Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = quinolone-resistance-determining region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 862 KiB  
Article
Quinolone Resistance and Prevalence of the Related Genes in Photobacterium damselae subsp. damselae Recovered from Diseased Fish in Eastern China
by Xiangyun Yang, Chen Shen, Suming Zhou, Liyun Jin, Yajun Wang and Fei Yin
Fishes 2025, 10(6), 280; https://doi.org/10.3390/fishes10060280 - 7 Jun 2025
Viewed by 345
Abstract
Photobacterium damselae subsp. damselae is a well-recognized marine animal pathogen. Herein, 70 P. damselae subsp. damselae isolates were investigated for quinolone susceptibility and prevalence of the genes including quinolone resistance-determining regions (QRDRs) and plasmid-mediated quinolone resistance (PMQR) genes. A total of 18/70 isolates [...] Read more.
Photobacterium damselae subsp. damselae is a well-recognized marine animal pathogen. Herein, 70 P. damselae subsp. damselae isolates were investigated for quinolone susceptibility and prevalence of the genes including quinolone resistance-determining regions (QRDRs) and plasmid-mediated quinolone resistance (PMQR) genes. A total of 18/70 isolates exhibited high-level resistance, and 23/70 isolates exhibited moderate resistance according to the MIC values. QRDR analysis showed that double mutants in both GyrA (Ser83Ile) and ParC (6/17 Ser80Phe or 11/17 Ser80Tyr) were detected in 94.4% (17/18) high-level quinolone resistance P. damselae subsp. damselae strains. PMQR detection showed that 60.0% (42/70) carried at least one PMQR (1/42 qnrB coexistence with aac(6′)-Ib-cr, 1/42 qnrS coexistence with aac(6′)-Ib-cr, 44/46 qnrS). QnrA, QnrC, qnrD and qepA were not detected in all strains. Among the 42 PMQR-positive strains, 24 showed fluoroquinolones MICs ≤ 0.5 mg/L and 13 MICs ≥ 2 mg/L, all carrying QRDR mutations. For the twenty-eight non-PMQR strains, twenty-three showed fluoroquinolone MICs ≤ 0.5 mg/L without QRDR mutations, and five MICs ≥ 2 mg/L carrying QRDR mutations. In conclusion, qnrS (qnrS2 allele) is the major PMQR widespread in P. damselae subsp. damselae isolated from eastern China; however, QRDR mutation plays a marked role in mediating fluoroquinolone resistance. Full article
(This article belongs to the Section Fish Pathology and Parasitology)
Show Figures

Graphical abstract

12 pages, 652 KiB  
Article
Variable In Vitro Efficacy of Delafloxacin on Multidrug-Resistant Pseudomonas aeruginosa and the Detection of Delafloxacin Resistance Determinants
by András Kubicskó, Katalin Kamotsay, Péter Banczerowski, László Sipos, Dóra Szabó and Béla Kocsis
Antibiotics 2025, 14(6), 542; https://doi.org/10.3390/antibiotics14060542 - 25 May 2025
Viewed by 694
Abstract
Background: In this study, molecular mechanisms contributing to delafloxacin resistance in Pseudomonas aeruginosa strains were investigated. Delafloxacin is a recently approved fluoroquinolone currently introduced to clinical applications. Methods: A total of 52 P. aeruginosa strains were collected from clinical isolates. Antimicrobial susceptibility testing [...] Read more.
Background: In this study, molecular mechanisms contributing to delafloxacin resistance in Pseudomonas aeruginosa strains were investigated. Delafloxacin is a recently approved fluoroquinolone currently introduced to clinical applications. Methods: A total of 52 P. aeruginosa strains were collected from clinical isolates. Antimicrobial susceptibility testing was performed via broth microdilution, and the minimum inhibitory concentration (MIC) values for ciprofloxacin, levofloxacin, delafloxacin, ceftazidime and imipenem were determined. Five delafloxacin-resistant P. aeruginosa strains were selected for whole-genome sequencing (WGS). Results: MIC50 values were determined, and the following results were obtained: ciprofloxacin 0.25 mg/L, levofloxacin 0.25 mg/L and delafloxacin 1 mg/L. All five selected strains showed both extended-spectrum beta-lactamase and carbapenemase production. WGS analysis of these strains determined the sequence types (STs), namely, ST235 (two strains), ST316 (two strains) and ST395. Several mutations in quinolone-resistance-determining regions (QRDRs) were detected in all five delafloxacin-resistant P. aeruginosa strains as follows: gyrA Thr83Ile and parC Ser87Leu mutations were present in all five strains, while parE Thr223Ala in ST235, Glu459Val in ST316 and Val200Met in ST395 were detected. MexAB-OprM and MexCD-OprJ efflux pumps were uniformly present in all delafloxacin-resistant P. aeruginosa strains. All strains of ST235 and ST316 carried blaNDM-1 in combination with other beta-lactamases. In our study, the in vitro efficacy of delafloxacin is inferior compared to previous fluoroquinolones based on MIC50 values; however, MIC values of delafloxacin ranged between 0.125 and 128 mg/L in our P. aeruginosa collection, and 21 out of 52 strains showed susceptibility to delafloxacin. Conclusions: Multiple QRDR mutations combined with several efflux pumps confer delafloxacin resistance in P. aeruginosa. Among the different detected multidrug-resistant P. aeruginosa strains in this study, we also report on an NDM-1 producing P. aeruginosa ST316 in Hungary. Full article
Show Figures

