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Abstract: Radiation-shielding glass is utilized in a few applications such as nuclear medicine, (PET)
scans, x-rays, or treatment use. Nuclear reactors additionally require shielding from radiation types
such as gamma, x-rays, and neutron emissions. Radiation-shielding glass is additionally utilized in the
exploration and industry fields, for example, in cyclotron support testing of non-destructive materials,
and the improvement of airport x-ray machines. Notwithstanding, radiation-shielding glass utilizes
space innovation to protect both the astronauts and tools from cosmic rays. Nanoparticles have
been involved recently in those applications. Several simulations using MCNP 6 have been used
in this study to compare a variety of conventional and nanoparticle-doped glass, including silicate
glass (containing BiO or PbO), BZBB5, and glass containing nanoparticles, including Na2Si3O7/Ag,
Al2H2Na2O13Si4/HgO, and lead borate glass containing ZrO2 to detect shielding properties for
operators at different gamma energies. We investigated the percentage of transmitted photons, linear
attenuation coefficient, half-value layer, and mean free path for the selected glass. Several shielding
properties were not significantly different between the simulated results and the theoretical data
available commercially. Based on the results, those parameters depend on the glass material due to
their densities and atomic number. It has been found that 70 Bismuth(III) oxide:30 Silica has the best
shield properties from gamma rays, such as a low percentage of transmitted photons, low HVL, and
low MFP, which is due to its high density and atomic number.

Keywords: radiation protection; nanoparticles; nuclear applications; percentage of the transmitted
photons; half-value layer; linear attenuation coefficient; mean free path; Monte Carlo simulation

1. Introduction

Nuclear energy, which now generates 13% of the world’s electrical output, has emerged
as a crucial alternative in the search for sustainable energy sources as it becomes imperative
in the modern world to replace fossil fuels [1,2]. In addition, nuclear energy is not only
limited to the production of electricity, but X-rays and gamma-rays also are good for
penetrating and detecting opaque materials due to their short wavelength (high energy),
and they have constant energy levels for each isotope, which can be used to identify
unknown radioactive sources [3,4]. Gamma radiation is most commonly used in medical
equipment, such as sterile dressings, tubes, catheters, needles, implantation assembly, and
embeds [5]. In the food business, gamma radiation is also used to dry natural commodities,
including fruits, vegetables, herbs, and meat.

Lead glass and other forms of specialty glass are now deemed essential for radiation
protection. The lead-containing glass absorbs different forms of radiation, such as gamma,
x-ray, and neutron radiation. Because of this unique mix of properties, glass is an essential
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radiation barrier for applications that need a view, such as clinical radiography and nuclear
fuel processing. In different locations, radiation-shielding glass screens and windows are
used to protect medical care operators and experts from x-ray and gamma-ray sources such
as spectrometers, computed tomography (CT) scanners, and positron emission tomography
(PET) [6].

Other forms of heavy metal oxide (HMO) modifiers used in radiation-shielding glass
include lead oxide (PbO) and bismuth oxide (Bi2O3). Using these chemical compounds,
regular silicate glass may be transformed into transparent radiation shields that protect
operators from neutrons, gamma rays, and x-rays. While allowing visible light to cross
through, the resultant glass may attenuate radiation to levels equivalent to concrete and
other popular shielding materials [7]. Because of environmental concerns regarding lead
consumption, many HMO glass varieties have been developed for radiation shielding
applications. Boron, tellurium, barium, and silicon oxides are among them [8,9]. According
to some studies, these glasses might eventually replace conventional concrete as gamma-ray
shielding materials.

Radiation-shielding glass is used extensively in nuclear medicine, for example, PET
scans use radioactive materials or sources (such as radiation therapy). As a result, radiation-
shielding glass is commonly employed to allow operators to handle radioactive material
while avoiding potentially dangerous radiation exposure. Effective radiation shielding is
essential in the nuclear industry. In waste reprocessing for nuclear reactors and laboratory
uses, radiation-shielding glass windows can be utilized to allow operators to safely inspect
radioactive materials during processing. Radiation-shielding glass is utilized in various
scientific and industrial applications, including cyclotron maintenance, testing of non-
destructive materials, and the development of airport x-ray equipment. In order to protect
astronauts and equipment from cosmic rays, which are created from photons and particles
from outside the solar system or from the sun and intensify during solar flare (or “sun
storm”) periods, glass is also utilized in spacecrafts [10,11].

The development of radiation sensors, detectors, radiation shielding materials, and
in-service monitors using nanotechnology has also made it possible to monitor for radiation,
temperature, pressure, in situ diagnostics of material properties and mechanical response,
corrosion, neutron flux, strain, or even chemistry with little impact on system execution,
leading to a fundamental increase in sensitivity and a decrease in the size and weight
of the system with little impact on performance [12]. For the use of nanoparticles in
radiation shielding, several studies have been conducted to test and propose new materials,
such as silicone rubbers doped with nanoparticles or different types of glass doped with
nanoparticles [13–18].

2. Materials and Methods

Due to the world’s evolution, nanoparticles have been used in radiation protection
by doping them with different types of glass, which will improve electric or dielectric,
mechanical, optical, electronic, and surface properties. Recently, several researchers have
switched from ordinary glass to shielding glass in high radiation areas, such as space,
medical institutes, and nuclear power plants. This paper compares some of these gamma-
ray-shielding glasses. Two types of glass have been investigated in this paper, a silicate
glass containing BiO or PbO [14], BZBB5 [15] and a glass doped with nanoparticles. Table 1
shows a variety of glass densities and elemental fractions for this investigation, including
glass doped with nanoparticles such as Na2Si3O7/Ag [16], Al2H2Na2O13Si4/HgO [17],
and lead borate glass doped with ZrO2 [18]. Because they are the densest samples in their
group, they scatter more photons because they scatter more light.
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Table 1. Properties of suggested material.

Glass Density (g/(cm)3) Elemental Fraction

Conventional Glass

BZBB5 6.15
Zn: 0.321369; O: 0.31643; Bi:

0.224247; B: 0.093171; Ba:
0.044783

70 Bi2O3:30 SiO2 5.69 O: 0.125519; Si: 0.024494; Bi:
0.849987

70 PbO:30 SiO2 4.93 O: 0.119337; Si: 0.048333; Pb:
0.832330

Glass Doped With Nanoparticles

Na2Si3O7/Ag 2.012 Na: 0.2711; O: 0.0656; Si:
0.5533; Ag: 0.11

Al2H2Na2O13Si4/HgO 3.647
Hg: 0.3705; Al: 0.0767; H:

0.0029; Na: 0.0635; O: 0.3251;
Si: 0.1596

Lead Borate Glass Doped
with ZrO2

5.29 Zr: 0.17768; O: 0.40077; Na:
0.12796; B: 0.12035; Pb: 0.17325

According to their fields, operators behind the glass sample are exposed to different
energies of gamma rays. A NaI(Tl) detector measuring “2 × 2” and various isotropic
radioactive point sources, including I-131, Cs-137, and Co-60, is included in the simulation
setup, as seen in Figure 1. These sources release gamma rays with energy ranging from 0.36
to 0.66 to 1.17 to 1.33 MeV. Astronauts in spacecrafts are exposed to these sources, as well
as extremely high energy sources (5MeV and 10 MeV), from gamma-ray bursts, blazars,
and pulsars, which will require very thick shielding materials due to the loss the most
of the photons’ energy before being exposed to the astronauts [19,20]. However, due to
unifying our shielding thickness for all studied materials, we used the same thickness over
the whole range of energies. Each source is on the other side of the glass sample, on the
horizontal plane. The glass sample can be made from any of the varieties of glass specified
in Table 1.
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This setup simulates a scenario in which an operator in a medical institute or a
nuclear power plant or an astronaut in a spacecraft will be operating a detector and
various radioactive sources emitting gamma rays with different energies of 0.36, 0.66, 1.17,
1.33, 5, and 10 MeV depending on the source. To protect the operators, a glass sample
500 mm × 1000 mm in dimension and 50 mm in thickness was placed between the source
and detector at a separation distance of 2000 mm, and the composition of the glass sample
could be any of the materials listed in Table 1. Since a gamma source is utilized in the
simulations, it is possible to ignore the air in the surrounding volume because there is
minimal interaction with it. Nevertheless, this volume is crucial.

Three critical parameters should be compared between ordinary glass and glass
doped with nanoparticles, starting with Monte Carlo N-Particle (MCNP) simulations of six
different glass shielding materials. After that, data analysis must be conducted as depicted
in Figure 2 in order to obtain the required shielding properties. The half-value layer (HVL),
which represents the thickness of the absorber that will reduce the gamma rays to half,
the mean free path (MFP), which is the average dispersion, and the percentage of photons
transmitted, which is required to comprehend how the shield glass affects the number of
photons transmitted depending on their density and material, are all components of the
linear attenuation coefficient.
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Numerous simulations were conducted using MCNP 6.2 and the ENDF/B-VII libraries
to determine the properties of the glass that would protect the operators [21]. The NaI
detector response was measured using the pulse height tally (F8), which has 1024 energy
bins. Three unique radioactive sources were employed throughout the simulations, and
the shielding glass sample was made from six different materials. In contrast, the glass
had the same thickness and size, and each simulation used a total of 1 billion histories to
determine the degree of shielding for each sample.

With the major objectives of determining the percentage of transmitted photons, the
half-value layer, and the mean free path, investigations on the spectra obtained at various
glass materials were carried out. The equation for the main source photons provided below
can be used to calculate the percentage of photons that are transferred [22].

I
I0
(%) = e−µt × 100(%) (1)

where the linear attenuation coefficient (µ) is used. The number of photons (I) that are
transmitted from a glass shield with the thickness (t) is expressed in terms of the number of
photons (I0) that are not protected by a glass shield.

The mean free path and the half-value layer are given by the following:

HVL (cm) =
ln(2)

µ
(2)

MFP (cm) =
1
µ

(3)
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The mean free path and the half-value layer are determined from the simulations
utilizing the linear attenuation coefficient calculated from the transmitted photons from
each glass sample.

3. Results and Discussions

As noted above, several simulations were probably run to compare the various materi-
als for shielding operators in various fields from gamma rays at varying energy. One of
the parameters used in this study to estimate the probability of the shield interacting with
photons was the linear attenuation coefficient. Based on theoretical predictions for various
shielding materials, the linear attenuation coefficient was computed using XCOM [23]. The
outcomes of several simulations ran using MCNP 6.2 are displayed in Tables 2 and 3 below
that show that the probability of attenuated photons at low energies rises with the square
of the shield’s atomic number and falls with the gamma-ray energy since photo-absorption
is more likely at lower energies [24].

Table 2. Comparison of theoretical and simulated linear attenuation coefficients (cm−1).

Glass Sample
0.36 MeV 0.66 MeV 1.17 MeV 1.33 MeV 5 MeV 10 MeV

Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim.

70 Bi2O3:30 SiO2 1.47 1.43 0.59 0.59 0.35 0.36 0.32 0.31 0.23 0.23 0.26 0.25

70 PbO:30 SiO2 1.22 1.21 0.50 0.49 0.30 0.31 0.27 0.27 0.19 0.20 0.22 0.21

BZBB5 0.88 0.84 0.51 0.51 0.35 0.37 0.33 0.32 0.20 0.20 0.19 0.19

Lead borate glass doped
with ZrO2

0.67 0.66 0.42 0.42 0.30 0.32 0.28 0.28 0.16 0.16 0.15 0.14

Al2H2Na2O13Si4/HgO 0.59 0.56 0.32 0.31 0.22 0.23 0.20 0.19 0.12 0.12 0.12 0.11

Na2Si3O7/Ag 0.20 0.19 0.15 0.15 0.12 0.13 0.11 0.10 0.06 0.05 0.05 0.05

Table 3. Comparison of theoretical and simulated percentage of transmitted photons.

Glass Sample
0.36 MeV 0.66 MeV 1.17 MeV 1.33 MeV 5 MeV 10 MeV

Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim.

70 Bi2O3:30 SiO2 0.06 0.08 5.16 5.25 17.73 16.5 20.60 20.8 31.32 31.1 27.09 28.4

70 PbO:30 SiO2 0.22 0.22 8.17 8.47 22.76 20.9 25.79 26.3 37.12 36.8 32.98 34.3

BZBB5 1.25 1.54 7.97 7.94 17.15 15.9 19.40 19.7 36.57 36.2 37.95 38.5

Lead borate glass doped
with ZrO2

3.55 3.59 12.06 12.0 21.87 19.8 24.19 24.6 44.24 44.4 48.06 49.1

Al2H2Na2O13Si4/HgO 5.33 6.00 20.47 20.7 34.05 31.5 36.81 37.6 54.21 53.9 55.49 57.8

Na2Si3O7/Ag 36.26 37.1 46.49 46.5 55.99 51.9 58.10 58.5 74.23 75.1 77.65 79.1

The percentage of transmitted photons should be taken into account while defining
shielding materials. There are two ways to select this parameter, as illustrated in Figure 3.
The first technique calculates the photon intensity ratio with and without the shield at
various energies using simulations. The second technique computes the percentage of
transmitted photons based on the linear attenuation coefficient obtained from XCOM us-
ing Equation (1). High-density materials, such as 70 Bismuth(III) oxide:30 Silica, have
the lowest percentage of transmitted photons, which is close to 0% at low energies, as
seen in Figure 3a,b due to their high linear attenuation coefficient, as previously men-
tioned. On the other hand, low-density materials, such as Na2Si3O7/Ag, have a high
percentage of transmitted photons, especially at high energies, due to their low linear
attenuation coefficient.
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transmitted photons.

HVL is a crucial parameter for comparing the shielding performance of materials since
different materials attenuate radiation to different degrees. Table 4 lists the HVL for the
six shielding materials, representing the material thickness that will attenuate half of the
gamma rays [25]. As shown in Figure 4a,b, the low-density materials and high energy
sources have high HVL, which means that they will require more material thickness to
attenuate the gamma rays completely, which is also concluded from the percentage of
transmitted photons for the low-density materials and high-energy sources. Especially
for Na2Si3O7/Ag glass for the energies above 1.33 MeV, it shows an extreme increase in
the percentage of transmitted photons, and this clearly indicates that this material does
not attenuate photons with high effectiveness at high energies due to the low value of the
linear attenuation coefficient at those energy ranges for this material, which are less than
0.1 cm−1.
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Table 4. Comparison of theoretical and simulated HVL (cm).

Glass Sample
0.36 MeV 0.66 MeV 1.17 MeV 1.33 MeV 5 MeV 10 MeV

Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim.

70 Bi2O3:30 SiO2 0.47 0.49 1.17 1.18 2.00 1.92 2.19 2.21 2.99 2.97 2.65 2.75

70 PbO:30 SiO2 0.57 0.57 1.38 1.40 2.34 2.21 2.56 2.59 3.50 3.47 3.12 3.25

BZBB5 0.79 0.83 1.37 1.37 1.97 1.88 2.11 2.13 3.45 3.41 3.58 3.63

Lead borate glass doped
with ZrO2

1.04 1.04 1.64 1.63 2.28 2.14 2.44 2.47 4.25 4.27 4.73 4.88

Al2H2Na2O13Si4/HgO 1.18 1.23 2.19 2.20 3.22 3.00 3.47 3.54 5.66 5.60 5.88 6.32

Na2Si3O7/Ag 3.42 3.50 4.52 4.52 5.98 5.28 6.38 6.47 11.63 12.1 13.70 14.8Sustainability 2023, 15, x FOR PEER REVIEW 7 of 11 
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MFP is the opposite of the linear attenuation coefficient and, with a lower value, means
a more effective material. Table 5 shows MFP for the selected materials, which describes the
average distance of the particles before the interactions [26]. As shown in Figure 5a,b, the
low-density materials and high-energy sources have high MFP, which means the particles
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cross the materials for high distances before interacting with the low-density materials and
high energy source, which is also concluded from the percentage of transmitted photons
and HVL above for those materials at high-energy sources.

Table 5. Comparison of theoretical and simulated MFP (cm).

Glass Sample
0.36 MeV 0.66 MeV 1.17 MeV 1.33 MeV 5 MeV 10 MeV

Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim. Theo. Sim.

70 Bi2O3:30 SiO2 0.68 0.70 1.69 1.70 2.89 2.77 3.16 3.18 4.31 4.28 3.83 3.97

70 PbO:30 SiO2 0.82 0.83 2.00 2.03 3.38 3.19 3.69 3.74 5.05 5.00 4.51 4.68

BZBB5 1.14 1.20 1.98 1.97 2.84 2.72 3.05 3.07 4.97 4.92 5.16 5.23

Lead borate glass doped
with ZrO2

1.50 1.50 2.36 2.36 3.29 3.09 3.52 3.57 6.13 6.16 6.82 7.04

Al2H2Na2O13Si4/HgO 1.71 1.78 3.15 3.17 4.64 4.32 5.00 5.11 8.17 8.08 8.49 9.11

Na2Si3O7/Ag 4.93 5.05 6.53 6.52 8.62 7.61 9.21 9.34 16.78 17.4 19.76 21.4
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4. Conclusions

Applications for radiation-shielding glass include nuclear medicine, such as (PET)
scans, x-rays, or therapeutic usage. Gamma, x-ray, and neutron outputs are more radiation
types that nuclear reactors need to be protected from. Additionally, radiation-shielding
glass is employed in a variety of academic and industrial settings, including cyclotron
maintenance, non-destructive material testing, and the creation of airport x-ray equipment.
In addition to protecting equipment and astronauts from gamma rays in spacecrafts.

Nanoparticles have lately been used in several applications. Radiation-shielding
glass has been made from a variety of materials, including regular glass and glass with
nanoparticles. In this study, numerous glass materials that were both doped and not doped
with nanoparticles were reviewed and simulated. As shown in Tables 2–5, the shielding
characteristics of various kinds were calculated using XCOM and MCNP 6. Operators in
the various applications will be shielded against gamma energy of 0.36, 0.66, 1.17, 1.33, 5
and 10 MeV using these various glasses with the same thickness and dimensions.

Simulated findings showed a clear separation between common glasses, such as sili-
cate glass (including lead(II) oxide or BiO) and BZBB5, and nanoparticle glasses, such as
Na2Si3O7/Ag, Al2H2Na2O13Si4/HgO, and lead(II)-oxide-doped lead borate glass. Ac-
cording to the linear attenuation coefficients at all energies, the glass with a ratio of
70 bismuth(III) oxide to 30 silica transmits the minimum photons. These results are because
this material has a high linear attenuation coefficient and a high density of the glass, which
causes a decrease in the number of photons transmitted. We continue to work on this
study to incorporate various materials for both regular and doped glass by simulations and
experiments to give operators the most protection in various applications from different
types of radiation.
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