Next Article in Journal
In Vitro Virucidal Activity of Different Essential Oils against Bovine Viral Diarrhea Virus Used as Surrogate of Human Hepatitis C Virus
Previous Article in Journal
Multidisciplinary Perspectives of Challenges in Infective Endocarditis Complicated by Septic Embolic-Induced Acute Myocardial Infarction
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Correction

Correction: Furugaito et al. Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp. Antibiotics 2023, 12, 1538

1
Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
2
Department of Clinical Laboratory, Kindai University Hospital, Osakasayama, Osaka 589-8511, Japan
3
Department of Infectious Diseases, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
4
Department of Clinical Laboratory Medicine, Faculty of Medicine, Kindai University, Osakasayama, Osaka 589-8511, Japan
5
Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
*
Author to whom correspondence should be addressed.
Antibiotics 2024, 13(6), 515; https://doi.org/10.3390/antibiotics13060515
Submission received: 14 May 2024 / Accepted: 24 May 2024 / Published: 31 May 2024

Text Correction

The authors wish to make the following corrections to this paper [1]. We request correction of the MICs and gene possession ratios of the two strains TWCC 52027 and TWCC 53044. This correction does not affect any content in our paper at all, but only affects a p-value described in Section 2.2.4 (Page 8): “whereas the ratio was higher in the GH group than in G. morbillorum (p = 0.16).” This p-value (0.16) was replaced with 0.08. We need to correct the values in Abstract, Results, Figures 1 and 2, Tables 2–5, Supplementary Table S1, Sections 2.2.2–2.2.4, Section 2.2.6, Sections 2.3–2.5.
  • Abstract: Gemella is a catalase-negative, facultative anaerobic, Gram-positive coccus that is commensal in humans but can become opportunistic and cause severe infectious diseases, such as infective endocarditis. Few studies have tested the antimicrobial susceptibility of Gemella. We tested its antimicrobial susceptibility to 27 drugs and defined the resistant genes using PCR in 58 Gemella strains, including 52 clinical isolates and 6 type strains. The type strains and clinical isolates comprised 22 G. morbillorum, 18 G. haemolysans (GH) group (genetically indistinguishable from G. haemolysans and G. parahaemolysans), 13 G. taiwanensis, three G. sanguinis, and two G. bergeri. No strain was resistant to beta-lactams and vancomycin. In total, 6/22 (27.3%) G. morbillorum strains were erythromycin- and clindamycin-resistant ermB-positive, whereas 5/18 (27.8%) in the GH group, 6/13 (46.2%) G. taiwanensis, and 1/3 (33.3%) of the G. sanguinis strains were erythromycin-non-susceptible mefE- or mefA-positive and clindamycin-susceptible. The MIC90 of minocycline and the ratios of tetM-positive strains varied across the different species—G. morbillorum: 2 µg/mL and 27.3% (6/22); GH group: 8 µg/mL and 22.2% (4/18); G. taiwanensis: 8 µg/mL and 53.8% (7/13), respectively. Levofloxacin resistance was significantly higher in G. taiwanensis (8/13, 61.5%) than in G. morbillorum (2/22, 9.1%). Levofloxacin resistance was associated with a substitution at serine 83 for leucine, phenylalanine, or tyrosine in GyrA. The mechanisms of resistance to erythromycin and clindamycin differed across Gemella species. In addition, the rate of susceptibility to levofloxacin differed across Gemella spp., and the quinolone resistance mechanism was caused by mutations in GyrA alone.

2.2.2. Susceptibility to Erythromycin

In total, 20/58 strains were erythromycin-non-susceptible (intermediate or resistant), with MIC90 > 2 µg/mL. Although the ratios of the erythromycin-non-susceptible isolates varied across species, there was no significant difference among G. morbillorum, the GH group, and G. taiwanensisG. morbillorum: 27.3% (6/22), GH group: 38.9% (7/18), G. taiwanensis: 46.2% (6/13), G. sanguinis: 33.3% (1/3), and G. bergeri: 0.0% (0/2) (Table 2, Figures 1 and 2).

