVs
by Krzysztof K. Cwalina, Piotr Rajchowski and Jarosław Sadowski
Sensors 2025, 25(15), 4552; https://doi.org/10.3390/s25154552 - 23 Jul 2025
Viewed by 241
Abstract
Most small, commercial unmanned aerial vehicles (UAVs) maintain continuous two-way radio communication with the controller. Signals emitted by the UAVs can be used for detection of their presence, but as these drones use unlicensed frequency bands that are shared with many other wireless [...] Read more.
Most small, commercial unmanned aerial vehicles (UAVs) maintain continuous two-way radio communication with the controller. Signals emitted by the UAVs can be used for detection of their presence, but as these drones use unlicensed frequency bands that are shared with many other wireless communication devices, UAV detection should rely on the unique characteristics of the transmitted signals. In this article, low-complexity methods for the detection of chirp symbols in downlink transmission from a UAV produced by DJI are proposed. The presented methods were developed with focus on the ability to detect presence of chirp symbols in radio transmission without a priori knowledge or need for center frequency estimation. Full article
(This article belongs to the Special Issue UAV Detection, Classification, and Tracking)
Show Figures

Figure 1

18 pages, 20327 KiB  
Article
The Effect of Scratch-Induced Microscale Surface Roughness on Signal Transmission in Radio Frequency Coaxial Connectors
by Yuqi Zhou, Tianmeng Zhang, Gang Xie and Jinchun Gao
Micromachines 2025, 16(8), 837; https://doi.org/10.3390/mi16080837 - 22 Jul 2025
Viewed by 302
Abstract
Electrical connectors play a vital role in ensuring reliable signal transmission in high-frequency microsystems. This study explores the impact of microscale scratch-induced surface roughness on the alternating current (AC) contact impedance of RF coaxial connectors. Unlike traditional approaches that assume idealized surface conditions, [...] Read more.
Electrical connectors play a vital role in ensuring reliable signal transmission in high-frequency microsystems. This study explores the impact of microscale scratch-induced surface roughness on the alternating current (AC) contact impedance of RF coaxial connectors. Unlike traditional approaches that assume idealized surface conditions, controlled micro-defects were introduced at the central contact interface to establish a quantitative relationship between surface morphology and signal degradation. An equivalent circuit model was constructed to account for local impedance variations and the cumulative effects of cascaded connector interfaces. The model was validated using S-parameter measurements obtained from vector network analyzer (VNA) testing, showing strong agreement with simulation results. Experimental results reveal that the low-roughness (0.4 μm) contact surfaces lead to degraded signal integrity due to insufficient micro-contact formation. In contrast, scratch-induced moderate roughness (0.8–4.8 μm) improves transmission performance, although signal quality declines as roughness increases within this range. These effects are further amplified in multi-connector configurations due to accumulated impedance mismatches. This work provides new insight into the coupling between microscale surface features and frequency-domain transmission characteristics, offering practical guidance for surface engineering, contact design, and the development of miniaturized, high-reliability radio frequency interconnects for next-generation communication systems. Full article
Show Figures

Figure 1

27 pages, 5012 KiB  
Article
Optimizing FPGA Resource Allocation in SDR Remote Laboratories via Partial Reconfiguration
by Zhiyun Zhang and Rania Hussein
Electronics 2025, 14(14), 2908; https://doi.org/10.3390/electronics14142908 - 20 Jul 2025
Viewed by 395
Abstract
In wireless communications and radio frequency courses, Software-Defined Radios (SDRs) offer students hands-on experience with software-based signal processing on programmable hardware platforms such as Field Programmable Gate Arrays (FPGAs). While some remote SDR laboratories enable students to access real hardware, they typically lack [...] Read more.
In wireless communications and radio frequency courses, Software-Defined Radios (SDRs) offer students hands-on experience with software-based signal processing on programmable hardware platforms such as Field Programmable Gate Arrays (FPGAs). While some remote SDR laboratories enable students to access real hardware, they typically lack support for Partial Reconfiguration (PR)—a powerful FPGA capability that allows sections of a design to be reconfigured at runtime without disrupting the main system operation. This capability enhances real-time adaptability and optimizes resource utilization, making it highly relevant for modern SDR applications. This study addresses this gap by extending an existing SDR remote lab to support PR, enabling students to explore reconfigurable hardware design within a remote learning environment. Two integration architectures were developed: one based on a graphical user interface (UI) and another utilizing a command-line workflow, both accessible via a web browser. Preliminary experiments using Red Pitaya SDR platforms—reportedly the first use of these devices for educational PR exploration—examined the impact of PR on logic resource utilization and total power consumption across three levels of design complexity. These results were compared to equivalent static FPGA designs performing the same functionality without PR. By making PR experimentation accessible through a remote platform, this work enhances STEM education by bridging advanced FPGA techniques with practical learning. It will equip students with industry-relevant skills for developing agile, resource-efficient wireless systems and foster a deeper understanding of adaptive hardware design. Full article
(This article belongs to the Special Issue FPGA-Based Reconfigurable Embedded Systems)
Show Figures

Figure 1

14 pages, 4648 KiB  
Article
Cyber-Physical System and 3D Visualization for a SCADA-Based Drinking Water Supply: A Case Study in the Lerma Basin, Mexico City
by Gabriel Sepúlveda-Cervantes, Eduardo Vega-Alvarado, Edgar Alfredo Portilla-Flores and Eduardo Vivanco-Rodríguez
Future Internet 2025, 17(7), 306; https://doi.org/10.3390/fi17070306 - 17 Jul 2025
Viewed by 335
Abstract
Cyber-physical systems such as Supervisory Control and Data Acquisition (SCADA) have been applied in industrial automation and infrastructure management for decades. They are hybrid tools for administration, monitoring, and continuous control of real physical systems through their computational representation. SCADA systems have evolved [...] Read more.
Cyber-physical systems such as Supervisory Control and Data Acquisition (SCADA) have been applied in industrial automation and infrastructure management for decades. They are hybrid tools for administration, monitoring, and continuous control of real physical systems through their computational representation. SCADA systems have evolved along with computing technology, from their beginnings with low-performance computers, monochrome monitors and communication networks with a range of a few hundred meters, to high-performance systems with advanced 3D graphics and wired and wireless computer networks. This article presents a methodology for the design of a SCADA system with a 3D Visualization for Drinking Water Supply, and its implementation in the Lerma Basin System of Mexico City as a case study. The monitoring of water consumption from the wells is presented, as well as the pressure levels throughout the system. The 3D visualization is generated from the GIS information and the communication is carried out using a hybrid radio frequency transmission system, satellite, and telephone network. The pumps that extract water from each well are teleoperated and monitored in real time. The developed system can be scaled to generate a simulator of water behavior of the Lerma Basin System and perform contingency planning. Full article
Show Figures

Figure 1

17 pages, 820 KiB  
Article
Optimized Hybrid Precoding for Wideband Terahertz Massive MIMO Systems with Angular Spread
by Ye Wang, Chuxin Chen, Ran Zhang and Yiqiao Mei
Electronics 2025, 14(14), 2830; https://doi.org/10.3390/electronics14142830 - 15 Jul 2025
Viewed by 255
Abstract
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz [...] Read more.
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz massive multiple-input multiple-output (MIMO) systems induce a pronounced beam split effect, leading to a serious array gain loss. To mitigate the beam split effect, this paper considers a delay-phase precoding (DPP) architecture in which a true-time-delay (TTD) network is introduced between radio-frequency (RF) chains and phase shifters (PSs) in the standard hybrid precoding architecture. Then, we propose a fast Riemannian conjugate gradient optimization-based alternating minimization (FRCG-AltMin) algorithm to jointly optimize the digital precoding, analog precoding, and delay matrix, aiming to maximize the spectral efficiency. Different from the existing method, which solves an approximated version of the analog precoding design problem, we adopt an FRCG method to deal with the original problem directly. Simulation results demonstrate that our proposed algorithm can improve the spectral efficiency, and achieve superior performance over the existing algorithm for wideband THz massive MIMO systems with angular spread. Full article
Show Figures

Figure 1

14 pages, 2087 KiB  
Article
A 28-nm CMOS Low-Power/Low-Voltage 60-GHz LNA for High-Speed Communication
by Minoo Eghtesadi, Andrea Ballo, Gianluca Giustolisi, Salvatore Pennisi and Egidio Ragonese
Electronics 2025, 14(14), 2819; https://doi.org/10.3390/electronics14142819 - 13 Jul 2025
Viewed by 485
Abstract
This paper presents a wideband low-power/low-voltage 60-GHz low-noise amplifier (LNA) in a 28-nm bulk CMOS technology. The LNA has been designed for high-speed millimeter-wave (mm-wave) communications. It consists of two pseudo-differential amplifying stages and a buffer stage included for 50-Ohm on-wafer measurements. Two [...] Read more.
This paper presents a wideband low-power/low-voltage 60-GHz low-noise amplifier (LNA) in a 28-nm bulk CMOS technology. The LNA has been designed for high-speed millimeter-wave (mm-wave) communications. It consists of two pseudo-differential amplifying stages and a buffer stage included for 50-Ohm on-wafer measurements. Two integrated input/output baluns guarantee both simultaneous 50-ohm input–noise/output matching at input/output radio frequency (RF) pads. A power-efficient design strategy is adopted to make the LNA suitable for low-power applications, while minimizing the noise figure (NF). Thanks to the adopted design strategy, the post-layout simulation results show an excellent trade-off between power gain and 3-dB bandwidth (BW3dB) with 13.5 dB and 7 GHz centered at 60 GHz, respectively. The proposed LNA consumes only 11.6 mA from a 0.9-V supply voltage with an NF of 8.4 dB at 60 GHz, including the input transformer loss. The input 1 dB compression point (IP1dB) of −15 dBm at 60 GHz confirms the first-rate linearity of the proposed amplifier. Human body model (HBM) electrostatic discharge (ESD) protection is guaranteed up to 2 kV at the RF input/output pads thanks to the input/output integrated transformers. Full article
(This article belongs to the Special Issue 5G Mobile Telecommunication Systems and Recent Advances, 2nd Edition)
Show Figures

Figure 1

Back to TopTop