Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,649)

Search Parameters:
Keywords = radiation-induced effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5132 KB  
Article
A Spaceborne Integrated S/Ka Dual-Band Dual-Reflector Antenna
by Zenan Yang, Weiqiang Han, Liang Tang, Haihua Wang, Yilin Wang and Yongchang Jiao
Micromachines 2026, 17(1), 124; https://doi.org/10.3390/mi17010124 (registering DOI) - 18 Jan 2026
Abstract
To address the diverse requirements of satellite communication applications involving medium-/low-rate reliable links and high-rate high-capacity services, an integrated S/Ka dual-band dual-reflector antenna is proposed as an effective solution. Owing to the stringent spatial constraints of satellite platforms, the longer operating wavelengths in [...] Read more.
To address the diverse requirements of satellite communication applications involving medium-/low-rate reliable links and high-rate high-capacity services, an integrated S/Ka dual-band dual-reflector antenna is proposed as an effective solution. Owing to the stringent spatial constraints of satellite platforms, the longer operating wavelengths in the S-band lead to oversized feed horns in the integrated antenna design, which induces severe secondary aperture blockage, thus degrading aperture efficiency and impeding practical mechanical layout implementation. To alleviate this critical drawback, the proposed antenna achieves multi-band aperture reuse by deploying an array with four miniaturized S-band radiating elements around a broadband Ka-band feed horn. A frequency-selective surface (FSS)-based sub-reflector is further designed to effectively enhance the effective aperture size for the S-band operation, while ensuring unobstructed electromagnetic propagation in the Ka-band, thus enabling simultaneous dual-band high-gain radiation. After comprehensive electromagnetic simulation and parametric optimization for the antenna feed and the FSS sub-reflector, experimental measurements verify that the S-band left-hand and right-hand circularly polarized (LHCP/RHCP) channels achieve more than 20.2 dBic gains with more than 6° half-power beamwidths (HPBWs), and the Ka-band channel yields gains exceeding 41.2 dBic, with HPBWs greater than 0.8°. Full article
Show Figures