2.2.3. Susceptibility to Clindamycin

In total, 10/58 strains were clindamycin-non-susceptible, resulting in MIC90 > 2 µg/mL. Clindamycin-resistant G. taiwanensis, G. sanguinis, and G. bergeri isolates were not detected, and differences were not significant—G. morbillorum: 27.3% (6/22), GH group: 22.2% (4/18), G. taiwanensis: 0.0% (0/13), and G. sanguinis: 0.0% (0/3) (Table 2, Figures 1 and 2). Interestingly, all six erythromycin-resistant G. morbillorum strains were clindamycin-resistant. In contrast, 5/7 GH group strains, six strains of G. taiwanensis, and one G. sanguinis strain were erythromycin-non-susceptible and clindamycin-susceptible.

2.2.4. Susceptibility to Levofloxacin

In total, 21/58 strains were levofloxacin-resistant, resulting in MIC90 > 128 µg/mL. Ratios of the levofloxacin strains varied across species—G. morbillorum: 9.1% (2/22), GH group: 50.0% (9/18), G. taiwanensis: 61.5% (8/13), G. sanguinis: 66.7% (2/3), and G. bergeri: 0.0% (0/2). The ratio of the resistant strains was significantly higher in G. taiwanensis than in G. morbillorum (p < 0.05 using chi-squared test), whereas the ratio was higher in the GH group than in G. morbillorum (p = 0.08) (Table 2, Figure 1).

2.2.6. Susceptibility to Other Antimicrobial Agents

We tested the 18 antimicrobial agents whose breakpoints are not listed in CLSI M45-third edition. Gemella strains showed low MIC values for all beta-lactams: ampicillin, amoxicillin–clavulanic acid, sulbactam–ampicillin, cefazolin, cefdinir, cefepime, and imipenem (MIC90: ≤0.12, ≤0.25/0.12, ≤0.06/0.12, ≤0.25, ≤0.25, ≤0.06, and ≤0.06 μg/mL, respectively). The MIC90 values of clarithromycin and azithromycin were 8 and >4 µg/mL, respectively, consistent with those of erythromycin. The MIC90 values of clarithromycin varied among G. morbillorum (>16 μg/mL), the GH group (8 μg/mL), and G. taiwanensis (2 μg/mL), indicating the acquisition of high resistance to clarithromycin in G. morbillorum strains. The MIC90 value of moxifloxacin was high (>2 μg/mL) in Gemella strains. The MIC90 values of the aminoglycoside antibiotics gentamicin, gentamicin500 (to confirm tolerance to high concentrations of gentamicin), and arbekacin were 8, ≤500, and >8 μg/mL, respectively; sulfamethoxazole–trimethoprim, fosfomycin, and rifampicin were >38/2, ≤16, and ≤0.5 μg/mL, respectively; and the anti-MRSA agents teicoplanin, linezolid, and daptomycin were ≤0.5, 1, and 2 μg/mL, respectively (Table 2). Typically, streptococci are aminoglycoside-resistant. Therefore, we tested gentamicin500 to identify any Gemella strains that are highly resistant to aminoglycoside.

2.3. Phenotypes and Genotypes of Macrolide-Resistant Strains

The six erythromycin–clindamycin-resistant G. morbillorum strains exhibited constitutive resistance to macrolide, lincosamide, and streptogramin B (cMLSB). Their genotypes—mefA/E-negative, ermB-positive, and msrA-negative—were consistent with their phenotypes. Furthermore, five/seven strains of the GH group, six strains of G. taiwanensis, and one strain of G. sanguinis which were erythromycin-non-susceptible and clindamycin-susceptible, had macrolide-resistant (M) phenotypes and mefE- (four strains) or mefA-positive (one strain), erm-negative, and msrA-negative genotypes. In total, 2/7 GH group strains (TWCC 59567 and TWCC 59795) were erythromycin-resistant and clindamycin-non-susceptible and mefE-positive, but showed M phenotype. These results show that erythromycin-resistant G. morbillorum is associated with ermB, and erythromycin-non-susceptible GH-group, G. taiwanensis, and G. sanguinis are associated with mefE. The MIC values for clarithromycin were higher in the six ermB-positive G. morbillorum strains (8 or >16 µg/mL) (Table 3). All erythromycin-susceptible Gemella strains, except the G. sanguinis strain TWCC 70419, lacked mefA/E, erm, or msrA (Table S1).

2.4. Tetracycline Resistance

Next, we analyzed the possession rates of tet. Overall, 17/58 (29.3%) strains were tetM-positive; none of the other tet genes was detected. The ratios of tetM-positive strains in G. morbillorum, the GH group, G. taiwanensis, G. sanguinis, and G. bergeri were 27.3% (6/22), 33.3% (6/18), 38.5% (5/13), 0/3 (0.0%), and 0.0% (0/2), respectively. Among the 41 tetM-negative strains, one had minocycline (MIC = 2 µg/mL). The minocycline MIC values of the others were ≤1 µg/mL. The minocycline MIC of the 17 tetM-positive strains varied: ≤1 for five, 2 for five, and ≥8 µg/mL for seven strains, respectively (Table 4).

2.5. Mutations in gyrA and gyrB

We analyzed the gyrA and gyrB sequences. The 35 quinolone-susceptible strains possessed gyrA, encoding GyrA with a serine residue at 83 (S83). The serine residue was substituted with leucine (S83L), phenylalanine (S83F), or tyrosine (S83Y) in the 21 quinolone-resistant strains. Specifically, two G. morbillorum strains possessed GyrA/S83L, encoding gyrA. Seven of the GH group, seven G. taiwanensis, and two G. sanguinis strains contained S83F. Two in the GH group and one G. taiwanensis strains contained S84Y. GyrB mutations associated with levofloxacin resistance were not detected (Table 5).
Figure 1. Ratios of resistant strains. S (blue), I (yellow), and R (red) indicate sensitive, intermediate, and resistant, respectively.
Figure 1. Ratios of resistant strains. S (blue), I (yellow), and R (red) indicate sensitive, intermediate, and resistant, respectively.
Antibiotics 13 00515 g001
Figure 2. Distribution of erythromycin/clindamycin resistance in Gemella strains. Blue, yellow, and red boxes indicate sensitive, intermediate, and resistant, respectively.
Figure 2. Distribution of erythromycin/clindamycin resistance in Gemella strains. Blue, yellow, and red boxes indicate sensitive, intermediate, and resistant, respectively.
Antibiotics 13 00515 g002
Table 2. Susceptibility to antimicrobial agents with breakpoints listed in CLSI M45-third edition.
Table 2. Susceptibility to antimicrobial agents with breakpoints listed in CLSI M45-third edition.
Antimicrobial Agents/
Gemella spp.
MIC (μg/mL) Interpretive Breakpoint (μg/mL) a
or % of Isolates
RangeMIC50MIC90SusceptibleIntermediateResistant
Penicillin G c≤0.06–>4 ≤0.120.25–2≥4
Gemella morbillorum≤0.06≤0.06≤0.06100.00.00.0
GH group≤0.06≤0.06≤0.06100.00.00.0
Gemella taiwanensis≤0.06–0.25≤0.06≤0.0692.37.70.0
Gemella sanguinis≤0.06100.00.00.0
Gemella bergeri≤0.06100.00.00.0
Total≤0.06–0.25≤0.06≤0.0698.31.70.0
Ampicillin≤0.12–>4
Gemella morbillorum≤0.12–0.25≤0.12≤0.12NA bNANA
GH group≤0.12≤0.12≤0.12NANANA
Gemella taiwanensis≤0.12–0.5≤0.12≤0.12NANANA
Gemella sanguinis≤0.12NANANA
Gemella bergeri≤0.12NANANA
Total≤0.12–0.5≤0.12≤0.12NANANA
Amoxicillin–clavulanic acid≤0.25/0.12–>4/2
Gemella morbillorum≤0.25/0.12≤0.25/0.12≤0.25/0.12NANANA
GH group≤0.25/0.12≤0.25/0.12≤0.25/0.12NANANA
Gemella taiwanensis≤0.25/0.12≤0.25/0.12≤0.25/0.12NANANA
Gemella sanguinis≤0.25/0.12NANANA
Gemella bergeri≤0.25/0.12NANANA
Total≤0.25/0.12≤0.25/0.12≤0.25/0.12NANANA
Sulbactam–ampicillin≤0.06/0.12–>2/4
Gemella morbillorum≤0.06/0.12≤0.06/0.12≤0.06/0.12NANANA
GH group≤0.06/0.12≤0.06/0.12≤0.06/0.12NANANA
Gemella taiwanensis≤0.06/0.12–0.25/0.5≤0.06/0.12≤0.06/0.12NANANA
Gemella sanguinis≤0.06/0.12NANANA
Gemella bergeri≤0.06/0.12NANANA
Total≤0.06/0.12–0.25/0.5≤0.06/0.12≤0.06/0.12NANANA
Cefazolin ≤0.25–>2
Gemella morbillorum≤0.25≤0.25≤0.25NANANA
GH group≤0.25–0.5≤0.250.5NANANA
Gemellataiwanensis≤0.25–0.5≤0.250.5NANANA
Gemella sanguinis≤0.25NANANA
Gemella bergeri≤0.25NANANA
Total≤0.25–0.5≤0.25≤0.25NANANA
Cefdinir≤0.25–>1
Gemella morbillorum≤0.25≤0.25≤0.25NANANA
GH group≤0.25≤0.25≤0.25NANANA
Gemella taiwanensis≤0.25≤0.25≤0.25NANANA
Gememlla sanguinis≤0.25–0.5NANANA
Gemella bergeri≤0.25NANANA
Total≤0.25–0.5≤0.25≤0.25NANANA
Ceftriaxone c≤0.06–>2 ≤12≥4
Gemella morbillorum≤0.06–0.5≤0.06≤0.06100.00.00.0
GH group≤0.06≤0.06≤0.06100.00.00.0
Gemella taiwanensis≤0.06≤0.06≤0.06100.00.00.0
Gemella sanguinis0.25–1100.00.00.0
Gemella bergeri≤0.06 100.00.00.0
Total≤0.06–1≤0.06≤0.06100.00.00.0
Cefotaxime c≤0.06–>2 ≤12≥4
Gemella morbillorum≤0.06–0.12≤0.06≤0.06100.00.00.0
GH group≤0.06–0.12≤0.06≤0.06100.00.00.0
Gemella taiwanensis≤0.06–0.12≤0.06≤0.06100.00.00.0
Gemella sanguinis0.25–1100.00.00.0
Gemella bergeri≤0.06100.00.00.0
Total≤0.06–1≤0.060.12100.00.00.0
Cefepime≤0.06–>2
Gemella morbillorum≤0.06–0.5≤0.06≤0.06NANANA
GH group≤0.06–0.12≤0.060.12NANANA
Gemella taiwanensis≤0.06–0.12≤0.06≤0.06NANANA
Gemella sanguinis0.25–1NANANA
Gemella bergeri≤0.06NANANA
Total≤0.06–1≤0.060.12NANANA
Imipenem≤0.06–>4
Gemella morbillorum≤0.06≤0.06≤0.06NANANA
GH group≤0.06≤0.06≤0.06NANANA
Gemella taiwanensis≤0.06≤0.06≤0.06NANANA
Gemella sanguinis≤0.06NANANA
Gemella bergeri≤0.06NANANA
Total≤0.06≤0.06≤0.06NANANA
Meropenem c≤0.06–>2 ≤0.51≥2
Gemella morbillorum≤0.06≤0.06≤0.06100.00.00.0
GH group≤0.06≤0.06≤0.06100.00.00.0
Gemella taiwanensis≤0.06≤0.06≤0.06100.00.00.0
Gemella sanguinis≤0.06100.00.00.0
Gemella bergeri≤0.06100.00.00.0
Total≤0.06≤0.06≤0.06100.00.00.0
Erythromycin c≤0.25–>2 ≤0.250.5≥1
Gemella morbillorum≤0.25–>2≤0.25>272.70.027.3
GH group≤0.25–>2≤0.25>261.15.633.3
Gemella taiwanensis≤0.25–>2≤0.25>253.80.046.2
Gemella sanguinis≤0.25–166.70.033.3
Gemella bergeri≤0.25100.00.00.0
Total≤0.25–>2≤0.25>265.51.732.8
Clarithromycin≤0.12–>16
Gemella morbillorum≤0.12–>16≤0.12>16NANANA
GH group≤0.12–16≤0.128NANANA
Gemella taiwanensis≤0.12–8≤0.122NANANA
Gemella sanguinis≤0.12–0.25NANANA
Gemella bergeri≤0.12NANANA
Total≤0.12–>16≤0.128NANANA
Azithromycin≤0.12–>4
Gemella morbillorum≤0.12–>4≤0.12>4NANANA
GH group≤0.12–>4≤0.12>4NANANA
Gemella taiwanensis≤0.12–>40.25>4NANANA
Gemella sanguinis0.25–4NANANA
Gemella bergeri0.25NANANA
Total≤0.12–>4≤0.12>4NANANA
Clindamycin c≤0.25–>2 ≤0.250.5≥1
Gemella morbillorum≤0.25–>2≤0.25>272.70.027.3
GH group≤0.25–1≤0.250.577.816.75.6
Gemella taiwanensis≤0.25≤0.25≤0.25100.00.00.0
Gemella sanguinis≤0.25100.00.00.0
Gemella bergeri≤0.25100.00.00.0
Total≤0.25–>2≤0.25>282.85.212.1
Erythromycin/clindamycin ≤1/0.5–>1/0.5
G. morbillorum≤1/0.5–>1/0.5≤1/0.5>1/0.5NANANA
GH group≤1/0.5–>1/0.5≤1/0.5≤1/0.5NANANA
G. taiwanensis≤1/0.5≤1/0.5≤1/0.5NANANA
G. sanguinis≤1/0.5NANANA
Gemella bergeri≤1/0.5NANANA
Total≤1/0.5–>1/0.5≤1/0.5>1/0.5NANANA
Levofloxacin c≤0.004–>128 ≤24≥8
Gemella morbillorum0.03–>1280.25190.90.09.1
GH group0.125–>1281>12850.00.050.0
Gemella taiwanensis0.125–>128>128>12838.50.061.5
Gemella sanguinis0.5–>12833.30.066.7
Gemella bergeri0.5100.00.00.0
Total0.03–>1280.5>12863.80.036.2
Moxifloxacin≤0.5–>2
Gemella morbillorum≤0.5–>2≤0.5>2 NANANA
GH group≤0.5–>2≤0.5>2NANANA
Gemella taiwanensis≤0.5–>2>2>2NANANA
Gemella sanguinis≤0.5–>2NANANA
Gemella bergeri≤0.5NANANA
Total≤0.5–>2≤0.5>2NANANA
Minocycline≤1–>8
Gemella morbillorum≤1–>8≤12NANANA
GH group≤1–8≤18NANANA
Gemella taiwanensis≤1–8≤18NANANA
Gemella sanguinis≤1NANANA
Gemella bergeri≤1NANANA
Total≤1≤18NANANA
Sulfamethoxazole–
trimethoprim
≤9.5/0.5–>38/2
Gemella morbillorum≤9.5/0.5–>38/219/1>38/2NANANA
GH group≤9.5/0.5–>38/238/2>38/2NANANA
Gemella taiwanensis≤9.5/0.5–>38/219/119/1NANANA
Gemella sanguinis19/1–>38/2NANANA
Gemella bergeri≤9.5/0.5NANANA
Total≤9.5/0.5–>38/219/1>38/2NANANA
Gentamicin≤1–>8
Gemella morbillorum≤1–828NANANA
GH group≤1–2≤12NANANA
Gemella taiwanensis≤1–424NANANA
Gemella sanguinis≤1–8NANANA
Gemella bergeri2, 4NANANA
Total≤1–828NANANA
Gentamicin 500≤500–>500
Gemella morbillorum≤500≤500≤500NANANA
GH group≤500≤500≤500NANANA
Gemella taiwanensis≤500≤500≤500NANANA
Gemella sanguinis≤500NANANA
Gemella bergeri≤500NANANA
Total≤500≤500≤500NANANA
Arbekacin≤1–>8
Gemella morbillorum≤1–88>8NANANA
GH group≤1–848NANANA
Gemella taiwanensis2–>848NANANA
Gemella sanguinis4–>8NANANA
Gemella bergeri4, >8NANANA
Total≤1–84>8NANANA
Fosfomycin≤16–>128
Gemella morbillorum≤16–32≤16≤16NANANA
GH group≤16≤16≤16NANANA
Gemella taiwanensis≤16≤16≤16NANANA
Gemalla sanguinis≤16NANANA
Gemella bergeri≤16NANANA
Total≤16–32≤16≤16NANANA
Rifampicin≤0.5–>2
Gemella morbillorum≤0.5≤0.5≤0.5NANANA
GH group≤0.5≤0.5≤0.5NANANA
Gemella taiwanensis≤0.5≤0.5≤0.5NANANA
Gemella sanguinis≤0.5NANANA
Gemella bergeri≤0.5 NANANA
Total≤0.5≤0.5≤0.5NANANA
Vancomycin c≤0.25–>2 ≤1
Gemella morbillorum≤0.25–0.50.50.5100.00.00.0
GH group≤0.25–0.50.50.5100.00.00.0
Gemella taiwanensis≤0.25–0.50.50.5100.00.00.0
Gemella sanguinis≤0.25–0.5100.00.00.0
Gemella bergeri0.5100.00.00.0
Total≤0.25–0.50.50.5100.00.00.0
Teicoplanin≤0.5–>16
Gemella morbillorum≤0.5≤0.5≤0.5NANANA
GH group≤0.5≤0.5≤0.5NANANA
Gemella taiwanensis≤0.5≤0.5≤0.5NANANA
Gemella sanguinis≤0.5NANANA
Gemella bergeri≤0.5NANANA
Total≤0.5≤0.5≤0.5NANANA
Linezolid≤0.5–>4
Gemella morbillorum≤0.5–1≤0.51NANANA
GH group≤0.5–1≤0.51NANANA
Gemella taiwanensis≤0.5≤0.5≤0.5NANANA
Gemella sanguinis≤0.5–1NANANA
Gemella bergeri≤0.5, 2NANANA
Total≤0.5≤0.51NANANA
Daptomycin≤0.25–>4
Gemella morbillorum≤0.25–422NANANA
GH group0.5–212NANANA
Gemella taiwanensis≤0.25–212NANANA
Gemella sanguinis1–4NANANA
Gemella bergeri2, 4NANANA
Total≤0.25–412NANANA
a Interpretive breakpoints are shown in bold for each antibiotic. b NA, not applicable (breakpoints not established). c Antimicrobial agents with breakpoints listed in CLSI M45-third edition.
Table 3. Distribution of macrolides and clindamycin MICs and possession of the mef, erm, and msrA genes in erythromycin-non-susceptible Gemella isolates.
Table 3. Distribution of macrolides and clindamycin MICs and possession of the mef, erm, and msrA genes in erythromycin-non-susceptible Gemella isolates.
Strain No.IdentificationMIC (μg/mL)Macrolide
Phenotype a,b
mefA/EermmsrA
ErythromycinClindamycinErythromycin/ClindamycinClarithromycin Azithromycin
TWCC 57201Gemella morbillorum>2>2>1/0.58>4cMLSB-ermB-
TWCC 57818Gemella morbillorum>2>2>1/0.5>16>4cMLSB-ermB-
TWCC 57944Gemella morbillorum>2>2>1/0.5>16>4cMLSB-ermB-
TWCC 59111Gemella morbillorum>2>2>1/0.58>4cMLSB-ermB-
TWCC 71703Gemella morbillorum>2>2>1/0.5>16>4cMLSB-ermB-
TWCC 72266Gemella morbillorum>2>2>1/0.5>16>4cMLSB-ermB-
TWCC 52027GH group0.5≤0.25≤1/0.582MmefE--
TWCC 59566GH group2≤0.25≤1/0.52>4MmefE--
TWCC 59567GH group>21>1/0.516>4MmefE--
TWCC 59795GH group10.5≤1/0.50.52MmefE--
TWCC 70939GH group>2≤0.25≤1/0.52>4MmefE--
TWCC 71200GH group1≤0.25≤1/0.522MmefA--
TWCC 71814GH group1≤0.25≤1/0.50.51MmefE--
TWCC 55344Gemella taiwanensis>2≤0.25≤1/0.58>4MmefE--
TWCC 58522Gemella taiwanensis>2≤0.25≤1/0.524MmefE--
TWCC 70386Gemella taiwanensis>2≤0.25≤1/0.524MmefE--
TWCC 72085Gemella taiwanensis>2≤0.25≤1/0.52>4MmefE--
TWCC 70387LGemella taiwanensis2≤0.25≤1/0.50.5>4MmefE--
TWCC 70387SGemella taiwanensis>2≤0.25≤1/0.52>4MmefE--
TWCC 54965Gemella sanguinis1≤0.25≤1/0.50.254MmefE--
TWCC 70419Gemella sanguinis≤0.25 c≤0.25≤1/0.5≤0.120.25not MmefE--
a cMLSB: macrolide–lincosamide–streptogramin B-resistant phenotype. b M: macrolide-resistant phenotype. c Erythromycin-susceptible.
Table 4. Distribution of minocycline MIC and ermB in Gemella isolates harboring the tetM gene.
Table 4. Distribution of minocycline MIC and ermB in Gemella isolates harboring the tetM gene.
Strain No.IdentificationtetMMinocycline
MIC (μg/mL)
ermB
TWCC 57944Gemella morbillorum+2+
TWCC 57987Gemella morbillorum+≤1
TWCC 59111Gemella morbillorum+2+
TWCC 70937Gemella morbillorum+>8
TWCC 71703Gemella morbillorum+2+
TWCC 72266Gemella morbillorum+≤1+
TWCC 51800GH group+8
TWCC 59795GH group+≤1
TWCC 70939GH group+8
TWCC 71814GH group+2
TWCC 53044Gemella taiwanensis+8
TWCC 56546Gemella taiwanensis+2
TWCC 58522Gemella taiwanensis+8
TWCC 70386Gemella taiwanensis+8
TWCC 72085Gemella taiwanensis+8
TWCC 70387LGemella taiwanensis+≤1
TWCC 70387SGemella taiwanensis+≤1
Table 5. Distribution of MIC of tested quinolones and amino acid substitutions in gyrA gene in quinolone-resistant Gemella isolates.
Table 5. Distribution of MIC of tested quinolones and amino acid substitutions in gyrA gene in quinolone-resistant Gemella isolates.
StrainnMIC (μg/mL)GyrA Amino Acid Substitutions a
LevofloxacinMoxifloxacin
Gemella morbillorum2>128>2Ser83 > Leu83 (n = 2)
GH group9128–>128>2Ser83 > Phe83 (n = 7), Ser83 > Tyr83 (n =2)
Gemella taiwanensis8128–>128>2Ser83 > Phe83 (n = 7), Ser83 > Tyr83 (n = 1)
Gemella sanguinis2128–>128>2Ser83 > Phe83 (n = 2)
a gyrA-Ser83 Leu: serine to leucine at codon 83; Ser83 Phe: serine to phenylalanine at codon 83; Ser83 Tyr; serine to tyrosine at codon 83.
The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

  1. Furugaito, M.; Arai, Y.; Uzawa, Y.; Kamisako, T.; Ogura, K.; Okamoto, S.; Kikuchi, K. Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp. Antibiotics 2023, 12, 1538. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Furugaito, M.; Arai, Y.; Uzawa, Y.; Kamisako, T.; Ogura, K.; Okamoto, S.; Kikuchi, K. Correction: Furugaito et al. Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp. Antibiotics 2023, 12, 1538. Antibiotics 2024, 13, 515. https://doi.org/10.3390/antibiotics13060515

AMA Style

Furugaito M, Arai Y, Uzawa Y, Kamisako T, Ogura K, Okamoto S, Kikuchi K. Correction: Furugaito et al. Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp. Antibiotics 2023, 12, 1538. Antibiotics. 2024; 13(6):515. https://doi.org/10.3390/antibiotics13060515

Chicago/Turabian Style

Furugaito, Michiko, Yuko Arai, Yutaka Uzawa, Toshinori Kamisako, Kohei Ogura, Shigefumi Okamoto, and Ken Kikuchi. 2024. "Correction: Furugaito et al. Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp. Antibiotics 2023, 12, 1538" Antibiotics 13, no. 6: 515. https://doi.org/10.3390/antibiotics13060515

APA Style

Furugaito, M., Arai, Y., Uzawa, Y., Kamisako, T., Ogura, K., Okamoto, S., & Kikuchi, K. (2024). Correction: Furugaito et al. Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp. Antibiotics 2023, 12, 1538. Antibiotics, 13(6), 515. https://doi.org/10.3390/antibiotics13060515

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop