Spectral Unmixing of Airborne and Ground-Based Imaging Spectroscopy for Pigment-Specific FAPAR and Sun-Induced Fluorescence Interpretation
Highlights
- Constrained Least Squares (CLS) spectral unmixing provides robust and physically plausible estimates of pigment-specific absorbance from hyperspectral data.
- Airborne (HyPlant) and ground-based (FloX) observations show strong agreement in retrieved and fluorescence quantum efficiency (FQE).
- The proposed framework enables consistent estimation of photosynthetic efficiency across sensing scales using combined reflectance and SIF information.
- Results establish a reliable baseline for monitoring photosynthetic performance in healthy crops and support future stress detection studies.
Abstract
1. Introduction
2. Materials & Methods
2.1. Experimental Site
2.2. Airborne Campaign and Preprocessed Products
2.2.1. Sensor and Campaign Overview
2.2.2. Spatial Sampling
2.2.3. TOC Reflectance and At-Surface Irradiance
2.2.4. SIF at the Absorption Bands
2.3. Field Spectroscopy
2.4. Spectral Endmembers
2.4.1. Soil Endmembers
2.4.2. Background and Pigment Bases
2.5. Spectral NNLS Unmixing Framework for (f)APAR Components
2.5.1. Constrained Least Squares (CLS) Model
2.5.2. Potential Model
2.5.3. Bilinear Model
2.6. Airborne Versus Ground-Based Retrieval of and FQE
3. Results
3.1. Spectral Pigment and Background Unmixing
3.2. fAPAR Chlorophyll a Based on CLS Spectral Fitting
3.3. APAR Chl, Spectrally-Resolved SIF and FQE
4. Discussion
5. Conclusions & Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eng, D.; Baranoski, G.V.G. The Application of Photoacoustic Absorption Spectral Data to the Modeling of Leaf Optical Properties in the Visible Range. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4077–4086. [Google Scholar] [CrossRef]
- Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; van der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.; Meroni, M.; et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 2019, 231, 111177. [Google Scholar] [CrossRef] [PubMed]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Zheng, B.; Ciais, P.; Chevallier, F.; Yang, H.; Canadell, J.G.; Chen, Y.; van der Velde, I.R.; Aben, I.; Chuvieco, E.; Davis, S.J.; et al. Record-high CO2 emissions from boreal fires in 2021. Science 2023, 379, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef]
- Drusch, M.; Moreno, J.; Del Bello, U.; Franco, R.; Goulas, Y.; Huth, A.; Kraft, S.; Middleton, E.M.; Miglietta, F.; Mohammed, G.; et al. The FLuorescence EXplorer Mission Concept-ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1273–1284. [Google Scholar] [CrossRef]
- Berger, K.; Machwitz, M.; Kycko, M.; Kefauver, S.C.; Van Wittenberghe, S.; Gerhards, M.; Verrelst, J.; Atzberger, C.; van der Tol, C.; Damm, A.; et al. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. Remote Sens. Environ. 2022, 280, 113198. [Google Scholar] [CrossRef]
- Kaufmann, H.; Segl, K.; Guanter, L.; Hofer, S.; Foerster, K.P.; Stuffler, T.; Mueller, A.; Richter, R.; Bach, H.; Hostert, P.; et al. Environmental Mapping and Analysis Program (EnMAP) - Recent Advances and Status. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 4, pp. IV-09–IV-112. [Google Scholar] [CrossRef]
- Pignatti, S.; Palombo, A.; Pascucci, S.; Romano, F.; Santini, F.; Simoniello, T.; Umberto, A.; Vincenzo, C.; Acito, N.; Diani, M.; et al. The PRISMA hyperspectral mission: Science activities and opportunities for agriculture and land monitoring. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 4558–4561. [Google Scholar] [CrossRef]
- Moreno, J.F. Advances in the Retrieval and Interpretation of Solar-Induced Vegetation Chlorophyll Fluorescence Using Passive Remote Sensing Techniques. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1915–1918. [Google Scholar] [CrossRef]
- Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Berry, J.A.; Frankenberg, C.; Huete, A.R.; Zarco-Tejada, P.; Lee, J.E.; et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. USA 2014, 111, E1327–E1333. [Google Scholar] [CrossRef]
- Rascher, U.; Alonso, L.; Burkart, A.; Cilia, C.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Guanter, L.; Hanus, J.; et al. Sun-induced fluorescence—A new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Glob. Change Biol. 2015, 21, 4673–4684. [Google Scholar] [CrossRef]
- Siegmann, B.; Alonso, L.; Celesti, M.; Cogliati, S.; Colombo, R.; Damm, A.; Douglas, S.; Guanter, L.; Hanuš, J.; Kataja, K.; et al. The High-Performance Airborne Imaging Spectrometer HyPlant—From Raw Images to Top-of-Canopy Reflectance and Fluorescence Products: Introduction of an Automatized Processing Chain. Remote Sens. 2019, 11, 2760. [Google Scholar] [CrossRef]
- Cook, B.; Corp, L.; Clemens, P.; Paynter, I.; Nagol, J.; McCorkel, J. Characterization of Firefly, an Imaging Spectrometer Designed for Airborne Measurements of Solar-Induced Fluorescence. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3943–3946. [Google Scholar] [CrossRef]
- Frankenberg, C.; Köhler, P.; Magney, T.S.; Geier, S.; Lawson, P.; Schwochert, M.; McDuffie, J.; Drewry, D.T.; Pavlick, R.; Kuhnert, A. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS), mapping far red fluorescence from aircraft. Remote Sens. Environ. 2018, 217, 523–536. [Google Scholar] [CrossRef]
- Cogliati, S.; Rossini, M.; Julitta, T.; Meroni, M.; Schickling, A.; Burkart, A.; Pinto, F.; Rascher, U.; Colombo, R. Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems. Remote Sens. Environ. 2015, 164, 270–281. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Li, F.; Zheng, J.; Lai, P.; Deng, C.; Tang, M.; Wang, S. Robust spatially regularized sparse unmixing of hyperspectral remote sensing images with spectral library pruning. Infrared Phys. Technol. 2025, 145, 105697. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, M.; Xie, H.; Yue, P.; Zhang, W.; Jiao, Q.; Xu, L.; Tan, X. A Global Spatial-Spectral Feature Fused Autoencoder for Nonlinear Hyperspectral Unmixing. Remote Sens. 2024, 16, 3149. [Google Scholar] [CrossRef]
- Zou, J.; Qu, H.; Zhang, P. Conventional to Deep Learning Methods for Hyperspectral Unmixing: A Review. Remote Sens. 2025, 17, 2968. [Google Scholar] [CrossRef]
- Rasti, B.; Zouaoui, A.; Mairal, J.; Chanussot, J. Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python Package. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5517631. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Z.; Zhai, J.; Zhang, L.; Tang, Y.; Peng, Y.; Zhou, T. EDTST: Efficient Dynamic Token Selection Transformer for Hyperspectral Image Classification. Remote Sens. 2025, 17, 3180. [Google Scholar] [CrossRef]
- Dai, X.; Li, Z.; Li, L.; Xue, S.; Huang, X.; Yang, X. HyperTransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Hyperspectral Image Classification. Remote Sens. 2025, 17, 2361. [Google Scholar] [CrossRef]
- Li, Z.; An, W.; Guo, G.; Wang, L.; Wang, Y.; Lin, Z. SpecDETR: A transformer-based hyperspectral point object detection network. ISPRS J. Photogramm. Remote Sens. 2025, 226, 221–246. [Google Scholar] [CrossRef]