Figure 1

19 pages, 11348 KB  
Article
Compact IC-Fed Cavity-Backed CP Crossed-Dipole Antenna with Wide Bandwidth and Wide Beamwidth for SatCom Mobile Terminals
by Kunshan Mo, Xing Jiang, Ling Peng, Qiushou Liu, Zhengde Li, Rui Fang and Qixiang Zhao
Sensors 2026, 26(2), 647; https://doi.org/10.3390/s26020647 (registering DOI) - 18 Jan 2026
Abstract
This paper presents a compact wide bandwidth, wide beamwidth circularly polarized (CP) antenna for satellite communication (SatCom) mobile terminals. The radiator is based on a cavity-backed crossed dipole, while a commercial quadrature power-divider/phase-shifter IC replaces conventional quarter-wavelength phase-delay lines to suppress dispersion-induced phase [...] Read more.
This paper presents a compact wide bandwidth, wide beamwidth circularly polarized (CP) antenna for satellite communication (SatCom) mobile terminals. The radiator is based on a cavity-backed crossed dipole, while a commercial quadrature power-divider/phase-shifter IC replaces conventional quarter-wavelength phase-delay lines to suppress dispersion-induced phase errors and maintain stable CP performance over a broad frequency range. To broaden the beam, a tightly coupled arc-shaped parasitic strip encircles the tapered semicircular arms, and the cavity cross-section is reduced to enhance lateral radiation. In addition, the cavity sidewalls are electrically connected to the parasitic element to increase the effective electrical length, downshift the operating frequency, and enable miniaturization. A prototype was fabricated and measured. The measured impedance bandwidth (IMBW, |S11| < −10 dB) is 1.76–3.08 GHz, fully covered by the AR < 3 dB bandwidth. The peak gain remains above 2 dBic over 1.7–3.1 GHz, while the half-power beamwidth (HPBW) stays around 114–142° and the 3 dB axial-ratio beamwidth (ARBW, AR < 3 dB) is around 114–144° across the entire operating band. These results indicate that the proposed antenna is a promising candidate for integrated multi-band SatCom terminals requiring wide bandwidth operation and wide-angle coverage. Full article
(This article belongs to the Section Communications)
32 pages, 3933 KB  
Article
Nanosilica Gel-Stabilized Phase-Change Materials Based on Epoxy Resin and Wood’s Metal
by Svetlana O. Ilyina, Irina Y. Gorbunova, Vyacheslav V. Shutov, Michael L. Kerber and Sergey O. Ilyin
Gels 2026, 12(1), 79; https://doi.org/10.3390/gels12010079 - 16 Jan 2026
Viewed by 33
Abstract
The emulsification of a molten fusible metal alloy in a liquid epoxy matrix with its subsequent curing is a novel way to create a highly concentrated phase-change material. However, numerous challenges have arisen. The high interfacial tension between the molten metal and epoxy [...] Read more.
The emulsification of a molten fusible metal alloy in a liquid epoxy matrix with its subsequent curing is a novel way to create a highly concentrated phase-change material. However, numerous challenges have arisen. The high interfacial tension between the molten metal and epoxy resin and the difference in their viscosities hinder the stretching and breaking of metal droplets during stirring. Further, the high density of metal droplets and lack of suitable surfactants lead to their rapid coalescence and sedimentation in the non-cross-linked resin. Finally, the high differences in the thermal expansion coefficients of the metal alloy and cross-linked epoxy polymer may cause cracking of the resulting phase-change material. This work overcomes the above problems by using nanosilica-induced physical gelation to thicken the epoxy medium containing Wood’s metal, stabilize their interfacial boundary, and immobilize the molten metal droplets through the creation of a gel-like network with a yield stress. In turn, the yield stress and the subsequent low-temperature curing with diethylenetriamine prevent delamination and cracking, while the transformation of the epoxy resin as a physical gel into a cross-linked polymer gel ensures form stability. The stabilization mechanism is shown to combine Pickering-like interfacial anchoring of hydrophilic silica at the metal/epoxy boundary with bulk gelation of the epoxy phase, enabling high metal loadings. As a result, epoxy shape-stable phase-change materials containing up to 80 wt% of Wood’s metal were produced. Wood’s metal forms fine dispersed droplets in epoxy medium with an average size of 2–5 µm, which can store thermal energy with an efficiency of up to 120.8 J/cm3. Wood’s metal plasticizes the epoxy matrix and decreases its glass transition temperature because of interactions with the epoxy resin and its hardener. However, the reinforcing effect of the metal particles compensates for this adverse effect, increasing Young’s modulus of the cured phase-change system up to 825 MPa. These form-stable, high-energy-density composites are promising for thermal energy storage in building envelopes, radiation-protective shielding, or industrial heat management systems where leakage-free operation and mechanical integrity are critical. Full article
(This article belongs to the Special Issue Energy Storage and Conductive Gel Polymers)
Show Figures

Graphical abstract

22 pages, 4486 KB  
Article
Astaxanthin as a Natural Photoprotective Agent: In Vitro and In Silico Approach to Explore a Multi-Targeted Compound
by Aida Lahmar, Balkis Abdelaziz, Nahla Gouader, Abir Salek, Imen Waer and Leila Chekir Ghedira
Sci. Pharm. 2026, 94(1), 8; https://doi.org/10.3390/scipharm94010008 - 13 Jan 2026
Viewed by 180
Abstract
Ultraviolet B radiation is a major cause of skin aging, cellular senescence, and inflammaging, mediated by the excessive production of reactive oxygen species (ROS) and induction of apoptosis. This study evaluated the photo-protective effects of astaxanthin, one of the strongest natural antioxidants, in [...] Read more.
Ultraviolet B radiation is a major cause of skin aging, cellular senescence, and inflammaging, mediated by the excessive production of reactive oxygen species (ROS) and induction of apoptosis. This study evaluated the photo-protective effects of astaxanthin, one of the strongest natural antioxidants, in UVB-treated keratinocytes. The antioxidant capacity of astaxanthin was evaluated using ABTS, DPPH, and NBT/riboflavin/SOD assays. HaCaT cells were exposed to 30 mJ/cm2 of UVB radiation. Photoprotective effects and accumulated ROS were evaluated in UVB-irradiated HaCaT cells by MTT and DCFH-DA assays. Nitric oxide levels were quantified using the Griess reagent. Apoptosis was assessed by dual staining using acridine orange/ethidium bromide, lysosomal integrity by acridine orange uptake, and cell migration by scratch assay. Cell adhesion was assessed on ECM-coated Nunc plates. Finally, we formulated a 0.5% astaxanthin-enriched cream. Astaxanthin mitigated UVB-induced damage by reducing intracellular ROS levels by 3.7-fold, decreasing nitric oxide production to 29.8 ± 7.7% at the highest concentration, and maintaining lysosomal integrity. The carotenoid significantly enhanced cell viability, increasing it from 60.64 ± 8.3% in UV-treated cells to 102.1 ± 3.22% at 40 µM. Moreover, treated cells showed a significant reduction (p < 0.001) in the apoptotic rate (37.7 ± 3.1 vs. 87.7 ± 3.8 in UVB-irradiated cells, as evidenced by reduced chromatin condensation and nuclear fragmentation. Astaxanthin also enhanced tissue repair, as evidenced by increased cell migration and adhesion to several extracellular matrix (ECM) proteins (poly-L-lysine, laminin, fibrinogen, vitronectin and collagen I). In silico molecular docking predicted strong binding affinities between astaxanthin and key cellular targets, including JAK2 (−9.9 kcal/mol, highest affinity), STAT3, FAK, COX-2, NF-k-B, MMP2, and MMP9. The formulated cream demonstrated an in vitro SPF of 7.2 ± 2.5. Astaxanthin acts as a multifunctional photoprotective compound, providing a strong rationale for its incorporation into cosmetic and dermatological formulations, as further supported by the successful formulation and in vitro SPF estimation of an astaxanthin-enriched cream. Full article
Show Figures