Figure 1

15 pages, 2085 KiB  
Article
Detection of Possible Resistance Mechanisms in Uropathogenic Escherichia coli Strains Isolated from Kidney Transplant Recipients Based on Whole Genome Sequencing
by Soraya Herrera-Espejo, Alejandro Rubio, Lucía Ceballos-Romero, Jerónimo Pachón, Elisa Cordero, Antonio J. Pérez-Pulido and María Eugenia Pachón-Ibáñez
Biomolecules 2025, 15(2), 260; https://doi.org/10.3390/biom15020260 - 11 Feb 2025
Cited by 1 | Viewed by 1168
Abstract
Background: Urinary tract infections are a global health concern, with uropathogenic Escherichia coli (UPEC) accounting for 80–90% of cases. Given the rise in antimicrobial resistance, our aim was to elucidate the genetic mechanisms behind low-level resistance to ciprofloxacin and fosfomycin (LLCR and LLFR) [...] Read more.
Background: Urinary tract infections are a global health concern, with uropathogenic Escherichia coli (UPEC) accounting for 80–90% of cases. Given the rise in antimicrobial resistance, our aim was to elucidate the genetic mechanisms behind low-level resistance to ciprofloxacin and fosfomycin (LLCR and LLFR) in UPEC strains, using whole-genome sequencing (WGS) to identify point mutations in chromosomal and plasmid genes. Methods: A cohort UPEC was collected from kidney transplant recipients at the Virgen del Rocío University Hospital, Spain. Minimum inhibitory concentrations were determined for ciprofloxacin and fosfomycin to categorize strains into LLCR and LLFR. Twenty strains were selected for WGS, with genome annotations. Point mutations were identified and analyzed using alignment tools, and protein stability changes were predicted. Results: LLCR strains exhibited mutations in key quinolone resistance-determining regions of the gyrA gene, in 83% of cases. The qnrS1 plasmid gene was found in 17% of LLCR strains. LLFR strains showed mutations in the glpT and cyaA genes. Mutations in the uhp gene family were linked to the fosfomycin-resistant phenotype, suggesting a multi-step resistance evolution mechanism. Conclusions: This study highlights the complex interplay between chromosomal and plasmid genes in UPEC’s resistance to ciprofloxacin and fosfomycin. The findings contribute to understanding low-level resistance mechanisms and may guide the development of novel therapeutic strategies to combat multidrug-resistant strains. Full article
Show Figures

Figure 1

15 pages, 6437 KiB  
Article
Clonal Spread and Genetic Mechanisms Underpinning Ciprofloxacin Resistance in Salmonella enteritidis
by Zengfeng Zhang, Hang Zhao and Chunlei Shi
Foods 2025, 14(2), 289; https://doi.org/10.3390/foods14020289 - 16 Jan 2025
Viewed by 1391
Abstract
Salmonella enteritidis is a major cause of foodborne illness worldwide, and the emergence of ciprofloxacin-resistant strains poses a significant threat to food safety and public health. This study aimed to investigate the prevalence, spread, and mechanisms of ciprofloxacin resistance in S. enteritidis isolates [...] Read more.
Salmonella enteritidis is a major cause of foodborne illness worldwide, and the emergence of ciprofloxacin-resistant strains poses a significant threat to food safety and public health. This study aimed to investigate the prevalence, spread, and mechanisms of ciprofloxacin resistance in S. enteritidis isolates from food and patient samples in Shanghai, China. A total of 1625 S. enteritidis isolates were screened, and 34 (2.1%) exhibited resistance to ciprofloxacin. Pulsed-field gel electrophoresis (PFGE) results suggested that clonal spread might have persisted among these 34 isolates in the local area for several years. Multiple plasmid-mediated quinolone resistance (PMQR) genes, GyrA mutations in the quinolone resistance-determining region (QRDR), and overexpression of RND efflux pumps were identified as potential contributors to ciprofloxacin resistance. PMQR genes oqxAB, qnrA, qnrB, and aac(6’)-Ib-cr as well as GyrA mutations S83Y, S83R, D87Y, D87G, D87N, and S83Y-D87Y were identified. The co-transfer of the PMQR gene oqxAB with the ESBL gene blaCTX-M-14/55 on an IncHI2 plasmid with a size of ~245 kbp was observed through conjugation, highlighting the role of horizontal gene transfer in the dissemination of antibiotic resistance. Sequencing of the oqxAB-bearing plasmid p12519A revealed a 248,746 bp sequence with a typical IncHI2 backbone. A 53,104 bp multidrug resistance region (MRR) was identified, containing two key antibiotic resistance determinants: IS26-oqxR-oqxAB-IS26 and IS26-ΔISEcp1-blaCTX-M-14-IS903B. The findings of this study indicate that ciprofloxacin-resistant S. Enteritidis poses a significant threat to food safety and public health. The persistence of clonal spread and the horizontal transfer of resistance genes highlight the need for enhanced surveillance and control measures to prevent the further spread of antibiotic resistance. Full article
(This article belongs to the Special Issue Foodborne Pathogenic Bacteria: Prevalence and Control: Third Edition)
Show Figures

Figure 1

14 pages, 2557 KiB  
Article
Detection of Delafloxacin Resistance Mechanisms in Multidrug-Resistant Klebsiella pneumoniae
by András Kubicskó, János Juhász, Katalin Kamotsay, Dora Szabo and Béla Kocsis
Antibiotics 2025, 14(1), 62; https://doi.org/10.3390/antibiotics14010062 - 9 Jan 2025
Cited by 2 | Viewed by 1412
Abstract
Background: In this study, the mechanisms implicated in delafloxacin resistance in Klebsiella pneumoniae strains were investigated. Delafloxacin is a novel, broad-spectrum fluoroquinolone that has been approved for clinical application. Methods: In our study, 43 K. pneumoniae strains were assessed, antimicrobial susceptibility testing was [...] Read more.
Background: In this study, the mechanisms implicated in delafloxacin resistance in Klebsiella pneumoniae strains were investigated. Delafloxacin is a novel, broad-spectrum fluoroquinolone that has been approved for clinical application. Methods: In our study, 43 K. pneumoniae strains were assessed, antimicrobial susceptibility testing was performed via the broth microdilution method, and the minimum inhibitory concentration (MIC) values for ciprofloxacin, delafloxacin, levofloxacin, moxifloxacin, ceftazidime, cefotaxime, and imipenem were determined. Four delafloxacin-resistant K. pneumoniae strains were selected for whole-genome sequencing (WGS). Results: The MIC50 values for the 43 K. pneumoniae strains were as follows: ciprofloxacin 0.5 mg/L, levofloxacin 0.25 mg/L, moxifloxacin 0.5 mg/L, and delafloxacin 0.25 mg/L. All four selected delafloxacin-resistant K. pneumoniae strains showed extended-spectrum beta-lactamase production, and one strain exhibited carbapenem resistance. WGS enabled us to determine the sequence types (STs) of these strains, namely, ST307 (two strains), ST377, and ST147. Multiple mutations in quinolone-resistance-determining regions (QRDRs) were detected in all the delafloxacin-resistant K. pneumoniae strains; specifically, gyrA Ser83Ile and parC Ser80Ile were uniformly present in the strains of ST307 and ST147. However, in the ST377 strain, gyrA Ser83Tyr, Asp87Ala, and parC Ser80Ile, amino acid substitutions were detected. We also identified OqxAB and AcrAB efflux pumps in all delafloxacin-resistant K. pneumoniae strains. The association between beta-lactamase production and delafloxacin resistance was determined; specifically, CTX-M-15 production was detected in the ST147, ST307, and ST377 strains. Moreover, NDM-1 was detected in ST147. Conclusions: We conclude that multiple mutations in QRDRs, in combination with OqxAB and AcrAB efflux pumps, achieved delafloxacin resistance in K. pneumoniae. In our study, we report on NDM-1-producing K. pneumoniae ST147 in Hungary. Full article
(This article belongs to the Special Issue Antimicrobial Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

19 pages, 1625 KiB  
Article
Genomic Characterization of Extended-Spectrum β-Lactamase-Producing and Third-Generation Cephalosporin-Resistant Escherichia coli Isolated from Stools of Primary Healthcare Patients in Ethiopia
by Deneke Wolde, Tadesse Eguale, Girmay Medhin, Aklilu Feleke Haile, Haile Alemayehu, Adane Mihret, Mateja Pirs, Katja Strašek Smrdel, Jana Avberšek, Darja Kušar, Tjaša Cerar Kišek, Tea Janko, Andrej Steyer and Marjanca Starčič Erjavec
Antibiotics 2024, 13(9), 851; https://doi.org/10.3390/antibiotics13090851 - 5 Sep 2024
Cited by 1 | Viewed by 1516
Abstract
The global spread of antimicrobial resistance genes (ARGs) in Escherichia coli is a major public health concern. The aim of this study was to investigate the genomic characteristics of extended-spectrum β-lactamase (ESBL)-producing and third-generation cephalosporin-resistant E. coli from a previously obtained collection of [...] Read more.
The global spread of antimicrobial resistance genes (ARGs) in Escherichia coli is a major public health concern. The aim of this study was to investigate the genomic characteristics of extended-spectrum β-lactamase (ESBL)-producing and third-generation cephalosporin-resistant E. coli from a previously obtained collection of 260 E. coli isolates from fecal samples of patients attending primary healthcare facilities in Addis Ababa and Hossana, Ethiopia. A total of 29 E. coli isolates (19 phenotypically confirmed ESBL-producing and 10 third-generation cephalosporin-resistant isolates) were used. Whole-genome sequencing (NextSeq 2000 system, Illumina) and bioinformatic analysis (using online available tools) were performed to identify ARGs, virulence-associated genes (VAGs), mobile genetic elements (MGEs), serotypes, sequence types (STs), phylogeny and conjugative elements harbored by these isolates. A total of 7 phylogenetic groups, 22 STs, including ST131, and 23 serotypes with different VAGs were identified. A total of 31 different acquired ARGs and 10 chromosomal mutations in quinolone resistance-determining regions (QRDRs) were detected. The isolates harbored diverse types of MGEs, with IncF plasmids being the most prevalent (66.7%). Genetic determinants associated with conjugative transfer were identified in 75.9% of the E. coli isolates studied. In conclusion, the isolates exhibited considerable genetic diversity and showed a high potential for transferability of ARGs and VAGs. Bioinformatic analyses also revealed that the isolates exhibited substantial genetic diversity in phylogenetic groups, sequence types (ST) and serogroups and were harboring a variety of virulence-associated genes (VAGs). Thus, the studied isolates have a high potential for transferability of ARGs and VAGs. Full article
Show Figures

Figure 1

12 pages, 4928 KiB  
Article
Genomic and Functional Characterization of CTX-M-15-Producing Klebsiella pneumoniae ST307 Isolated from Imported Leopard Tortoises in Germany
by Tammy J. Schmidt, Sophie Aurich, Franziska Unger, Tobias Eisenberg and Christa Ewers
Appl. Microbiol. 2024, 4(2), 782-793; https://doi.org/10.3390/applmicrobiol4020054 - 11 May 2024
Cited by 2 | Viewed by 1796
Abstract
The Klebsiella pneumoniae ST307 clone, identified in the mid-1990s, has emerged as a global antimicrobial-resistant (AMR) high-risk clone, significantly contributing to the global health challenge also posed by other AMR K. pneumoniae lineages. The acquisition of a blaCTX-M-15-carrying plasmid has facilitated [...] Read more.
The Klebsiella pneumoniae ST307 clone, identified in the mid-1990s, has emerged as a global antimicrobial-resistant (AMR) high-risk clone, significantly contributing to the global health challenge also posed by other AMR K. pneumoniae lineages. The acquisition of a blaCTX-M-15-carrying plasmid has facilitated its widespread dissemination. At Europe’s major transport hub for the movement of live animals, Frankfurt Airport, a shipment of 20 live leopard tortoises was sampled during German border control in 2014. Phylogenetic analysis (MLST) identified a K. pneumoniae ST307 strain, prompting further investigation. Our analysis revealed the presence of a ~193 kb plasmid carrying a broad range of AMR genes, including blaCTX-M-15, blaTEM-1B, blaOXA-1, aac(3)-IIa, aac(6′)-Ib-cr, aph(3″)-Ib, aph(6)-Id, and qnrB1. Additionally, mutations in the quinolone resistance-determining region in gyrA (S83I) and parC (S80I) were detected. Phenotypic testing demonstrated resistance of the isolate to the most common antimicrobials used in both human and veterinary medicine; exceptions included carbapenems and newer β-lactamase inhibitor combinations. Because the role of imported exotic animals in the dissemination of AMR genes is largely deficient, the present study fills yet missing mosaic pieces in the complete picture of extended-spectrum β-lactamase (ESBL)-producing Enterobacterales. Full article
Show Figures

Figure 1

9 pages, 401 KiB  
Article
A Set of Multiresistant Isolates of Mycoplasma bovis Subtype ST-1 with a Variable Susceptibility to Quinolones Are Also Circulating in Spain
by Juan Carlos Corrales, Antonio Sánchez, Xóchitl Hernández, Joaquín Amores-Iniesta, Antón Esnal and Christian de la Fe
Pathogens 2024, 13(4), 329; https://doi.org/10.3390/pathogens13040329 - 16 Apr 2024
Cited by 1 | Viewed by 1638
Abstract
Mycoplasma bovis (M. bovis) is one of the worldwide most important infectious agents involved in respiratory complex diseases (RCD). In Spain, the endemic presence of subtypes ST-2 and ST-3 with phenotypic differences linked to their susceptibility to fluoroquinolones opened the way [...] Read more.
Mycoplasma bovis (M. bovis) is one of the worldwide most important infectious agents involved in respiratory complex diseases (RCD). In Spain, the endemic presence of subtypes ST-2 and ST-3 with phenotypic differences linked to their susceptibility to fluoroquinolones opened the way to develop control strategies focused on previous diagnosis of the subtype and the use of directed therapies when M. bovis were involved in RCD. Surprisingly, microbiological studies conducted during 2023 evidenced for the first time the presence of Spanish isolates of a new polC-subtype, previously classified as ST-1, recovered from calves with respiratory symptoms and pneumonia in different areas of the country (n = 16). Curiously, the minimum inhibitory concentration (MIC) to a panel of antimicrobials revealed phenotypic differences between these ST-1 isolates when using fluoroquinolones (FLQ). There is no geographical correlation between MIC profiles even for a set of 8 isolates recovered from different animals in the same flock. Sequencing of 4 genes (gyrA, gyrB, parC and parE) encoding quinolone resistance-determining regions (QRDR) evidenced the presence of accumulate mutations in 2 ST-1 isolates with high FLQ MICs, but not in all them (n = 3), thus suggesting that, as previously recorded for ST-2 isolates, other mechanisms should be involved in the acquisition of resistence to these antimicrobials. Additionally, as previously detected in the Spanish ST-2 and ST-3, subtype ST-1 isolates are also resistant to macrolides or lincosamides. Full article
(This article belongs to the Special Issue Mycoplasmas in Respiratory Tract Infections of Cattle)
Show Figures

Figure 1

10 pages, 976 KiB  
Article
Antibiotic Combination to Effectively Postpone or Inhibit the In Vitro Induction and Selection of Levofloxacin-Resistant Mutants in Elizabethkingia anophelis
by Ching-Chi Lee, Chung-Hsu Lai, Chih-Hui Yang, Yi-Han Huang and Jiun-Nong Lin
Int. J. Mol. Sci. 2024, 25(4), 2215; https://doi.org/10.3390/ijms25042215 - 12 Feb 2024
Cited by 2 | Viewed by 1374
Abstract
Fluoroquinolones are potentially active against Elizabethkingia anophelis. Rapidly increased minimum inhibitory concentrations (MICs) and emerging point mutations in the quinolone resistance-determining regions (QRDRs) following exposure to fluoroquinolones have been reported in E. anophelis. We aimed to investigate point mutations in QRDRs [...] Read more.
Fluoroquinolones are potentially active against Elizabethkingia anophelis. Rapidly increased minimum inhibitory concentrations (MICs) and emerging point mutations in the quinolone resistance-determining regions (QRDRs) following exposure to fluoroquinolones have been reported in E. anophelis. We aimed to investigate point mutations in QRDRs through exposure to levofloxacin (1 × MIC) combinations with different concentrations (0.5× and 1 × MIC) of minocycline, rifampin, cefoperazone/sulbactam, or sulfamethoxazole/trimethoprim in comparison with exposure to levofloxacin alone. Of the four E. anophelis isolates that were clinically collected, lower MICs of levofloxacin were disclosed in cycle 2 and 3 of induction and selection in all levofloxacin combination groups other than levofloxacin alone (all p = 0.04). Overall, no mutations were discovered in parC and parE throughout the multicycles inducted by levofloxacin and all its combinations. Regarding the vastly increased MICs, the second point mutations in gyrA and/or gyrB in one isolate (strain no. 1) occurred in cycle 2 following exposure to levofloxacin plus 0.5 × MIC minocycline, but they were delayed appearing in cycle 5 following exposure to levofloxacin plus 1 × MIC minocycline. Similarly, the second point mutation in gyrA and/or gyrB occurred in another isolate (strain no. 3) in cycle 4 following exposure to levofloxacin plus 0.5 × MIC sulfamethoxazole/trimethoprim, but no mutation following exposure to levofloxacin plus 1 × MIC sulfamethoxazole/trimethoprim was disclosed. In conclusion, the rapid selection of E. anophelis mutants with high MICs after levofloxacin exposure could be effectively delayed or postponed by antimicrobial combination with other in vitro active antibiotics. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

12 pages, 1352 KiB  
Article
Evaluation and Characterization of Quinolone-Resistant Escherichia coli in Wastewater Treatment Plant Effluents
by Ji-Hyun Park, Jihyun Kang, Kyung-Seon Bae, Hanbyul Lee, Jihye Kim, Eung-Roh Park, Jeong-Ki Yoon and Soo-Hyung Lee
Water 2023, 15(23), 4040; https://doi.org/10.3390/w15234040 - 22 Nov 2023
Cited by 2 | Viewed by 1973
Abstract
The increasing global incidence of quinolone antimicrobial resistance poses a considerable public health concern. The aquatic environment, particularly wastewater treatment plants (WWTPs), serves as a major reservoir for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), leading to the dissemination of antibiotic resistance. [...] Read more.
The increasing global incidence of quinolone antimicrobial resistance poses a considerable public health concern. The aquatic environment, particularly wastewater treatment plants (WWTPs), serves as a major reservoir for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), leading to the dissemination of antibiotic resistance. This study aimed to assess the prevalence and factors contributing to quinolone antibiotic resistance in Escherichia coli isolates obtained from effluents of 33 WWTPs. A total of 1082 E. coli isolates were analyzed, 32.6% and 17.1% of which showed resistance to nalidixic acid and ciprofloxacin, respectively. Phenotypic and genotypic analyses of antibiotic resistance demonstrated that quinolone resistance primarily originated from chromosomal mutations in the gyrA, parC, and parE genes, known as quinolone resistance-determining regions (QRDRs). The amino acid substitution at codon 83 in gyrA was closely associated with nalidixic acid resistance, whereas substitutions at codon 87 in gyrA and codon 80 in parC were significantly associated with ciprofloxacin resistance. The plasmid-mediated quinolone resistance (PMQR) genes qnrS and qnrB were identified in 41 isolates (11.5%) and 15 isolates (4.2%), respectively. Thus, we confirmed that the quinolone resistance in E. coli in WWTPs primarily occurs through QRDR mutations rather than through the acquisition of PMQR genes. Phylogenetic analysis revealed that most quinolone-resistant isolates belonged to the B1, A, B2, and D phylogenetic groups. Notably, the B2 group, which is responsible for extraintestinal infections, exhibited the highest rate of quinolone resistance. These findings provide novel insights into the presence and mechanisms of quinolone resistance in E. coli isolates from WWTPs, emphasizing the need for further research and understanding of quinolone resistance in the environment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 4418 KiB  
Article
Whole-Genome Sequencing-Based Profiling of Antimicrobial Resistance Genes and Core-Genome Multilocus Sequence Typing of Campylobacter jejuni from Different Sources in Lithuania
by Jurgita Aksomaitiene, Aleksandr Novoslavskij and Mindaugas Malakauskas
Int. J. Mol. Sci. 2023, 24(21), 16017; https://doi.org/10.3390/ijms242116017 - 6 Nov 2023
Cited by 1 | Viewed by 2720
Abstract
Campylobacter jejuni is known as one of the main causative agents of gastroenteritis in humans worldwide, and the rise of antimicrobial resistance (AMR) in Campylobacter is a growing public health challenge of special concern. Whole-genome sequencing (WGS) was used to characterize genetic determinants [...] Read more.
Campylobacter jejuni is known as one of the main causative agents of gastroenteritis in humans worldwide, and the rise of antimicrobial resistance (AMR) in Campylobacter is a growing public health challenge of special concern. Whole-genome sequencing (WGS) was used to characterize genetic determinants of AMR in 53 C. jejuni isolates from dairy cattle, broiler products, wild birds, and humans in Lithuania. The WGS-based study revealed 26 C. jejuni AMR markers that conferred resistance to various antimicrobials. Genetic markers associated with resistance to beta-lactamases, tetracycline, and aminoglycosides were found in 79.3%, 28.3%, and 9.4% of C. jejuni isolates, respectively. Additionally, genetic markers associated with multidrug resistance (MDR) were found in 90.6% of C. jejuni isolates. The WGS data analysis revealed that a common mutation in the quinolone resistance-determining region (QRDR) was R285K (854G > A) at 86.8%, followed by A312T (934G > A) at 83% and T86I (257C > T) at 71.7%. The phenotypic resistance analysis performed with the agar dilution method revealed that ciprofloxacin (CIP) (90.6%), ceftriaxone (CRO) (67.9%), and tetracycline (TET) (45.3%) were the predominant AMR patterns. MDR was detected in 41.5% (22/53) of the isolates tested. Fifty-seven virulence genes were identified in all C. jejuni isolates; most of these genes were associated with motility (n = 28) and chemotaxis (n = 10). Additionally, all C. jejuni isolates harbored virulence genes related to adhesion, invasion, LOS, LPS, CPS, transportation, and CDT. In total, 16 sequence types (STs) and 11 clonal complexes (CC) were identified based on core-genome MLST (cgMLST) analysis. The data analysis revealed distinct diversity depending on phenotypic and genotypic antimicrobial resistance of C. jejuni. Full article
(This article belongs to the Special Issue Antibacterial Activity of Drug-Resistant Strains)
Show Figures

Figure 1

17 pages, 1019 KiB  
Article
Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp.
by Michiko Furugaito, Yuko Arai, Yutaka Uzawa, Toshinori Kamisako, Kohei Ogura, Shigefumi Okamoto and Ken Kikuchi
Antibiotics 2023, 12(10), 1538; https://doi.org/10.3390/antibiotics12101538 - 14 Oct 2023
Cited by 3 | Viewed by 4106 | Correction
Abstract
Gemella is a catalase-negative, facultative anaerobic, Gram-positive coccus that is commensal in humans but can become opportunistic and cause severe infectious diseases, such as infective endocarditis. Few studies have tested the antimicrobial susceptibility of Gemella. We tested its antimicrobial susceptibility to 27 [...] Read more.
Gemella is a catalase-negative, facultative anaerobic, Gram-positive coccus that is commensal in humans but can become opportunistic and cause severe infectious diseases, such as infective endocarditis. Few studies have tested the antimicrobial susceptibility of Gemella. We tested its antimicrobial susceptibility to 27 drugs and defined the resistant genes using PCR in 58 Gemella strains, including 52 clinical isolates and six type strains. The type strains and clinical isolates included 22 G. morbillorum, 18 G. haemolysans (GH) group (genetically indistinguishable from G. haemolysans and G. parahaemolysans), 13 G. taiwanensis, three G. sanguinis, and two G. bergeri. No strain was resistant to beta-lactams and vancomycin. In total, 6/22 (27.3%) G. morbillorum strains were erythromycin- and clindamycin-resistant ermB-positive, whereas 4/18 (22.2%) in the GH group, 7/13 (53.8%) G. taiwanensis, and 1/3 (33.3%) of the G. sanguinis strains were erythromycin-non-susceptible mefE- or mefA-positive and clindamycin-susceptible. The MIC90 of minocycline and the ratios of tetM-positive strains varied across the different species—G. morbillorum: 2 µg/mL and 27.3% (6/22); GH group: 8 µg/mL and 27.8% (5/18); G. taiwanensis: 8 µg/mL and 46.2% (6/13), respectively. Levofloxacin resistance was significantly higher in G. taiwanensis (9/13 69.2%) than in G. morbillorum (2/22 9.1%). Levofloxacin resistance was associated with a substitution at serine 83 for leucine, phenylalanine, or tyrosine in GyrA. The mechanisms of resistance to erythromycin and clindamycin differed across Gemella species. In addition, the rate of susceptibility to levofloxacin differed across Gemella sp., and the quinolone resistance mechanism was caused by mutations in GyrA alone. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

18 pages, 13986 KiB  
Article
Novel Fluoroquinolones with Possible Antibacterial Activity in Gram-Negative Resistant Pathogens: In Silico Drug Discovery
by Manuel Alejandro Coba-Males, Martin J. Lavecchia, Christian David Alcívar-León and Javier Santamaría-Aguirre
Molecules 2023, 28(19), 6929; https://doi.org/10.3390/molecules28196929 - 4 Oct 2023
Cited by 6 | Viewed by 2873
Abstract
Antibiotic resistance is a global threat to public health, and the search for new antibacterial therapies is a current research priority. The aim of this in silico study was to test nine new fluoroquinolones previously designed with potential leishmanicidal activity against Campylobacter jejuni [...] Read more.
Antibiotic resistance is a global threat to public health, and the search for new antibacterial therapies is a current research priority. The aim of this in silico study was to test nine new fluoroquinolones previously designed with potential leishmanicidal activity against Campylobacter jejuni, Escherichia coli, Neisseria gonorrhoeae, Pseudomonas aeruginosa, and Salmonella typhi, all of which are considered by the World Health Organization to resistant pathogens of global concern, through molecular docking and molecular dynamics (MD) simulations using wild-type (WT) and mutant-type (MT) DNA gyrases as biological targets. Our results showed that compound 9FQ had the best binding energy with the active site of E. coli in both molecular docking and molecular dynamics simulations. Compound 9FQ interacted with residues of quinolone resistance-determining region (QRDR) in GyrA and GyrB chains, which are important to enzyme activity and through which it could block DNA replication. In addition to compound 9FQ, compound 1FQ also showed a good affinity for DNA gyrase. Thus, these newly designed molecules could have antibacterial activity against Gram-negative microorganisms. These findings represent a promising starting point for further investigation through in vitro assays, which can validate the hypothesis and potentially facilitate the development of novel antibiotic drugs. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

18 pages, 1331 KiB  
Article
Multidrug-Resistant Salmonella Species and Their Mobile Genetic Elements from Poultry Farm Environments in Malaysia
by Syahidiah Syed Abu Thahir, Sakshaleni Rajendiran, Rafiza Shaharudin and Yuvaneswary Veloo
Antibiotics 2023, 12(8), 1330; https://doi.org/10.3390/antibiotics12081330 - 18 Aug 2023
Cited by 11 | Viewed by 4547
Abstract
The prevalence and persistent outbreaks of multidrug-resistant (MDR) Salmonella in low-income countries have received growing attention among the public and scientific community. Notably, the excessive use of antibiotics in chicken feed for the purpose of treatment or as prophylaxis in the poultry industry [...] Read more.
The prevalence and persistent outbreaks of multidrug-resistant (MDR) Salmonella in low-income countries have received growing attention among the public and scientific community. Notably, the excessive use of antibiotics in chicken feed for the purpose of treatment or as prophylaxis in the poultry industry have led to a rising rate of antimicrobial resistance. Therefore, this study aimed to determine the presence of antimicrobial-resistant Salmonella species and its mobile genetic elements from soil and effluent samples of 33 randomly selected poultry farms in Selangor, Malaysia. Salmonella species were isolated on selective media (CHROMagar™ Salmonella). VITEK® 2 system was used to identify the isolates and their antimicrobial susceptibility. Subsequently, eight isolates were subjected to the whole genome sequencing (WGS). Based on the results, Salmonella spp. was detected in 38.1% (24/63) of samples, with the highest resistance to ampicillin (62.5%), followed by ampicillin/sulbactam (50.0%) and ciprofloxacin (45.8%). Meanwhile, the identified serovars were Salmonella enterica subspecies enterica serovar Weltevreden (S. Weltevreden), S. Jedburgh, and S. Brancaster. The most prevalent resistance genes detected include qnrS1, blaTEM-176, dfrA14, and tet(A). The IncX1 plasmid, with encoded resistance genes, was also detected in four isolates. Furthermore, mutations in the quinolone resistant-determining regions (QRDR) were discovered, specifically in the gyrA, gyrB, and parC genes. In short, surveillance such as continuous monitoring of antimicrobial resistance and emerging trends in resistance patterns through farm environmental samples could provide information to formulate public health interventions for effective infection prevention and disease control. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Animal and Zoonotic Pathogens)
Show Figures

Figure 1

18 pages, 5208 KiB  
Article
Multidrug Resistance Profiles and Resistance Mechanisms to β-Lactams and Fluoroquinolones in Bacterial Isolates from Hospital Wastewater in Bangladesh
by Rasel Khan Manik, Zimam Mahmud, Israt Dilruba Mishu, Md Sourav Hossen, Zakir Hossain Howlader and A. H. M. Nurun Nabi
Curr. Issues Mol. Biol. 2023, 45(8), 6485-6502; https://doi.org/10.3390/cimb45080409 - 5 Aug 2023
Cited by 9 | Viewed by 2392
Abstract
Multidrug resistance (MDR) is one of the deadliest public health concerns of the 21st century, rendering many powerful antibiotics ineffective. The current study provides important insights into the prevalence and mechanisms of antibiotic resistance in hospital wastewater isolates. In this study, we determined [...] Read more.
Multidrug resistance (MDR) is one of the deadliest public health concerns of the 21st century, rendering many powerful antibiotics ineffective. The current study provides important insights into the prevalence and mechanisms of antibiotic resistance in hospital wastewater isolates. In this study, we determined the MDR profile of 68 bacterial isolates collected from five different hospitals in Dhaka, Bangladesh. Of them, 48 bacterial isolates were identified as Enterobacteriaceae. Additionally, we investigated the prevalence and distribution of five beta-lactam resistance genes, as well as quinolone resistance mechanisms among the isolates. The results of this study showed that 87% of the wastewater isolates were resistant to at least three different antibiotic classes, as revealed using the disc diffusion method. Resistance to β-lactams was the most common, with 88.24% of the isolates being resistant, closely followed by macrolides (80.88% resistant). Polymyxin was found to be the most effective against wastewater isolates, with 29.41% resistant isolates. The most common β-lactam resistance genes found in wastewater isolates were blaTEM (76.09%), blaCTX-M1 (71.74%), and blaNDM (67.39%). Two missense mutations in the quinolone resistance-determining region (QRDR) of gyrA (S83L and D87N) and one in both parC (S80I) and parE (S458A) were identified in all isolates, and one in parE (I529L), which had not previously been identified in Bangladesh. These findings suggest that hospital wastewater acts as an important reservoir of antibiotic-resistant bacteria wherein resistance mechanisms to β-lactams and fluoroquinolones are obvious. Our data also emphasize the need for establishing a nationwide surveillance system for antibiotic resistance monitoring to ensure that hospitals sanitize their wastewater before disposal, and regulation to ensure hospital wastewater is kept away from community settings. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop