Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = radiation shielding glasses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6812 KiB  
Article
Evolution of the Radiation Shielding, Optical, and Luminescence Properties of PbO2-SiO2 Glass Systems and the Influence of Rare Earth Elements (Eu, Ce, Yb)
by Mioara Zagrai, Ramona-Crina Suciu, Radu Cristian Gavrea and Vasile Rednic
Appl. Sci. 2025, 15(2), 864; https://doi.org/10.3390/app15020864 - 16 Jan 2025
Cited by 1 | Viewed by 1186
Abstract
This study explores the physical, radiation shielding, optical, and photoluminescent properties of PbO2-SiO2-based glass systems. Traditional radiation shielding materials, like lead and concrete, face challenges due to toxicity and weight. Glass materials provide an alternative, offering transparency and efficiency. [...] Read more.
This study explores the physical, radiation shielding, optical, and photoluminescent properties of PbO2-SiO2-based glass systems. Traditional radiation shielding materials, like lead and concrete, face challenges due to toxicity and weight. Glass materials provide an alternative, offering transparency and efficiency. Four glass systems were analyzed: PbO2-SiO2 (PS), PbO2-SiO2-CeO2 (PSC), PbO2-SiO2-Eu2O3 (PSE), and PbO2-SiO2-Yb2O3 (PSY). The results show that rare earth elements densify the glass network, thereby enhancing radiation attenuation properties, quantified through parameters like the linear attenuation coefficient (μ), the half-value layer (HVL), and the mean free path (MFP). The PSY system exhibited the best shielding properties, demonstrating its potential for use in gamma ray shielding. Samples PS0–PS3 revealed semiconducting behavior and may be considered a promising host matrix for solar cells and w-LED applications. Full article
Show Figures

Figure 1

6 pages, 1764 KiB  
Proceeding Paper
Impact of Gd2O3 Incorporation in Structural, Optical, Thermal, Mechanical, and Radiation Blocking Nature in HMO Boro-Tellurite Glasses
by Ashwitha Nancy D’Souza, M. I. Sayyed and Sudha D. Kamath
Eng. Proc. 2023, 55(1), 97; https://doi.org/10.3390/engproc2023055097 - 26 Mar 2024
Cited by 3 | Viewed by 949
Abstract
The glass system of B2O3-SiO2-TeO2-Bi2O3-ZnO-BaO doped with Gd2O3 (x = 0, 1, 2, 3, and 4 mol%) (BiTeGd-x) was prepared by using the melt-quench technique. The density of [...] Read more.
The glass system of B2O3-SiO2-TeO2-Bi2O3-ZnO-BaO doped with Gd2O3 (x = 0, 1, 2, 3, and 4 mol%) (BiTeGd-x) was prepared by using the melt-quench technique. The density of glasses increased from 5.323–5.579 g cm−3 for 0–4 mol% with an increase in Gd2O3 concentration. The simulation results obtained using Photon Shielding and Dosimetry (PSD) software (Phy-X version) produced the maximum mass attenuation coefficient (MAC) and minimum half-value layer (HVL) in the entire photon energy spectrum 0.015–15 MeV, suggesting the highest potential of BiTeGd-4 glass to act as a shield against low and high-energy radiation photons. Full article
Show Figures

Figure 1

30 pages, 41662 KiB  
Review
A Comprehensive Review on the Thermal Stability Assessment of Polymers and Composites for Aeronautics and Space Applications
by Giuseppina Barra, Liberata Guadagno, Marialuigia Raimondo, Maria Gabriella Santonicola, Elisa Toto and Stefano Vecchio Ciprioti
Polymers 2023, 15(18), 3786; https://doi.org/10.3390/polym15183786 - 16 Sep 2023
Cited by 62 | Viewed by 10252
Abstract
This review article provides an exhaustive survey on experimental investigations regarding the thermal stability assessment of polymers and polymer-based composites intended for applications in the aeronautical and space fields. This review aims to: (1) come up with a systematic and critical overview of [...] Read more.
This review article provides an exhaustive survey on experimental investigations regarding the thermal stability assessment of polymers and polymer-based composites intended for applications in the aeronautical and space fields. This review aims to: (1) come up with a systematic and critical overview of the state-of-the-art knowledge and research on the thermal stability of various polymers and composites, such as polyimides, epoxy composites, and carbon-filled composites; (2) identify the key factors, mechanisms, methods, and challenges that affect the thermal stability of polymers and composites, such as the temperature, radiation, oxygen, and degradation; (3) highlight the current and potential applications, benefits, limitations, and opportunities of polymers and composites with high thermal stability, such as thermal control, structural reinforcement, protection, and energy conversion; (4) give a glimpse of future research directions by providing indications for improving the thermal stability of polymers and composites, such as novel materials, hybrid composites, smart materials, and advanced processing methods. In this context, thermal analysis plays a crucial role in the development of polyimide-based materials for the radiation shielding of space solar cells or spacecraft components. The main strategies that have been explored to improve the processability, optical transparency, and radiation resistance of polyimide-based materials without compromising their thermal stability are highlighted. The combination of different types of polyimides, such as linear and hyperbranched, as well as the incorporation of bulky pendant groups, are reported as routes for improving the mechanical behavior and optical transparency while retaining the thermal stability and radiation shielding properties. Furthermore, the thermal stability of polymer/carbon nanocomposites is discussed with particular reference to the role of the filler in radiation monitoring systems and electromagnetic interference shielding in the space environment. Finally, the thermal stability of epoxy-based composites and how it is influenced by the type and content of epoxy resin, curing agent, degree of cross-linking, and the addition of fillers or modifiers are critically reviewed. Some studies have reported that incorporating mesoporous silica micro-filler or microencapsulated phase change materials (MPCM) into epoxy resin can enhance its thermal stability and mechanical properties. The mesoporous silica composite exhibited the highest glass transition temperature and activation energy for thermal degradation among all the epoxy-silica nano/micro-composites. Indeed, an average activation energy value of 148.86 kJ/mol was recorded for the thermal degradation of unfilled epoxy resin. The maximum activation energy range was instead recorded for composites loaded with mesoporous microsilica. The EMC-5p50 sample showed the highest mean value of 217.6 kJ/mol. This remarkable enhancement was ascribed to the polymer invading the silica pores and forging formidable interfacial bonds. Full article
(This article belongs to the Collection Polymer/Biopolymer Stabilization and Degradation)
Show Figures

Figure 1

19 pages, 2641 KiB  
Article
Theoretical Investigation of the Influence of Different Heavy Metal Oxides Modifiers on ZnO-Bi2O3-B2O3-SiO2’s Photon- and Neutron-Shielding Capabilities Using the Monte Carlo Method
by Hanan Akhdar
Appl. Sci. 2023, 13(16), 9332; https://doi.org/10.3390/app13169332 - 17 Aug 2023
Cited by 1 | Viewed by 1184
Abstract
Radiation has become an essential part in medicine and researchers are constituently investigating radiation shielding materials that are suitable for different medical applications. Glass, due to its properties, has been considered an excellent radiation shield for such applications. One of the most common [...] Read more.
Radiation has become an essential part in medicine and researchers are constituently investigating radiation shielding materials that are suitable for different medical applications. Glass, due to its properties, has been considered an excellent radiation shield for such applications. One of the most common glasses used as a radiation shield is the ZnO-Bi2O3-B2O3-SiO2 anti-radiation glass. Heavy metal oxides have many desirable properties such as high density, transparency to visible light, stability in air and water, high interaction cross section, high infrared transparency, and good absorption of radiation, which make them desirable to be used as modifiers with anti-radiation glass. Research has been focusing on environmentally friendly shielding material which leads to non-lead modifiers such as Na2O, Al2O3, MgO, TiO2, SrO, Sb2O3, and BaO, which have become more desired than PbO. So far, ZnO-Bi2O3-B2O3-SiO2’s photon shielding properties have been studied experimentally with the addition of BaO at certain energies only. In this work, different heavy metal oxides are added as modifiers to ZnO-Bi2O3-B2O3-SiO2 glass in order to investigate theoretically their effects on the shielding properties of the glass at a wide range of photon and neutron energies. Simulation is cost- and time-effective when it comes to investigating different compositions of glass and different modifiers with different weight percentages at any energy range for any type of radiation. Simulation could be considered the first step in order to identify the best mixture with the best weight fractions prior to any experimental investigations of other desired properties based on the needed application. In this work, the photon- and neutron-shielding capabilities of the ZnO-Bi2O3-B2O3-SiO2 anti-radiation glass is investigated with different weight fractions of heavy metal oxides at wide photon and neutron energy ranges. Geant4, which is a Monte Carlo-based powerful toolkit, is used to find the mass attenuation coefficients (µm) of photons, as well as the effective removal cross sections (ΣR) of neutrons, of all the investigated samples in the studied energy range. Full article
Show Figures

Figure 1

21 pages, 4225 KiB  
Article
Synthesis and Characterization of Zinc-Lead-Phosphate Glasses Doped with Europium for Radiation Shielding
by Ahmed M. El-Khayatt, Heba A. Saudi and Norah H. AlRowis
Sustainability 2023, 15(12), 9245; https://doi.org/10.3390/su15129245 - 7 Jun 2023
Cited by 5 | Viewed by 2309
Abstract
Appropriate glass systems can provide efficient transparent radiation shielding. The current study involved the preparation of the glass system with a composition of xEu2O3-(15-x)ZnO-10CaO-35PbO-40P2O5 (where x = 0, 1, 2, 3, and 4 wt.% Eu2 [...] Read more.
Appropriate glass systems can provide efficient transparent radiation shielding. The current study involved the preparation of the glass system with a composition of xEu2O3-(15-x)ZnO-10CaO-35PbO-40P2O5 (where x = 0, 1, 2, 3, and 4 wt.% Eu2O3). The formation of the glass phase was confirmed using X-ray diffraction (XRD). The study analyzed physical and structural parameters, such as optical conductivity (σopt), refractive index (n), and optical band gap (Eg), with the amount of Eu2O3. The findings indicate that the optical band gap increased as the Eu2O3 content increased. Additionally, a decrease in Urbach energy (EU) was observed, suggesting an improvement in the orderliness of the glass. The study also determined various parameters for gamma-ray shielding, including mass attenuation coefficient (μm), effective atomic number (Zeff), and kerma coefficient (k). For neutron shielding characteristics, the macroscopic effective removal cross-section (ΣR) of fast neutrons was calculated. Full article
Show Figures

Figure 1

14 pages, 2852 KiB  
Article
Lead-Free Ternary Glass for Radiation Protection: Composition and Performance Evaluation for Solar Cell Coverage
by Mohamed A. M. Uosif, Shams A. M. Issa, Antoaneta Ene, Ahmed M. A. Mostafa, Ali Atta, Emam F. El Agammy and Hesham M. H. Zakaly
Materials 2023, 16(8), 3036; https://doi.org/10.3390/ma16083036 - 12 Apr 2023
Cited by 9 | Viewed by 1929
Abstract
Solar cells in superstrate arrangement need a protective cover glass as one of its main components. The effectiveness of these cells is determined by the cover glass’s low weight, radiation resistance, optical clarity, and structural integrity. Damage to the cell covers brought on [...] Read more.
Solar cells in superstrate arrangement need a protective cover glass as one of its main components. The effectiveness of these cells is determined by the cover glass’s low weight, radiation resistance, optical clarity, and structural integrity. Damage to the cell covers brought on by exposure to UV irradiation and energetic radiation is thought to be the root cause of the ongoing issue of a reduction in the amount of electricity that can be generated by solar panels installed on spacecraft. Lead-free glasses made of xBi2O3–(40 − x)CaO-60P2O5 (x = 5, 10, 15, 20, 25, and 30 mol%) were created using the usual approach of melting at a high temperature. The amorphous nature of the glass samples was confirmed using X-ray diffraction. At energies of 81, 238, 356, 662, 911, 1173, 1332, and 2614 keV, the impact of various chemical compositions on gamma shielding in a phospho-bismuth glass structure was measured. The evaluation of gamma shielding revealed that the results of the mass attenuation coefficient of glasses increase as the Bi2O3 content increases but decrease as the photon energy increases. As a result of the study conducted on the radiation-deflecting properties of ternary glass, a lead-free low-melting phosphate glass that exhibited outstanding overall performance was developed, and the optimal composition of a glass sample was identified. The 60P2O5–30Bi2O3–10CaO glass combination is a viable option for use in radiation shielding that does not include lead. Full article
(This article belongs to the Special Issue Recent Advances in Electromagnetic Interference Shielding Materials)
Show Figures

Figure 1

19 pages, 7958 KiB  
Article
Investigation of the Effect of PbO Doping on Telluride Glass Ceramics as a Potential Material for Gamma Radiation Shielding
by Artem L. Kozlovskiy, Dmitriy I. Shlimas, Maxim V. Zdorovets, Edgars Elsts, Marina Konuhova and Anatoli I. Popov
Materials 2023, 16(6), 2366; https://doi.org/10.3390/ma16062366 - 15 Mar 2023
Cited by 12 | Viewed by 2076
Abstract
The purpose of this paper is to study the effect of PbO doping of multicomponent composite glass-like ceramics based on TeO2, WO3, Bi2O3, MoO3, and SiO2, which are one of the [...] Read more.
The purpose of this paper is to study the effect of PbO doping of multicomponent composite glass-like ceramics based on TeO2, WO3, Bi2O3, MoO3, and SiO2, which are one of the promising materials for gamma radiation shielding. According to X-ray diffraction data, it was found that the PbO dopant concentration increase from 0.10 to 0.20–0.25 mol results in the initialization of the phase transformation and structural ordering processes, which are expressed in the formation of SiO2 and PbWO4 phases, and the crystallinity degree growth. An analysis of the optical properties showed that a change in the ratio of the contributions of the amorphous and ordered fractions leads to the optical density increase and the band gap alteration, as well as a variation in the optical characteristics. During the study of the strength and mechanical properties of the synthesized ceramics, depending on the dopant concentration, it was found that when inclusions in the form of PbWO4 are formed in the structure, the strength characteristics increase by 70–80% compared to the initial data, which indicates the doping efficiency and a rise in the mechanical strength of ceramics to external influences. During evaluation of the shielding protective characteristics of the synthesized ceramics, it was revealed that the formation of PbWO4 in the structure results in a rise in the high-energy gamma ray absorption efficiency. Full article
(This article belongs to the Special Issue Fabrications and Characterization of Different Glasses Systems)
Show Figures

Figure 1

25 pages, 9621 KiB  
Review
Polymer/Graphene Nanocomposites via 3D and 4D Printing—Design and Technical Potential
by Ayesha Kausar, Ishaq Ahmad, Tingkai Zhao, O. Aldaghri and M. H. Eisa
Processes 2023, 11(3), 868; https://doi.org/10.3390/pr11030868 - 14 Mar 2023
Cited by 32 | Viewed by 5081
Abstract
Graphene is an important nanocarbon nanofiller for polymeric matrices. The polymer–graphene nanocomposites, obtained through facile fabrication methods, possess significant electrical–thermal–mechanical and physical properties for technical purposes. To overcome challenges of polymer–graphene nanocomposite processing and high performance, advanced fabrication strategies have been applied to [...] Read more.
Graphene is an important nanocarbon nanofiller for polymeric matrices. The polymer–graphene nanocomposites, obtained through facile fabrication methods, possess significant electrical–thermal–mechanical and physical properties for technical purposes. To overcome challenges of polymer–graphene nanocomposite processing and high performance, advanced fabrication strategies have been applied to design the next-generation materials–devices. This revolutionary review basically offers a fundamental sketch of graphene, polymer–graphene nanocomposite and three-dimensional (3D) and four-dimensional (4D) printing techniques. The main focus of the article is to portray the impact of 3D and 4D printing techniques in the field of polymer–graphene nanocomposites. Polymeric matrices, such as polyamide, polycaprolactone, polyethylene, poly(lactic acid), etc. with graphene, have been processed using 3D or 4D printing technologies. The 3D and 4D printing employ various cutting-edge processes and offer engineering opportunities to meet the manufacturing demands of the nanomaterials. The 3D printing methods used for graphene nanocomposites include direct ink writing, selective laser sintering, stereolithography, fused deposition modeling and other approaches. Thermally stable poly(lactic acid)–graphene oxide nanocomposites have been processed using a direct ink printing technique. The 3D-printed poly(methyl methacrylate)–graphene have been printed using stereolithography and additive manufacturing techniques. The printed poly(methyl methacrylate)–graphene nanocomposites revealed enhanced morphological, mechanical and biological properties. The polyethylene–graphene nanocomposites processed by fused diffusion modeling have superior thermal conductivity, strength, modulus and radiation- shielding features. The poly(lactic acid)–graphene nanocomposites have been processed using a number of 3D printing approaches, including fused deposition modeling, stereolithography, etc., resulting in unique honeycomb morphology, high surface temperature, surface resistivity, glass transition temperature and linear thermal coefficient. The 4D printing has been applied on acrylonitrile-butadiene-styrene, poly(lactic acid) and thermosetting matrices with graphene nanofiller. Stereolithography-based 4D-printed polymer–graphene nanomaterials have revealed complex shape-changing nanostructures having high resolution. These materials have high temperature stability and high performance for technical applications. Consequently, the 3D- or 4D-printed polymer–graphene nanocomposites revealed technical applications in high temperature relevance, photovoltaics, sensing, energy storage and other technical fields. In short, this paper has reviewed the background of 3D and 4D printing, graphene-based nanocomposite fabrication using 3D–4D printing, development in printing technologies and applications of 3D–4D printing. Full article
(This article belongs to the Special Issue Technological Advancements in Nanomaterials Synthesis and Application)
Show Figures

Graphical abstract

11 pages, 2869 KiB  
Article
A Promising Glass Type in Electronic and Laser Applications: Elastic Moduli, Mechanical, and Photon Transmission Properties of WO3 Reinforced Ternary-Tellurite Glasses
by Ghada ALMisned, Elaf Rabaa, Yasser S. Rammah, Ziad Y. Khattari, Duygu Sen Baykal, Erkan Ilik, Gokhan Kilic, Hesham M. H. Zakaly, Antoaneta Ene and Huseyin Ozan Tekin
Symmetry 2023, 15(3), 602; https://doi.org/10.3390/sym15030602 - 27 Feb 2023
Cited by 8 | Viewed by 1877
Abstract
We report the symmetry of mechanical and gamma-ray attenuation properties for some tellurite glasses through elastic moduli, mechanical, and transmission properties as a function of varied WO3 amount in glass configuration. Four glass samples, along with different molar compositions as well as [...] Read more.
We report the symmetry of mechanical and gamma-ray attenuation properties for some tellurite glasses through elastic moduli, mechanical, and transmission properties as a function of varied WO3 amount in glass configuration. Four glass samples, along with different molar compositions as well as WO3/GdF3 substitution ratios, are investigated. Transmission properties using several essential parameters, such as attenuation coefficients, half-value layers, effective atomic numbers, effective conductivity, and buildup factors, are calculated in the 0.015–15 MeV energy range. Moreover, elastic moduli and Poisson’s ratios (σ) of the studied glass are calculated using the Makishima–Mackenzie model. The M4 sample with the highest WO3 addition is found with superior photon attenuation properties among the glasses investigated. Poisson’s ratio (σ) is increased, while all elastic moduli are decreased. Young’s modulus is reported as 62.23 GPa and 36.45.37 GPa at the highest and lowest WO3 mol%, respectively. It can be concluded that WO3 is a functional and monotonic tool in ternary-tellurite glasses for multiple modifications and enhancement purposes on gamma-ray attenuation, elastic moduli, and mechanical properties. It can also be concluded that increasing the WO3 amount in tellurite glasses may be considered a tool in terms of providing symmetry for mechanical and gamma-ray attenuation properties. Full article
(This article belongs to the Special Issue Symmetry in Glass Systems: Nucleation, Mechanics, and Properties)
Show Figures

Figure 1

13 pages, 3440 KiB  
Article
Exploring the Radioprotective Indium (III) Oxide Screens for Mammography Scans Using a Three-Layer Heterogeneous Breast Phantom and MCNPX: A Comparative Study Using Clinical Findings
by Ghada ALMisned, Wiam Elshami, Gokhan Kilic, Erkan Ilik, Elaf Rabaa, Hesham M. H. Zakaly, Antoaneta Ene and Huseyin O. Tekin
Medicina 2023, 59(2), 327; https://doi.org/10.3390/medicina59020327 - 9 Feb 2023
Cited by 3 | Viewed by 1931
Abstract
Background: During mammography, a lead-acrylic protective screen is recommended to reduce radiation exposure to the unexposed breast. Objectives: This research study aimed to construct an Indium-(III)-oxide-rich tellurite-glass screen (TZI8) and compare its performance to that of lead acrylic. Materials and Methods: [...] Read more.
Background: During mammography, a lead-acrylic protective screen is recommended to reduce radiation exposure to the unexposed breast. Objectives: This research study aimed to construct an Indium-(III)-oxide-rich tellurite-glass screen (TZI8) and compare its performance to that of lead acrylic. Materials and Methods: A three-layer heterogeneous-breast phantom was developed, using the MCNPX (version 2.7.0) Monte Carlo code. An MCNPX-simulation geometry was designed and implemented, using the lead-acrylic and TZI8 shielding screens between the right and left breast. Next, the reliability of the phantom and the variations in absorption between the lead-acrylic and TZI8 glass were investigated. Results: The findings show that the TZI8-protective-glass screen offers significantly greater radioprotection than the lead-acrylic material. The quantity of total dose absorbed in the unexposed breast was much lower for TZI8 than for lead-based acrylic. The TZI8-glass screen gives about 60% more radioprotection than the lead-acrylic screen. Conclusion: Considering the toxic lead in the structure that may be hazardous to the human tissues, the TZI8-glass screen may be used in mammography examination to provide greater radioprotection than the lead-acrylic screen, in order to greatly reduce the dose to the unexposed breast. Full article
Show Figures

Figure 1

15 pages, 8538 KiB  
Article
Enhanced Emission of Tellurite Glass Doped with Pr3+/Ho3+ and Their Applications
by Bozena Burtan-Gwizdala, Manuela Reben, Jan Cisowski, Radosław Lisiecki, Bożena Jarząbek, Ali Alshehri, Khalid I. Hussein and El Sayed Yousef
Materials 2023, 16(3), 925; https://doi.org/10.3390/ma16030925 - 18 Jan 2023
Cited by 2 | Viewed by 2596
Abstract
The shielding and spectroscopic properties of Pr+3 and Pr3+/Ho3+-codoped tellurite glass were investigated. The intensity parameters (Ω2 = 3.24-, Ω4 = 1.64-, Ω6 = 1.10 × 10−20 cm2) as well as the radiative lifetimes of [...] Read more.
The shielding and spectroscopic properties of Pr+3 and Pr3+/Ho3+-codoped tellurite glass were investigated. The intensity parameters (Ω2 = 3.24-, Ω4 = 1.64-, Ω6 = 1.10 × 10−20 cm2) as well as the radiative lifetimes of 3F4 + 5S2 and 5I6 excited states of Ho3+ ions were equal to 301 μs and 3.0 μs, respectively. The former value appears to be much higher than that obtained from the lifetime measurement, indicating the presence of various energy transfer processes. The NIR spectrum of Pr3+/Ho3+-co-doped tellurite glass is dominated by strong Ho3+: 5I6 emission at around 1200 nm, being the result of the energy transfer from Pr3+ to Ho3+ ions. The shielding effectiveness of the prepared glasses showed good performance against high-energy photons. These findings suggest that the prepared glasses could be used in laser technology such as photodynamic therapy (PDT) treatment procedures and as shielding for radiation protection. Full article
Show Figures

Figure 1

10 pages, 1856 KiB  
Article
Operator Protection from Gamma Rays Using Ordinary Glass and Glass Doped with Nanoparticles
by Muhammad Zubair, Muhammad Aamir, Eslam Ahmed and Abdullrahman Abdullah Alyemni
Sustainability 2023, 15(2), 1375; https://doi.org/10.3390/su15021375 - 11 Jan 2023
Cited by 2 | Viewed by 3436
Abstract
Radiation-shielding glass is utilized in a few applications such as nuclear medicine, (PET) scans, x-rays, or treatment use. Nuclear reactors additionally require shielding from radiation types such as gamma, x-rays, and neutron emissions. Radiation-shielding glass is additionally utilized in the exploration and industry [...] Read more.
Radiation-shielding glass is utilized in a few applications such as nuclear medicine, (PET) scans, x-rays, or treatment use. Nuclear reactors additionally require shielding from radiation types such as gamma, x-rays, and neutron emissions. Radiation-shielding glass is additionally utilized in the exploration and industry fields, for example, in cyclotron support testing of non-destructive materials, and the improvement of airport x-ray machines. Notwithstanding, radiation-shielding glass utilizes space innovation to protect both the astronauts and tools from cosmic rays. Nanoparticles have been involved recently in those applications. Several simulations using MCNP 6 have been used in this study to compare a variety of conventional and nanoparticle-doped glass, including silicate glass (containing BiO or PbO), BZBB5, and glass containing nanoparticles, including Na2Si3O7/Ag, Al2H2Na2O13Si4/HgO, and lead borate glass containing ZrO2 to detect shielding properties for operators at different gamma energies. We investigated the percentage of transmitted photons, linear attenuation coefficient, half-value layer, and mean free path for the selected glass. Several shielding properties were not significantly different between the simulated results and the theoretical data available commercially. Based on the results, those parameters depend on the glass material due to their densities and atomic number. It has been found that 70 Bismuth(III) oxide:30 Silica has the best shield properties from gamma rays, such as a low percentage of transmitted photons, low HVL, and low MFP, which is due to its high density and atomic number. Full article
(This article belongs to the Special Issue Research Advances in Sustainable Materials and Structural Engineering)
Show Figures

Figure 1

17 pages, 7550 KiB  
Article
Synthesis of Novel Li2O-CuO-Bi2O3-B2O3 Glasses for Radiation Protection: An Experimental and Theoretical Study
by Maged S. Al-Fakeh, Emran Eisa Saleh and Faisal Alresheedi
Inorganics 2023, 11(1), 27; https://doi.org/10.3390/inorganics11010027 - 3 Jan 2023
Cited by 18 | Viewed by 2226
Abstract
Glass samples were synthesized according to 10Li2O + 20CuO + xBi2O3 + (70 − x)B2O3, where x = 0, 10, 20, 30, 40 mol% by the melt-quenching method. The ability of the prepared glass [...] Read more.
Glass samples were synthesized according to 10Li2O + 20CuO + xBi2O3 + (70 − x)B2O3, where x = 0, 10, 20, 30, 40 mol% by the melt-quenching method. The ability of the prepared glass to protect against gamma rays and neutrons was examined experimentally and theoretically. The mass attenuation coefficient (MAC) was calculated experimentally at energies of 0.662, 1.173, and 1.333 MeV using 137Cs and 60Co sources. The obtained results were compared with the theoretical ones using a Phy-x/PSD software program version 0.1.0.0. It was found that the experimental and theoretical results are very agreed upon. Moreover, other nuclear radiation shielding parameters were evaluated. The results showed that the addition of bismuth oxide leads to an improvement in the ability of the composite glass to attenuate gamma rays by increasing the values of MAC and Zeff, while it led to a decrease in the HVL and MFP, as well as the EBF and EABF. The results also showed that the addition of copper oxide led to an improvement in the ability of the present glass to slow down fast neutrons. Sample BiS40 showed the best result for gamma ray attenuation and sample BiS10 gave the best result for fast neutron removal cross section. The results were compared with some materials used for gamma ray shielding and fast neutron removal cross section, and it was concluded that samples Bi40 and BiS10 outperformed all commercial materials. Full article
Show Figures

Figure 1

19 pages, 5749 KiB  
Article
Investigating the Effect of Gamma and Neutron Irradiation on Portland Cement Provided with Waste Silicate Glass
by Mohanad S. Eid, Ibrahim I. Bondouk, Hosam M. Saleh, Khaled M. Omar and Hassan M. Diab
Sustainability 2023, 15(1), 763; https://doi.org/10.3390/su15010763 - 31 Dec 2022
Cited by 16 | Viewed by 2604
Abstract
In this study, samples of commercial Portland cement mixed with 30% weight of crushed waste silicate glass were prepared in the shape of well-dried cylinders. Then, their physical and mechanical properties were investigated for two types of samples: samples without exposure and samples [...] Read more.
In this study, samples of commercial Portland cement mixed with 30% weight of crushed waste silicate glass were prepared in the shape of well-dried cylinders. Then, their physical and mechanical properties were investigated for two types of samples: samples without exposure and samples with exposure to gamma-ray and neutron irradiation. A notable deterioration of the physical properties of the irradiated samples relative to the non-irradiated ones was recorded. All the spectroscopic analyses were performed for the samples with exposure and without exposure to gamma-ray and neutron irradiation. The XRD emerging peaks of irradiated samples were studied to estimate the presence and stabilities of major peaks indicating the presence of the main compositions of cement with the amorphous nature of glass. FT-IR transmittance spectra were identified and the bonds were located close to those of identical glasses. Moreover, SEM images and EDX analysis were conducted on the two types of composite samples (without exposure and with exposure to gamma and neutron irradiation) to specify the change in the physical appearance and the chemical composition after irradiation. The attenuation parameters were computed theoretically with the assistance of Phy-X/PSD software to evaluate the gamma-ray and neutron shielding properties by defining the composition and the density of the samples. The irradiation was found to have a negative impact on the shielding ability of the prepared samples where there was an over-reduction in the parameters calculated with the probability that the damage may increase with longer exposure to the radiation. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

16 pages, 4217 KiB  
Article
Physical Features of High-Density Barium–Tungstate–Phosphate (BTP) Glasses: Elastic Moduli, and Gamma Transmission Factors
by Hesham M. H. Zakaly, Huseyin O. Tekin, Yasser S. Rammah, Shams A. M. Issa, Ali Hamed Alomari, Fatema T. Ali, Duygu Sen Baykal, Wiam Elshami, D. E. Abulyazied, Ghada ALMisned, A. M. A. Mostafa and Antoaneta Ene
Electronics 2022, 11(24), 4095; https://doi.org/10.3390/electronics11244095 - 8 Dec 2022
Cited by 15 | Viewed by 2363
Abstract
We present elastic moduli, gamma radiation attenuation characteristics, and transmission factor of barium–tungstate–phosphate (BTP) glasses with the chemical formula (60-y)BaO-yWO3-40P2O5, where y = 10 (S1)–40 (S4) in steps of 10 mole%. Different types of mathematical and simulation [...] Read more.
We present elastic moduli, gamma radiation attenuation characteristics, and transmission factor of barium–tungstate–phosphate (BTP) glasses with the chemical formula (60-y)BaO-yWO3-40P2O5, where y = 10 (S1)–40 (S4) in steps of 10 mole%. Different types of mathematical and simulation approaches, such as the Makishima-Mackenzie model, the Monte Carlo method, and the online Phy-X/PSD software, are utilized in terms of determining these parameters. The total packing density (Vt) is enriched from 0.607 to 0.627, while the total energy dissociation (Gt) is enriched by increasing the WO3 content (from 52.2 (kJ/cm3). In the investigated glasses, increasing tungstate trioxide (WO3) contribution enhanced Young’s, shear, bulk, and longitudinal moduli. Moreover, Poisson’s ratio is improved by increasing the WO3 content in the BTP glasses. The 20BaO-40WO3-40P2O5 sample possessed the highest values of both linear (µ) and mass attenuation (µm) coefficients, i.e., (µ, µm)S4 > (µ, µm)S3 > (µ, µm)S2 > (µ, µm)S1. Moreover, the 20BaO-40WO3-40P2O5 sample had the lowest values of half (HVL) and tenth (TVL) layers, i.e., (half, tenth)S4 < (half, tenth)S3 < (half, tenth)S2 < (half, tenth)S1. The effective atomic number (Zeff) of the studied glasses has the same behavior as µ and µm. Finally, the 20BaO-40WO3-40P2O5 is reported with the minimum values of transmission factor (TF) for all the BTP investigated at a thickness of 3 cm. In conclusion, the sample with composition 20BaO-40WO3-40P2O5 which has the maximum WO3 reinforcement may be a beneficial glass sample, along with its advanced mechanical and gamma ray shielding properties. Full article
Show Figures

Figure 1

Back to TopTop