Figure 1

15 pages, 2108 KB  
Article
Experimental Demonstration of Airborne Virtual Hyperbolic Metamaterials for Radar Signal Guiding
by Xiaoxuan Peng, Shiqiang Zhao, Yongzheng Wen, Jingbo Sun and Ji Zhou
Appl. Sci. 2026, 16(2), 773; https://doi.org/10.3390/app16020773 - 12 Jan 2026
Viewed by 87
Abstract
The inherent diffraction of electromagnetic waves, such as shortwaves and microwaves, severely limits the effective signal transmission distance, thereby constraining the development of related applications like radar and communications. This work experimentally demonstrates the use of a virtual hyperbolic metamaterial (VHMM) realized via [...] Read more.
The inherent diffraction of electromagnetic waves, such as shortwaves and microwaves, severely limits the effective signal transmission distance, thereby constraining the development of related applications like radar and communications. This work experimentally demonstrates the use of a virtual hyperbolic metamaterial (VHMM) realized via a plasma filament array induced in air by a femtosecond laser. We characterize the ability of this VHMM to control electromagnetic waves in the shortwave and microwave bands, particularly its guiding and collimating effects. By combining experimental measurements with effective medium theory, we confirm that under specific parameters, the principal diagonal components of the permittivity tensor for the plasma array exhibit opposite signs, manifesting typical hyperbolic dispersion characteristics which enable the guiding of electromagnetic waves. This research provides a feasible approach for utilizing lasers to create dynamically reconfigurable and non-physical structures in free space for manipulating long-wavelength electromagnetic radiation, demonstrating potential for applications in areas such as radar, communications, and remote sensing. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Electromagnetic Metamaterials)
Show Figures

Figure 1

24 pages, 3600 KB  
Article
Seed Oil of Lycium barbarum L. from Qaidam Basin Prevents and Treats UV-Induced Photodamage in BABL/c Mice Skin by Modulating Skin Microbiome and Amino Acid Metabolism
by Le Han, Yongjing Yang, Benyin Zhang, Yuting Wang, Yiming Ji, Shasha Du and Yongqiang Zou
Int. J. Mol. Sci. 2026, 27(2), 731; https://doi.org/10.3390/ijms27020731 - 11 Jan 2026
Viewed by 126
Abstract
Ultraviolet (UV) radiation is a primary environmental factor responsible for skin photodamage, and exposure to UV rays is strongly linked to a variety of skin diseases. This study examined the prophylactic and therapeutic effects of Seed Oil of Lycium barbarum L. from the [...] Read more.
Ultraviolet (UV) radiation is a primary environmental factor responsible for skin photodamage, and exposure to UV rays is strongly linked to a variety of skin diseases. This study examined the prophylactic and therapeutic effects of Seed Oil of Lycium barbarum L. from the Qaidam basin (QLBSO) in a UV-induced skin photodamage model in BALB/c mice, exploring potential mechanisms by analyzing the skin microbiota and metabolites using 16S rDNA sequencing and metabolomics. The results showed that QLBSO effectively alleviated UV-induced histopathological changes in mouse skin. It also significantly increased the activity of superoxide dismutase (SOD) and catalase (CAT) in UV-damaged skin tissue, while reducing levels of inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), as well as matrix metalloproteinases-1 (MMP-1) and MMP-3. Omics analysis revealed that QLBSO successfully restored the balance of the skin microbiota and corrected disruptions in amino acid metabolism caused by UV exposure. Notably, Firmicutes_A and Kineothrix, along with cysteine, cystine, glycine, arginine, proline, and choline, were identified as key microbial species and metabolites responsive to QLBSO’s prophylactic and therapeutic effects. In conclusion, QLBSO likely protects against UV-induced skin photodamage by modulating the skin microbiota and amino acid metabolism, providing a scientific foundation for its potential use in skin health protection. Full article
(This article belongs to the Special Issue Plant Phenolic Accumulation and Application in Human Diseases)
Show Figures

Figure 1

22 pages, 14558 KB  
Article
Ginsenoside Re Ameliorates UVB-Induced Skin Photodamage by Modulating the Glutathione Metabolism Pathway: Insights from Integrated Transcriptomic and Metabolomic Analyses
by Jiaqi Wang, Duoduo Xu, Yangbin Lai, Yuan Zhao, Qiao Jin, Yuxin Yin, Jinqi Wang, Yang Wang, Shuying Liu and Enpeng Wang
Int. J. Mol. Sci. 2026, 27(2), 708; https://doi.org/10.3390/ijms27020708 - 10 Jan 2026
Viewed by 212
Abstract
With the growing prominence of skin photodamage caused by ultraviolet (UV) radiation, the development of efficient and safe natural photoprotectants has become a major research focus. Ginsenoside Re (G-Re), a primary active component of ginseng (Panax ginseng C. A. Mey.), has attracted [...] Read more.
With the growing prominence of skin photodamage caused by ultraviolet (UV) radiation, the development of efficient and safe natural photoprotectants has become a major research focus. Ginsenoside Re (G-Re), a primary active component of ginseng (Panax ginseng C. A. Mey.), has attracted much attention due to its significant antioxidant and anti-inflammatory activities; however, its systemic role and mechanism in protecting against photodamage remain unclear. In this study, a UVB-induced rat photodamage model was established to evaluate the protective effect of ginsenoside Re through histopathological staining, biochemical assay, and immunohistochemical analysis. Furthermore, an integrated transcriptomic and metabolomic approach was applied to elucidate the molecular mechanism of G-Re protection and to establish the association between the photodamage phenotype, metabolic pathways, and gene functions. Following their identification via integrated multi-omics analysis, the key targets were subjected to verification via Western blotting. The results showed that G-Re could effectively alleviate UVB-induced pathological injury and reduce the level of oxidative stress and inflammatory factors, which could reverse regulate the abnormal expression of 265 differential genes and 30 metabolites. The glutathione metabolism pathway was proven as a key pathway mediating the protective effects of ginsenoside Re against skin photodamage via integrated analysis, WB verification, and molecular docking. The current study indicated that G-Re could be a promising natural sunscreen additive in cosmetical products. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

27 pages, 3563 KB  
Review
Radiotherapy for High-Grade Gliomas in Adults and Children: A Systematic Review of Advances Published in the Second Half of 2023
by Guido Frosina
Int. J. Mol. Sci. 2026, 27(2), 662; https://doi.org/10.3390/ijms27020662 - 9 Jan 2026
Viewed by 122
Abstract
While research on high-incidence tumors such as breast, prostate, and lung cancer has led to significant increases in patient survival in recent years, this has not been the case for low-incidence tumors such as high-grade gliomas, the most common and lethal brain tumors, [...] Read more.
While research on high-incidence tumors such as breast, prostate, and lung cancer has led to significant increases in patient survival in recent years, this has not been the case for low-incidence tumors such as high-grade gliomas, the most common and lethal brain tumors, for which the last significant therapeutic advance dates back to 2005. The high infiltration capacity of these tumors into normal brain tissue essential for both vegetative and relational life, the tumor microenvironment, with poor immunological activity, the multiple resistance mechanisms, and the unattractiveness of research investments due to the limited number of patients have made, and continue to make, the path to achieving significant improvements in the survival of patients with high-grade gliomas long and arduous. The objective of this article is to update the slow but continuous radiotherapeutic progress for adult and pediatric high-grade gliomas to the second half of 2023. We analyzed the progress of preclinical and clinical research on both adult and pediatric high-grade gliomas, with a particular focus on improvements in radiotherapy. Interactions between non-radiant new therapies and radiotherapy were also covered. A literature search was conducted in PubMed using the terms (“glioma* and radio*”) and the time limit of 1 July 2023 to 31 December 2023. The inclusion and exclusion criteria for the review were relevance to advances in radiotherapy for high-grade gliomas in adults and children. Treating patients with advanced disease progression only, using “historical” data as controls, as well as repurposing drugs developed for purposes completely different from their intended use, were the major (but not the only) methods to assess risk of bias in the included studies. The effect measures used in the synthesis or presentation of the results were tabulated and/or displayed in figures. A total of 100 relevant references were reviewed. Advances in preclinical studies and in clinical radiotherapy treatment planning, innovative fractionation, use of radioisotopes/radiopharmaceuticals, radiosensitization procedures, and radiation-induced damage were focused on. While this analysis may be limited by the relatively short publication period, high-grade glioma research remains impacted, especially at the clinical level, by potential issues with trial design, such as treating patients with advanced disease progression, using “historical” data as controls, and repurposing drugs developed for completely different purposes than intended. Addressing these aspects of high-grade glioma research could improve its efficacy, which often remains low despite the associated costs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

26 pages, 5063 KB  
Article
Blocking ASIP to Protect MC1R Signaling and Mitigate Melanoma Risk: An In Silico Study
by Farah Maarfi, Mohammed Cherkaoui, Sana Afreen and Mohd Yasir Khan
Pharmaceuticals 2026, 19(1), 114; https://doi.org/10.3390/ph19010114 - 8 Jan 2026
Viewed by 183
Abstract
Background: Melanin protects skin and hair from the effects of ultraviolet (UV) radiation damage, which contributes to all forms of skin cancer, including melanoma. Human melanocytes produce two main types of melanin: eumelanin provides effective photoprotection, and pheomelanin offers less protection against UV-induced [...] Read more.
Background: Melanin protects skin and hair from the effects of ultraviolet (UV) radiation damage, which contributes to all forms of skin cancer, including melanoma. Human melanocytes produce two main types of melanin: eumelanin provides effective photoprotection, and pheomelanin offers less protection against UV-induced skin damage. The agouti signaling protein (ASIP) antagonizes the melanocortin-1 receptor (MC1R), hinders melanocyte signaling, and shifts pigmentation toward pheomelanin, promoting UV vulnerability. In this study, we aim to discover compounds that inhibit ASIP–MC1R interaction and effectively preserve eumelanogenic signaling. Methods: The ASIP–MC1R interface-based pharmacophore model from ASIP is implicated in MC1R receptor protein engagement. We performed virtual screening with a validated pharmacophore model for ~4000 compounds curated from ZINCPharmer and applied drug-likeness filters, viz. ADMET and toxicity profiling tests. Further, the screened candidates were targeted for docking to the ASIP C-terminal domain corresponding to the MC1R-binding moiety. Top compounds underwent a 100-nanosecond (ns) run of molecular dynamics (MD) simulations to assess complex stability and persistence of key contacted residues. Results: Sequential triage, including pharmacophore, ADME–toxicity (ADMET), and docking/ΔG, yielded a focused group of candidates against ASIP antagonists with a favorable fit value. The MD run for 100 ns supported pose stability at the targeted pocket. Based on these predictions and analyses, compound ZINC14539068 was screened as a new potent inhibitor of ASIP to preserve α-MSH-mediated signaling of MC1R. Conclusions: Our in silico pipeline identifies ZINC14539068 as a potent inhibitor of ASIP at its C-terminal interface. This compound is predicted to disrupt ASIP–MC1R binding, thereby maintaining eumelanin-biased signaling. These findings motivate experimental validation in melanocytic models and in vivo studies to confirm pathway modulation and anti-melanoma potential. Full article
(This article belongs to the Section AI in Drug Development)
Show Figures

Graphical abstract

22 pages, 1849 KB  
Review
Key Considerations for Treatment Planning System Development in Electron and Proton FLASH Radiotherapy
by Chang Cheng, Gaolong Zhang, Nan Li, Xinyu Hu, Zhen Huang, Xiaoyu Xu, Shouping Xu and Weiwei Qu
Quantum Beam Sci. 2026, 10(1), 3; https://doi.org/10.3390/qubs10010003 - 8 Jan 2026
Viewed by 286
Abstract
The global cancer burden continues to increase worldwide. Among the various treatment options, radiotherapy (RT), which employs high-energy ionizing radiation to destroy cancer cells, is one of the primary modalities for cancer. However, increasing the absorbed dose to the target volume also increases [...] Read more.
The global cancer burden continues to increase worldwide. Among the various treatment options, radiotherapy (RT), which employs high-energy ionizing radiation to destroy cancer cells, is one of the primary modalities for cancer. However, increasing the absorbed dose to the target volume also increases the risk of damage to surrounding healthy tissues. This radiation-induced toxicity to normal tissues limits the desirable dosage that can be delivered to the tumor, thereby constraining the effectiveness of radiation therapy in achieving tumor control. FLASH radiotherapy (FLASH-RT) has emerged as a promising technique due to its biological advantages. FLASH-RT involves the delivery of radiation at an ultra-high dose rate (≥40 Gy/s). Unlike conventional RT, FLASH-RT achieves comparable tumor control rates while significantly reducing damage to surrounding normal tissues, a phenomenon known as the FLASH effect. Although the mechanism behind the FLASH effect is not fully understood, this approach shows considerable promise for future cancer treatment. The development of specialized treatment planning systems (TPS) becomes imperative to facilitate the clinical implementation of FLASH-RT from experimental studies. These systems must account for the unique characteristics of FLASH-RT, including ultra-high dose rate delivery and its distinctive radiobiological effects. Critical reassessment and optimization of treatment planning protocols are essential to fully leverage the therapeutic potential of the FLASH effect. This review examines key considerations for the TPS development of electron and proton FLASH-RT, including electron and proton FLASH techniques, biological models, crucial beam parameters, and dosimetry, providing essential insights for optimizing TPS and advancing the clinical implementation of this promising therapeutic modality. Full article
(This article belongs to the Section Medical and Biological Applications)
Show Figures

Figure 1

17 pages, 4610 KB  
Article
Antarctic Microalga Chlamydomonas sp. ICE-L Cryptochrome CiCRY-DASH1 Mediates Efficient DNA Photorepair of UV-Induced Cyclobutane Pyrimidine Dimer and 6-4 Photoproducts
by Zhou Zheng, Xinning Pan, Zhiru Liu, Yanan Tan, Zejun Wu and Ning Du
Mar. Drugs 2026, 24(1), 25; https://doi.org/10.3390/md24010025 - 7 Jan 2026
Viewed by 182
Abstract
Cryptochromes (CRYs) are a conserved class of blue light and near-ultraviolet light receptors that regulate diverse processes, including photomorphogenesis in plants. In the extreme Antarctic environment, ice algae endure intense UV radiation, prolonged darkness, and low temperatures, where cryptochromes play a vital role [...] Read more.
Cryptochromes (CRYs) are a conserved class of blue light and near-ultraviolet light receptors that regulate diverse processes, including photomorphogenesis in plants. In the extreme Antarctic environment, ice algae endure intense UV radiation, prolonged darkness, and low temperatures, where cryptochromes play a vital role in light sensing and stress response. In this study, we cloned the complete open reading frame (ORF) of the cryptochrome gene CiCRY-DASH1 from the Antarctic microalga Chlamydomonas sp. ICE-L. Both in vivo and in vitro DNA photorepair assays showed that CiCRY-DASH1 effectively repairs cyclobutane pyrimidine dimer (CPD) and 6-4 photoproducts (6-4PPs) induced by UV radiation. Furthermore, deletion of the N-terminal and C-terminal loop regions, combined with activity assays, revealed that the C-terminal loop region plays a crucial role in photorepair activity. These findings elucidate the adaptive photorepair mechanisms of Antarctic microalgae and establish CiCRY-DASH1 as a valuable genetic resource. Specifically, the high catalytic efficiency and evolutionary robustness of the engineered variants position it as a promising marine bioactive agent for photoprotective therapeutics and a strategic target for constructing microbial chassis to enable sustainable drug biomanufacturing. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Figure 1

17 pages, 2654 KB  
Article
A Simple Three-Step Method for the Synthesis of Submicron Gold Particles: The Influence of Laser Irradiation Duration, Pulse Energy, Laser Pulse Duration, and Initial Concentration of Nanoparticles in the Colloid
by Ilya V. Baimler, Ivan A. Popov, Alexander V. Simakin and Sergey V. Gudkov
Nanomaterials 2026, 16(2), 79; https://doi.org/10.3390/nano16020079 - 6 Jan 2026
Viewed by 343
Abstract
This work demonstrates a three-step method for the synthesis and production of submicron spherical gold particles using laser ablation in liquid (LAL), laser-induced fragmentation in liquid (LFL), laser-induced nanochain formation, and laser melting in liquid (LML). The nanoparticles were characterized using transmission electron [...] Read more.
This work demonstrates a three-step method for the synthesis and production of submicron spherical gold particles using laser ablation in liquid (LAL), laser-induced fragmentation in liquid (LFL), laser-induced nanochain formation, and laser melting in liquid (LML). The nanoparticles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV–visible spectroscopy. In the first stage, spherical gold nanoparticles with a size of 20 nm were obtained using LAL and LFL. Subsequent irradiation of gold nanoparticle colloids with radiation at a wavelength of 532 nm leads to the formation of gold nanochains. Irradiation of nanochain colloids with radiation at a wavelength of 1064 nm leads to the formation of large spherical gold particles with a size of 50 to 200 nm. The formation of submicron gold particles upon irradiation of 2 mL of colloid occurs within the first minutes of irradiation and is complete after 480,000 laser pulses. Increasing the laser pulse energy leads to the formation of larger particles; after exceeding the threshold energy (321 mJ/cm2), fragmentation is observed. Increasing the concentration of nanoparticles in the initial colloid up to 150 μg/mL leads to a linear increase in the size of submicron nanoparticles. The use of picosecond pulses for irradiating nanochains demonstrates the formation of the largest particles (200 nm) compared to nanosecond pulses, which may be due to the effect of local surface melting. The described technique opens the possibility of synthesizing stable gold nanoparticles over a wide range of sizes, from a few to hundreds of nanometers, without the use of chemical reagents. Full article
Show Figures

Figure 1

14 pages, 3505 KB  
Article
Safety and Efficacy of Tumor-Treating Fields (TTFields) Therapy for Pediatric High-Grade Glioma: Results of a Prespecified Interim Analysis of the First Three Cases
by Atsushi Makimoto, Keita Terashima, Ryo Nishikawa, Hiroyuki Fujisaki, Jun Kurihara, Satoshi Ihara, Jun-ichi Adachi, Mikako Enokizono, Naoko Mori, Yoshihiko Morikawa and Yuki Yuza
Children 2026, 13(1), 84; https://doi.org/10.3390/children13010084 - 6 Jan 2026
Viewed by 267
Abstract
Background/Objectives: Although Tumor-Treating Fields (TTFields) therapy is an established treatment modality for adult glioblastoma, clinical data on its efficacy in pediatric brain tumors are extremely scarce. The present study aimed to evaluate the safety of TTFields therapy for pediatric diffuse high-grade glioma [...] Read more.
Background/Objectives: Although Tumor-Treating Fields (TTFields) therapy is an established treatment modality for adult glioblastoma, clinical data on its efficacy in pediatric brain tumors are extremely scarce. The present study aimed to evaluate the safety of TTFields therapy for pediatric diffuse high-grade glioma (HGG) and to conduct an exploratory analysis of its efficacy. Methods: A prespecified, interim analysis was performed to determine whether the study should be continued on the basis of safety and feasibility data on the first three patients. The target population was children aged 5 to 17 years with newly diagnosed, supratentorial HGG or its first recurrence following frontline therapy. After completion of initial, local treatment for the tumor (surgical removal and/or radiotherapy), all patients received TTFields therapy using OptuneTM for 28 days per course for up to 26 courses until disease progression. Results: The interim analysis, which was completed in October 2022, included three female patients aged 14, 17, and 9 years. All had a histological grade 4 tumor, two of which were radiation-induced, secondary HGG. No serious, treatment-related toxicities or device-related issues were observed. All three patients were able to continue using the device for 75% or more of the time in accordance with the protocol, suggesting that the treatment was feasible. The MRI findings of two patients indicated that the treatment has a potential antitumor effect. Based on these results, the study was resumed and is currently being continued at multiple centers. Conclusions: The initial results of the prespecified, interim analysis demonstrated that TTFields therapy was safe and feasible for children with HGG. This study was funded by the Japan Agency for Medical Research and Development (AMED) and was registered with the Japan Registry of Clinical Trials (jRCTs032200423). Full article
(This article belongs to the Section Pediatric Hematology & Oncology)
Show Figures

Figure 1

14 pages, 2516 KB  
Article
Temperature and Fluence Dependence Investigation of the Defect Evolution Characteristics of GaN Single Crystals Under Radiation with Ion Beam-Induced Luminescence
by Xue Peng, Wenli Jiang, Ruotong Chang, Hongtao Hu, Shasha Lv, Xiao Ouyang and Menglin Qiu
Quantum Beam Sci. 2026, 10(1), 2; https://doi.org/10.3390/qubs10010002 - 4 Jan 2026
Viewed by 133
Abstract
To investigate the in situ irradiation effects of gallium nitride at varying temperatures, we combined ion beam-induced luminescence spectroscopy with variable-temperature irradiation using a home-built IBIL system and a GIC4117 2 × 1.7 MV tandem accelerator. Unlike previous static studies—limited to post-irradiation or [...] Read more.
To investigate the in situ irradiation effects of gallium nitride at varying temperatures, we combined ion beam-induced luminescence spectroscopy with variable-temperature irradiation using a home-built IBIL system and a GIC4117 2 × 1.7 MV tandem accelerator. Unlike previous static studies—limited to post-irradiation or single-temperature luminescence—we in situ tracked dynamic luminescence changes throughout irradiation, directly capturing the real-time responses of luminescent centers to coupled temperature-dose variations—a rare capability in prior work. To clarify how irradiation and temperature affect the luminescent centers of GaN, we integrated density functional theory (DFT) calculations with literature analysis, then resolved the yellow luminescence band into three emission centers via Gaussian deconvolution: 1.78 eV associated with C/O impurities, 1.94 eV linked to VGa, and 2.2 eV corresponding to CN defects. Using a single-exponential decay model, we further quantified the temperature- and dose-dependent decay rates of these centers under dual-variable temperature and dose conditions. Experimental results show that low-temperature irradiation such as at 100 K suppresses the migration and recombination of VGa/CN point defects, significantly enhancing the radiation tolerance of the 1.94 eV and 2.2 eV emission centers; meanwhile, it reduces non-radiative recombination center density, stabilizing free excitons and donor-bound excitons, thereby improving near-band-edge emission center resistance. Notably, the 1.94 eV emission center linked to gallium vacancies exhibits superior cryogenic radiation tolerance due to slower defect migration and more stable free exciton/donor-bound exciton states. Collectively, these findings reveal a synergistic regulation mechanism of temperature and radiation fluence on defect stability, addressing a key gap in static studies, providing a basis for understanding degradation mechanisms of gallium nitride-based devices under actual operating conditions (coexisting temperature fluctuations and continuous radiation), and offering theoretical/experimental support for optimizing radiation-hardened gallium nitride devices for extreme environments such as space or nuclear applications. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2025)
Show Figures

Figure 1

21 pages, 8575 KB  
Article
Spectral Unmixing of Airborne and Ground-Based Imaging Spectroscopy for Pigment-Specific FAPAR and Sun-Induced Fluorescence Interpretation
by Ana B. Pascual-Venteo, Adrián Pérez-Suay, Miguel Morata, Adrián Moncholí, Maria Pilar Cendrero-Mateo, Jorge Vicent Servera, Bastian Siegmann and Shari Van Wittenberghe
Remote Sens. 2026, 18(1), 146; https://doi.org/10.3390/rs18010146 - 1 Jan 2026
Viewed by 320
Abstract
Accurate quantification of photosynthetically active radiation absorbed by chlorophyll (fAPARChla) and the corresponding fluorescence quantum efficiency (FQE) is critical for understanding vegetation productivity. In this study, we investigate the retrieval of pigment-specific effective absorbance and Sun-Induced Chlorophyll Fluorescence (SIF) [...] Read more.
Accurate quantification of photosynthetically active radiation absorbed by chlorophyll (fAPARChla) and the corresponding fluorescence quantum efficiency (FQE) is critical for understanding vegetation productivity. In this study, we investigate the retrieval of pigment-specific effective absorbance and Sun-Induced Chlorophyll Fluorescence (SIF) using both airborne hyperspectral imagery (HyPlant) and ground-based field spectroscopy (FloX) over a well-irrigated alfalfa field in northeastern Spain. Spectral unmixing techniques, including Constrained Least Squares (CLS), Potential Function (POT), and Bilinear (BIL) models, were applied to disentangle pigment and background contributions. The CLS approach was identified as the most robust, balancing reconstruction accuracy with physical plausibility. We derived fAPARChla from the abundance-weighted pigment absorbance and combined it with spectrally-integrated SIF to calculate FQE. Comparisons between airborne and ground-based measurements revealed strong agreement, highlighting the potential of this combined methodology. The study demonstrates the applicability of advanced spectral unmixing frameworks for both airborne and proximal sensing data, providing a reliable baseline for photosynthetic efficiency in a healthy crop and establishing a foundation for future stress detection studies. Full article
Show Figures

Figure 1

Back to TopTop