- Van Wittenberghe, S.; Amin, E.; Pascual-Venteo, A.B.; Pérez-Suay, A.; Tenjo, C.; Sabater, N.; van der Tol, C.; Drusch, M.; Moreno, J. Retrieval of leaf-level fluorescence quantum efficiency and NPQ-related xanthophyll absorption through spectral unmixing strategies for future VIS-NIR imaging spectroscopy. Remote Sens. Environ. 2024, 300, 113879. [Google Scholar] [CrossRef]
- Ochoa, F.; Brodrick, P.G.; Okin, G.S.; Ben-Dor, E.; Meyer, T.; Thompson, D.R.; Green, R.O. Soil and vegetation cover estimation for global imaging spectroscopy using spectral mixture analysis. Remote Sens. Environ. 2025, 324, 114746. [Google Scholar] [CrossRef]
- Altmann, Y.; Dobigeon, N.; Tourneret, J.Y.; McLaughlin, S. Nonlinear hyperspectral unmixing using Gaussian processes. In Proceedings of the 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, FL, USA, 26–28 June 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Halimi, A.; Altmann, Y.; Dobigeon, N.; Tourneret, J.Y. Nonlinear unmixing of hyperspectral images using a generalized bilinear model. In Proceedings of the 2011 IEEE Statistical Signal Processing Workshop (SSP), Nice, France, 28–30 June 2011; pp. 413–416. [Google Scholar] [CrossRef]
- Tømmervik, H.; Julitta, T.; Nilsen, L.; Park, T.; Burkart, A.; Ostapowicz, K.; Karlsen, S.R.; Frans-Jan·Parmentier; Pirk, N.; Bjerke, J.W. The northernmost hyperspectral FloX sensor dataset for monitoring of high-Arctic tundra vegetation phenology and Sun-Induced Fluorescence (SIF). Data Brief 2023, 50, 109581. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef]
- Vicent, J.; Verrelst, J.; Sabater, N.; Alonso, L.; Rivera-Caicedo, J.P.; Martino, L.; Muñoz-Marí, J.; Moreno, J. Comparative analysis of atmospheric radiative transfer models using the Atmospheric Look-up table Generator (ALG) toolbox (version 2.0). Geosci. Model Dev. 2020, 13, 1945–1957. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Medium-Range Weather Forecasts. Copernicus Atmosphere Monitoring Service Data. European Union, Copernicus Programme. 2024. Available online: https://atmosphere.copernicus.eu/data (accessed on 15 December 2025).
- Siegmann, B.; Quiros-Vargas, J.; Krämer, J.; Bendig, J.; Salattna, S.; Rascher, U. Measuring Solar-Induced Chlorophyll Fluorescence (SIF) Across Scales: First Results from the LIAISE Field Campaign, July 2021; LIAISE field campaign report/presentation; LIAISE: London, UK, 2021. [Google Scholar]
- Morata, M.; Siegmann, B.; García-Soria, J.L.; Rivera-Caicedo, J.P.; Verrelst, J. On the potential of principal component analysis for the reconstruction of full-spectrum SIF emission and emulated airborne-to-satellite upscaling. Remote Sens. Environ. 2025, 328, 114865. [Google Scholar] [CrossRef]
- Cogliati, S.; Celesti, M.; Cesana, I.; Miglietta, F.; Genesio, L.; Julitta, T.; Schuettemeyer, D.; Drusch, M.; Rascher, U.; Jurado, P.; et al. A Spectral Fitting Algorithm to Retrieve the Fluorescence Spectrum from Canopy Radiance. Remote Sens. 2019, 11, 1840. [Google Scholar] [CrossRef]
- Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1995. [Google Scholar] [CrossRef]
- Somers, B.; Cools, K.; Delalieux, S.; Stuckens, J.; Van der Zande, D.; Verstraeten, W.W.; Coppin, P. Nonlinear Hyperspectral Mixture Analysis for tree cover estimates in orchards. Remote Sens. Environ. 2009, 113, 1183–1193. [Google Scholar] [CrossRef]
- Regaieg, O.; Malenovský, Z.; Siegmann, B.; Buffat, J.; Krämer, J.; Lauret, N.; Le Dantec, V. DART-based temporal and spatial retrievals of solar-induced chlorophyll fluorescence quantum efficiency from in-situ and airborne crop observations. Remote Sens. Environ. 2025, 319, 114636. [Google Scholar] [CrossRef]
- Amoros-Lopez, J.; Gomez-Chova, L.; Vila-Frances, J.; Alonso, L.; Calpe, J.; Moreno, J.; del Valle-Tascon, S. Evaluation of remote sensing of vegetation fluorescence by the analysis of diurnal cycles. Int. J. Remote Sens. 2008, 29, 5423–5436. [Google Scholar] [CrossRef]
- Hu, M.; Cheng, X.; Zhang, J.; Huang, H.; Zhou, Y.; Wang, X.; Pan, Q.; Guan, C. Temporal Variation in Tower-Based Solar-Induced Chlorophyll Fluorescence and Its Environmental Response in a Chinese Cork Oak Plantation. Remote Sens. 2023, 15, 3568. [Google Scholar] [CrossRef]
- Bendig, J.; Malenovský, Z.; Siegmann, B.; Krämer, J.; Rascher, U. Comparing methods for solar-induced fluorescence efficiency estimation using radiative transfer modelling and airborne diurnal measurements of barley crops. Remote Sens. Environ. 2025, 317, 114521. [Google Scholar] [CrossRef]
- Krämer, J.; Siegmann, B.; Kraska, T.; Muller, O.; Rascher, U. The potential of spatial aggregation to extract remotely sensed sun-induced fluorescence (SIF) of small-sized experimental plots for applications in crop phenotyping. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102565. [Google Scholar] [CrossRef]
- Campbell, P.K.E.; Huemmrich, K.F.; Middleton, E.M.; Ward, L.A.; Julitta, T.; Daughtry, C.S.T.; Burkart, A.; Russ, A.L.; Kustas, W.P. Diurnal and Seasonal Variations in Chlorophyll Fluorescence Associated with Photosynthesis at Leaf and Canopy Scales. Remote Sens. 2019, 11, 488. [Google Scholar] [CrossRef]












| Day | Sensor | Start Time | Final Time |
|---|---|---|---|
| 15 | HyPlant, FloX | 03:29:00 PM | 04:22:00 PM |
| 16 | HyPlant, FloX | 03:01:00 PM | 03:52:00 PM |
| 17 | HyPlant, FloX | 01:27:00 PM | 02:19:00 PM |
| 20 | HyPlant, FloX | 03:00:00 PM | 03:51:00 PM |
| 21 | HyPlant, FloX | 03:10:00 PM | 04:02:00 PM |
| 22 | HyPlant, FloX | 01:32:00 PM | 02:26:00 PM |
| 27 | HyPlant | 01:12:00 PM | 02:02:00 PM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pascual-Venteo, A.B.; Pérez-Suay, A.; Morata, M.; Moncholí, A.; Cendrero-Mateo, M.P.; Servera, J.V.; Siegmann, B.; Van Wittenberghe, S. Spectral Unmixing of Airborne and Ground-Based Imaging Spectroscopy for Pigment-Specific FAPAR and Sun-Induced Fluorescence Interpretation. Remote Sens. 2026, 18, 146. https://doi.org/10.3390/rs18010146
Pascual-Venteo AB, Pérez-Suay A, Morata M, Moncholí A, Cendrero-Mateo MP, Servera JV, Siegmann B, Van Wittenberghe S. Spectral Unmixing of Airborne and Ground-Based Imaging Spectroscopy for Pigment-Specific FAPAR and Sun-Induced Fluorescence Interpretation. Remote Sensing. 2026; 18(1):146. https://doi.org/10.3390/rs18010146
Chicago/Turabian StylePascual-Venteo, Ana B., Adrián Pérez-Suay, Miguel Morata, Adrián Moncholí, Maria Pilar Cendrero-Mateo, Jorge Vicent Servera, Bastian Siegmann, and Shari Van Wittenberghe. 2026. "Spectral Unmixing of Airborne and Ground-Based Imaging Spectroscopy for Pigment-Specific FAPAR and Sun-Induced Fluorescence Interpretation" Remote Sensing 18, no. 1: 146. https://doi.org/10.3390/rs18010146
APA StylePascual-Venteo, A. B., Pérez-Suay, A., Morata, M., Moncholí, A., Cendrero-Mateo, M. P., Servera, J. V., Siegmann, B., & Van Wittenberghe, S. (2026). Spectral Unmixing of Airborne and Ground-Based Imaging Spectroscopy for Pigment-Specific FAPAR and Sun-Induced Fluorescence Interpretation. Remote Sensing, 18(1), 146. https://doi.org/10.3390/rs18010146

