Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = quiet standing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 996 KB  
Article
The Effect of Small Asymmetric Shoulder Loads on Postural Control in Older People
by Dorota Borzucka, Krzysztof Kręcisz and Michał Kuczyński
Appl. Sci. 2025, 15(22), 11983; https://doi.org/10.3390/app152211983 - 11 Nov 2025
Viewed by 101
Abstract
Background: Asymmetrical load carrying can impair balance and increase fall risk, especially in older adults. This study compared postural control in 33 older (mean age 72.2 ± 11.0 years) and 27 younger (mean age 33.5 ± 15.8 years) adults. Methods: Participants performed three [...] Read more.
Background: Asymmetrical load carrying can impair balance and increase fall risk, especially in older adults. This study compared postural control in 33 older (mean age 72.2 ± 11.0 years) and 27 younger (mean age 33.5 ± 15.8 years) adults. Methods: Participants performed three 20 s quiet standing trials on a force plate: no load, 3 kg left shoulder load, and 3 kg right shoulder load. Center-of-pressure (COP) variability, range, mean velocity, and sample entropy were computed. This was a quasi-experimental study with a mixed-design ANOVA (Group as between-subjects factor; Load and Plane as within-subjects factors). Results: Younger adults showed better overall stability than older adults across conditions. Older adults had larger COP range than younger adults with no load and with the right-sided load. Notably, no significant difference in COP range was found between groups with the left-sided load. Key statistical findings included the significant Load × Group interaction (F(2, 116) = 3.9, p = 0.024, ηp2 = 0.06) for COP range. Conclusions: A small asymmetrical load on the left side may be associated with postural control in older adults, possibly through familiar sensory cues. Conversely, a right-sided load appears to negatively impact their balance. These findings highlight the differential effects of load side on postural control in older individuals. Full article
Show Figures

Figure 1

11 pages, 1461 KB  
Article
Triceps Surae Ia Proprioceptive Weighting in Postural Control During Quiet Stance with Vision Occlusion
by Gordon R. Chalmers
J. Funct. Morphol. Kinesiol. 2025, 10(4), 430; https://doi.org/10.3390/jfmk10040430 - 5 Nov 2025
Viewed by 137
Abstract
Background: Visual, vestibular, proprioceptive and cutaneous sensory information is important for postural control during quiet stance. When the reliability of one source of sensory information used to detect self-motion for postural control is reduced, there may be a reweighting of inputs within [...] Read more.
Background: Visual, vestibular, proprioceptive and cutaneous sensory information is important for postural control during quiet stance. When the reliability of one source of sensory information used to detect self-motion for postural control is reduced, there may be a reweighting of inputs within and/or across the remaining sensory systems determining self-motion for postural control. Muscle vibration, which creates an illusion of muscle stretch and a compensatory movement to shorten the vibrated muscle, may be used to determine the weighting of muscle spindle Ia proprioception in postural control. The objective of this study was to determine the effect of vision occlusion on triceps surae (TS) Ia proprioceptive weighting in postural control during quiet stance, utilizing an 80 Hz muscle vibration stimulus and a quantitative measure of the body’s anterior to posterior ground center of pressure (COP) response to TS muscle vibration in subjects standing freely. Methods: Subjects (N = 41; mean (standard deviation), 19.6(2.0) years) were examined as they stood with eyes open (EO) or eyes closed (EC). Ground COP was measured during quiet standing with and without bilateral vibration of the TS muscles. Results: The mean backward COP shift induced by TS vibration was significantly greater during the EC condition compared to EO (EC: −4.93(1.62) centimeters; EO: −3.21(1.33) centimeters; p = 6.85 × 10−10; Cohen’s d = 1.29). Thirty-seven subjects increased, and two subjects decreased their vibration-induced COP backward shift in the EC condition compared to EO, although the magnitude of the change varied. Conclusions: The results support the idea that, for most young subjects, there is an increased triceps surae Ia proprioceptive weighting for postural control during EC stance, possibly due to the need for postural control to depend more on non-visual feedback. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

23 pages, 1962 KB  
Article
A Home-Based Balance Exercise Training Program with Intermittent Visual Deprivation for Persons with Chronic Incomplete Spinal Cord Injury: A Pilot Study on Feasibility, Acceptability, and Preliminary Outcomes
by Riccardo Bravi, Sara Guarducci, Giulia Panconi, Magdalena Sicher, Lorenzo Mucchi, Giacomo Lucchesi, Gabriele Righi, Giulio Del Popolo and Diego Minciacchi
Sensors 2025, 25(20), 6320; https://doi.org/10.3390/s25206320 - 13 Oct 2025
Viewed by 829
Abstract
Incomplete spinal cord injury (iSCI) results in impaired postural control and walking ability. Visual over-reliance may occur in iSCI individuals to maintain postural control. This can challenge their postural stability in various contexts of daily life activities. The present study assessed the feasibility, [...] Read more.
Incomplete spinal cord injury (iSCI) results in impaired postural control and walking ability. Visual over-reliance may occur in iSCI individuals to maintain postural control. This can challenge their postural stability in various contexts of daily life activities. The present study assessed the feasibility, acceptability, and preliminary outcomes of balance training with intermittent visual deprivation using stroboscopic glasses on postural control and visual reliance during quiet standing in iSCI individuals. Training impact on walking performance was also evaluated. Seven chronic iSCI individuals participated in a 6-week home-based balance training program, three times weekly, using stroboscopic glasses. Postural and walking abilities were assessed pre- and post-training using a bipedal stance test (BST) and 10 m walking test (10 MWT). BST was performed, with open-eyes (OE) and closed-eyes (CE), on a force plate for three 30 s trials. The center of pressure (CoP) variables included were CoP area (A-CoP) and CoP mean velocity (MV-CoP). Romberg ratios (CE/OE) for two CoP variables were calculated. Duration and speed were measured in 10 MWT. Intervention feasibility was assessed using the feasibility and acceptability questionnaire. Data from able-bodied individuals were recorded and used as references of physiological performance. iSCI individuals were significantly less stable and showed visual over-reliance for postural steadiness compared to controls. Also, their walking ability was impaired. All iSCI individuals completed the training (adherence rate: 84%) and rated it highly feasible. A-CoP and MV-CoP significantly reduced after training in CE condition (p = 0.018, respectively) but not in OE condition (p > 0.05). The Romberg ratio of A-CoP was significantly lower (p = 0.018), but the Romberg ratio of MV-CoP was not (p > 0.05). A significant reduction in duration and increase in speed (p = 0.018, respectively) in performing the 10 MWT were observed. Preliminary findings from this explorative study indicated that 6-week home-based balance training with intermittent visual deprivation was feasible, acceptable, and had promising potential benefits in improving postural control with a reduction in visual over-reliance in iSCI individuals. The training enhanced also their walking performance. Full article
Show Figures

Figure 1

17 pages, 1194 KB  
Article
Impact of Induced Forward Leg Movements on Kinematics and Kinetics During Quiet Standing in Healthy Young Right-Leg-Dominant Women: A Quasi-Experimental Study
by Michalina Gulatowska, Michalina Błażkiewicz, Anatolii Tsos and Jacek Wąsik
Appl. Sci. 2025, 15(19), 10764; https://doi.org/10.3390/app151910764 - 6 Oct 2025
Viewed by 351
Abstract
Background: Postural control in healthy young adults involves complex neuromuscular processes; however, the kinematic and kinetic consequences of small, forward leg perturbations in a defined population are not fully described. This study aimed to characterize the kinematic and kinetic consequences of forward leg [...] Read more.
Background: Postural control in healthy young adults involves complex neuromuscular processes; however, the kinematic and kinetic consequences of small, forward leg perturbations in a defined population are not fully described. This study aimed to characterize the kinematic and kinetic consequences of forward leg perturbations during quiet standing. Methods: This investigation used a quasi-experimental repeated-measures design. Sixteen healthy young women (20.1 ± 0.7 years), all right-leg dominant, were tested using the Gait Real-Time Analysis Interactive Laboratory (GRAIL) system. Forward treadmill perturbations were applied to each limb during quiet standing, and joint angles, ground reaction forces, and torques were measured across baseline, perturbation, and response phases. As the data were non-normally distributed, paired comparisons were conducted using the Wilcoxon test, with significance set at p < 0.05 (Bonferroni corrected) and effect sizes (r) reported. Results: Joint angles remained symmetrical between limbs (no significant differences after correction). In contrast, kinetic measures showed clear asymmetries: at baseline, the dominant limb produced greater knee torque (p = 0.0003, r = 0.73), ankle torque (p = 0.0003, r = 0.76), and medio-lateral GRF (p = 0.0003, r = 0.87). During perturbation, it again generated higher knee (p = 0.0036, r = 0.43) and ankle torques (p = 0.0003, r = 0.53), with larger medio-lateral GRF (p = 0.0003, r = 0.87). In the response phase, the dominant limb showed greater hip torque (p = 0.0033, r = 0.43) and a small dorsiflexion shift at the ankle (p = 0.0066, r = 0.41). Anterior–posterior GRF changes were minor and non-significant after correction. Conclusions: Induced forward leg movements caused limb-specific kinetic adjustments while maintaining overall kinematic symmetry. The dominant leg contributed more actively to balance recovery, highlighting its role in stabilizing posture under small perturbations. These findings are specific to the studied demographic and should not be generalized to males, older adults, left-dominant individuals, or clinical populations without further research. Full article
(This article belongs to the Special Issue Applied Biomechanics: Sports Performance and Rehabilitation)
Show Figures

Figure 1

23 pages, 4319 KB  
Article
Four-Week Exoskeleton Gait Training on Balance and Mobility in Minimally Impaired Individuals with Multiple Sclerosis: A Pilot Study
by Micaela Schmid, Stefania Sozzi, Bruna Maria Vittoria Guerra, Caterina Cavallo, Matteo Vandoni, Alessandro Marco De Nunzio and Stefano Ramat
Bioengineering 2025, 12(8), 826; https://doi.org/10.3390/bioengineering12080826 - 30 Jul 2025
Viewed by 1729
Abstract
Multiple Sclerosis (MS) is a chronic neurological disorder affecting the central nervous system that significantly impairs postural control and functional abilities. Robotic-assisted gait training mitigates this functional deterioration. This preliminary study aims to investigate the effects of a four-week gait training with the [...] Read more.
Multiple Sclerosis (MS) is a chronic neurological disorder affecting the central nervous system that significantly impairs postural control and functional abilities. Robotic-assisted gait training mitigates this functional deterioration. This preliminary study aims to investigate the effects of a four-week gait training with the ExoAtlet II exoskeleton on static balance control and functional mobility in five individuals with MS (Expanded Disability Status Scale ≤ 2.5). Before and after the training, they were assessed in quiet standing under Eyes Open (EO) and Eyes Closed (EC) conditions and with the Timed Up and Go (TUG) test. Center of Pressure (CoP) Sway Area, Antero–Posterior (AP) and Medio–Lateral (ML) CoP displacement, Stay Time, and Total Instability Duration were computed. TUG test Total Duration, sit-to-stand, stand-to-sit, and linear walking phase duration were analyzed. To establish target reference values for rehabilitation advancement, the same evaluations were performed on a matched healthy cohort. After the training, an improvement in static balance with EO was observed towards HS values (reduced Sway Area, AP and ML CoP displacement, and Total Instability Duration and increased Stay Time). Enhancements under EC condition were less marked. TUG test performance improved, particularly in the stand-to-sit phase. These preliminary findings suggest functional benefits of exoskeleton gait training for individuals with MS. Full article
(This article belongs to the Special Issue Advances in Physical Therapy and Rehabilitation)
Show Figures

Figure 1

12 pages, 1210 KB  
Article
Evaluation of Change in Center of Pressure During Perturbation of Balance Including Blindfolding in Healthy Dogs
by Hayley Hall, Richard B. Evans, Makayla Balogh and Wanda J. Gordon-Evans
Animals 2025, 15(12), 1790; https://doi.org/10.3390/ani15121790 - 18 Jun 2025
Cited by 1 | Viewed by 737
Abstract
Physiotherapy aims to improve postural dysfunction, often using balance exercises. The effects of rehabilitation-based balance exercises on postural control in dogs remains understudied. This study aimed to assess the impact of specific balancing exercises and blindfolding on center of pressure parameters in healthy [...] Read more.
Physiotherapy aims to improve postural dysfunction, often using balance exercises. The effects of rehabilitation-based balance exercises on postural control in dogs remains understudied. This study aimed to assess the impact of specific balancing exercises and blindfolding on center of pressure parameters in healthy dogs. Thirteen healthy adult dogs participated in the study. Center of pressure parameters were measured using a pressure platform during quiet standing, external perturbation, head turn, and blindfolded trials. External perturbation significantly increased the area of the elliptical sway, cranio-caudal excursion, and right–left excursion. Head turning led to large effect sizes, but no significant differences compared to quiet standing. Blindfolding led to medium to large effect sizes, though no significant differences were observed. The study confirmed that external perturbation challenges postural stability, resulting in increased sway. Head turning induces sway but may require further training or different methodologies for reliable outcomes. Blindfolding increased sway but was not statistically different. These findings underscore the potential use of perturbation-based exercises in canine rehabilitation to improve balance, while also highlighting the need for further studies to standardize balance challenges and explore the effects in dogs with orthopedic or neurological conditions. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

10 pages, 1113 KB  
Article
Evaluation of Sensory and Motor Function in Spinal and Bulbar Muscular Atrophy Using Quiet Stance and Reactive Postural Control
by Joseph A. Shrader, Ashwini Sansare, Allison C. Niemic, Rafael Jiménez-Silva, Joshua G. Woolstenhulme, Galen O. Joe, Uma Jacobs, Angela Kokkinis, Kenneth Fischbeck, Chris Grunseich and Cris Zampieri
Neurol. Int. 2025, 17(6), 79; https://doi.org/10.3390/neurolint17060079 - 22 May 2025
Cited by 1 | Viewed by 1323
Abstract
Introduction: Spinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disorder characterized by progressive muscle weakness, along with muscle cramps, tremors, and sensory neuropathy. Previous research has shown that patients with SBMA have difficulty with dynamic balance and sensory postural control during [...] Read more.
Introduction: Spinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disorder characterized by progressive muscle weakness, along with muscle cramps, tremors, and sensory neuropathy. Previous research has shown that patients with SBMA have difficulty with dynamic balance and sensory postural control during quiet stance. There have been no reports on automatic postural reactions in SBMA. Objectives: In this study, we aimed (1) to augment previous findings of sensory postural control, (2) to investigate automatic postural reactions in SBMA, and (3) to explore the relationship between strength and balance. Design: A cross-sectional design was used for the analysis. Participants: The participants were fifty male individuals with a confirmed diagnosis of SBMA. Outcome Measures: Balance testing included the NeuroCom modified Clinical Test of Sensory Interaction on Balance (mCTSIB), which measures sway velocity during quiet stance, and the NeuroCom Motor Control Test (MCT), which measures the latency and strength of postural reactions following sudden perturbations. Strength testing included maximal voluntary isometric contractions measured via fixed-frame dynamometry. Results: Forty-seven out of fifty participants were able to complete the mCTSIB test, but only thirty-eight completed the MCT test. Patients who were unable to complete the MCT were significantly weaker in all lower extremity muscles compared to those who were able to complete testing. Compared to normative data, participants showed significantly higher sway velocity during quiet stance across all conditions of the mCTSIB, except when standing on foam with eyes open. They also exhibited significantly slower postural reactions in response to sudden shifts of the force plate on the MCT. Plantarflexor weakness was significantly correlated with poor postural control on the mCTSIB and MCT. Conclusions: This study confirms previously reported abnormalities of sensory postural control in SBMA and highlights patients’ heavy reliance on visual inputs for postural control. Additionally, this study shows that automatic postural corrections are slower than normal in SBMA and provides a unique approach for measuring the combined sensory and motor components of the disease. Both the sensory and automatic balance abnormalities were found to be associated with plantarflexor weakness and may contribute to a higher risk of falls under challenging situations. Therefore, addressing this weakness may be an important step toward fall prevention in this population. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Figure 1

16 pages, 1322 KB  
Article
Implications of Intra-Individual Variability in Motor Performance on Functional Mobility in Stroke Survivors
by Neha Lodha, Prakruti Patel, Evangelos A. Christou, Anjali Tiwari and Manfred Diehl
Geriatrics 2025, 10(2), 51; https://doi.org/10.3390/geriatrics10020051 - 24 Mar 2025
Viewed by 1106
Abstract
Background: Motor impairments following stroke contribute to deficits in functional mobility. Traditionally, these impairments are quantified by mean-level motor performance. However, this mean-level approach neglects the well-established fact that motor performance becomes highly variable in aging and disease. Increased intra-individual variability (IIV) in [...] Read more.
Background: Motor impairments following stroke contribute to deficits in functional mobility. Traditionally, these impairments are quantified by mean-level motor performance. However, this mean-level approach neglects the well-established fact that motor performance becomes highly variable in aging and disease. Increased intra-individual variability (IIV) in behavior predicts functional decline in neurological disorders. Despite this, the impact of stroke on IIV in motor performance and its influence on functional mobility has not been investigated. This study aimed to (1) quantify the impact of stroke on IIV in motor performance, and (2) determine the contribution of IIV and mean motor performance to functional mobility. Methods: Twenty stroke survivors and 20 age-matched controls performed a goal-directed ankle movement task over 30 trials. We measured average accuracy (mean endpoint error) and IIV (within-person SD of endpoint error). Functional mobility was assessed with postural control (sway area during quiet standing) and braking response time in a driving simulator. Results: Stroke participants showed a higher mean (p = 0.04) and greater IIV (p = 0.016) in endpoint error than controls. Sway area did not differ between groups (p = 0.24), but stroke survivors had increased braking response time (p = 0.016). In stroke survivors, IIV significantly predicted sway area (R2 = 0.33, p = 0.008) and braking response time (R2 = 0.27, p = 0.02), and mean error did not account for any additional variance. Conclusions: Stroke reduces the trial-to-trial consistency of executing motor tasks with precision. IIV in motor performance predicts postural balance and braking response time and can potentially serve as an indicator of increased vulnerability and an important target for stroke rehabilitation. Full article
(This article belongs to the Collection Frailty in Older Adults)
Show Figures

Figure 1

10 pages, 458 KB  
Article
Exploring the Effect of Prolonged Ankle Plantar-Flexed Standing on Postural Control, Balance Confidence, Falls Efficacy, and Perceived Balance in Older Adults
by Daniel Craig Low
Biomechanics 2025, 5(2), 19; https://doi.org/10.3390/biomechanics5020019 - 24 Mar 2025
Viewed by 926
Abstract
Background/Objectives: Postural control describes our ability to maintain an upright position. This study explored the impact of prolonged ankle plantar-flexed standing on postural control variability and strategy in an older adult population. The ability to perceive balance change was also assessed via subjective [...] Read more.
Background/Objectives: Postural control describes our ability to maintain an upright position. This study explored the impact of prolonged ankle plantar-flexed standing on postural control variability and strategy in an older adult population. The ability to perceive balance change was also assessed via subjective balance-related variables. Methods: Twenty-four community-dwelling older adults were recruited via convenience sampling. Each participant completed a balance confidence and falls efficacy questionnaire at baseline. Five barefoot quiet standing trials on a force plate then followed (Timepoint 1). After this, the participants stood with their ankles in a plantar-flexed position for up to 7.5 min before completing another quiet standing trial on the force plate. Four further ankle plantar-flexed standing trials of 2 min were then completed, interspersed with quiet standing trials on a force plate (Timepoint 2). The balance confidence and falls efficacy questionnaires were then completed again. For measures of postural control variability (sway path length, root mean square [RMS], sway area) and strategy (fractal dimension), mean values for the five trials were calculated for Timepoints 1 and 2 separately. Results: The sway path length and RMS measures were significantly increased (p < 0.05) at Timepoint 2. However, the fractal dimension did not change. There was also no change in balance confidence or falls efficacy. Conclusions: The findings suggest that prolonged standing can impact measures of postural variability without a change in postural control strategy. Postural control change also occurred without a change in subjective balance measures, suggesting that the altered balance may not be practically significant or perceptible to the individual. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

11 pages, 4419 KB  
Article
Investigation of Torque Ripple in Servo Motors with Different Magnet Geometries
by Hacı Dedecan, Engin Ayçiçek and Mustafa Gürkan Aydeniz
Electronics 2025, 14(5), 1049; https://doi.org/10.3390/electronics14051049 - 6 Mar 2025
Cited by 1 | Viewed by 1233
Abstract
Servo motors are among the most efficient and precise performers within the category of permanent magnet synchronous motors. These motors stand out for their high power density, quiet operation, low maintenance, and wide operating speed range advantages. One of the disadvantages of these [...] Read more.
Servo motors are among the most efficient and precise performers within the category of permanent magnet synchronous motors. These motors stand out for their high power density, quiet operation, low maintenance, and wide operating speed range advantages. One of the disadvantages of these motors, which is also the subject of this study, is their high torque ripple. Torque ripple is critical in applications requiring precision, as it can affect operational performance and contribute to vibration and noise issues. Torque ripple can be reduced through design methods such as different winding layouts, slot openings, stator/rotor skewing, or pole offset. In this study, torque ripple of servo motors was investigated through various magnet geometry designs and analyses using the finite element method. Design and analysis studies were conducted for a reference servo motor, and alternative designs were obtained by modifying the rotor structure of the reference motor. In the studies conducted, it has been observed that the torque ripple, initially at 2.17 Nm, can be improved to as low as 1.23 Nm. This indicates that the torque ripple, which was initially at 3.75%, can be reduced to around 2.08%. However, performance losses may occur depending on the extent of improvement. Full article
(This article belongs to the Special Issue Advanced Design in Electrical Machines)
Show Figures

Figure 1

33 pages, 10768 KB  
Article
Analysis of Connectivity in Electromyography Signals to Examine Neural Correlations in the Activation of Lower Leg Muscles for Postural Stability: A Pilot Study
by Gordon Alderink, Diana McCrumb, David Zeitler and Samhita Rhodes
Bioengineering 2025, 12(1), 84; https://doi.org/10.3390/bioengineering12010084 - 17 Jan 2025
Viewed by 3344
Abstract
In quiet standing, the central nervous system implements a pre-programmed ankle strategy of postural control to maintain upright balance and stability. This strategy comprises a synchronized common neural drive delivered to synergistically grouped muscles. This study evaluated connectivity between EMG signals of the [...] Read more.
In quiet standing, the central nervous system implements a pre-programmed ankle strategy of postural control to maintain upright balance and stability. This strategy comprises a synchronized common neural drive delivered to synergistically grouped muscles. This study evaluated connectivity between EMG signals of the unilateral and bilateral homologous muscle pairs of the lower legs during various standing balance conditions using magnitude-squared coherence (MSC). The leg muscles examined included the right and left tibialis anterior (TA), medial gastrocnemius (MG), and soleus (S). MSC is a frequency domain measure that quantifies the linear phase relation between two signals and was analyzed in the alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–100 Hz) neural frequency bands for feet together and feet tandem, with eyes open and eyes closed conditions. Results showed that connectivity in the beta and lower and upper gamma bands (30–100 Hz) was influenced by standing balance conditions and was indicative of a neural drive originating from the motor cortex. Instability was evaluated by comparing less stable standing conditions with a baseline—eyes open feet together stance. Changes in connectivity in the beta and gamma bands were found to be most significant in the muscle pairs of the back leg during a tandem stance regardless of dominant foot placement. MSC identified the MG:S muscle pair as significant for the right and left leg. The results of this study provided insight into the neural mechanism of postural control. Full article
Show Figures

Graphical abstract

33 pages, 8517 KB  
Article
Approximate and Sample Entropy of the Center of Pressure During Unperturbed Tandem Standing: Effect of Altering the Tolerance Window
by Jayla Wesley, Samhita Rhodes, David W. Zeitler and Gordon Alderink
Appl. Sci. 2025, 15(2), 576; https://doi.org/10.3390/app15020576 - 9 Jan 2025
Cited by 3 | Viewed by 1706
Abstract
Approximate entropy (ApEn) and sample entropy (SampEn) are statistical indices designed to quantify the regularity or predictability of time-series data. Although ApEn has been a prominent choice in analyzing non-linear data, it is currently unclear which method and parameter selection combination is optimal [...] Read more.
Approximate entropy (ApEn) and sample entropy (SampEn) are statistical indices designed to quantify the regularity or predictability of time-series data. Although ApEn has been a prominent choice in analyzing non-linear data, it is currently unclear which method and parameter selection combination is optimal for its application in biomechanics. This research aimed to examine the differences between ApEn and SampEn related to center-of-pressure (COP) data during tandem standing balance tasks, while also changing the tolerance window, r. Six participants completed five, 30 s trials, feet-together and tandem standing with eyes open and eyes closed. COP data (fs = 60 Hz, downsampled from 1200 Hz) from ground reaction force platforms were collected. ApEn and SampEn were calculated using a constant vector length, i.e., m = 2, but differing values of r (tolerance window). For each of the participants, four separate one-way analysis of variance analyses (ANOVA) were conducted for ApEn and SampEn along the anterior–posterior (AP) and medial–lateral (ML) axes. Dunnett’s intervals were applied to the one-way ANOVA analyses to determine which tandem conditions differed significantly from the baseline condition. ApEn and SampEn provided comparable results in the predictability of patterns for different stability conditions, with increasing instability, i.e., tandem eyes closed postures, being associated with greater unpredictability. The selection of r had a relatively consistent effect on mean ApEn and SampEn values across r = 0.15 × SD to r = 0.25 × SD, where both entropy methods tended to decrease as r increased. Mean SampEn values were generally lower than ApEn values. The results suggest that both ApEn and SampEn indices demonstrated relative consistency and were equally effective in quantifying the level of the center-of-pressure signal regularity during quiet tandem standing postural balance tests. Full article
Show Figures

Figure 1

18 pages, 1943 KB  
Article
The Interplay of Dual Tasks, Sleep Quality and Load Carriage on Postural Stability in Young, Healthy Adults
by Joel Martin, Megan Sax van der Weyden and Amanda Estep
Biomechanics 2025, 5(1), 1; https://doi.org/10.3390/biomechanics5010001 - 1 Jan 2025
Viewed by 1626
Abstract
Background/Objectives: To examine the combined effects of sleep quality, dual tasks, and load carriage on postural stability. Methods: Twenty-three university student participants (12 males, ages: 24.6 ± 6.1 year) completed the Pittsburgh Sleep Quality Index (PSQI), then performed quiet standing and [...] Read more.
Background/Objectives: To examine the combined effects of sleep quality, dual tasks, and load carriage on postural stability. Methods: Twenty-three university student participants (12 males, ages: 24.6 ± 6.1 year) completed the Pittsburgh Sleep Quality Index (PSQI), then performed quiet standing and a dual task while standing on force plates with and without load carriage. Correlations and repeated measures analysis of variances were used to assess relationships, main effects, and interaction effects of tasks on center of pressure (COP) to assess postural stability. Both a traditional PSQI global score and a sensitivity analysis of the PSQI cut-off were conducted. Results: With the traditional PSQI criteria, a main effect of sleep quality on 95% ellipse area was observed, with good sleepers outperforming bad sleepers (p = 0.016). Additionally, a significant interaction between sleep quality and task (p = 0.049) indicated that COP anterior–posterior velocity was lower during the dual task for good sleepers. No effects on sleep quality or interaction were found for other COP measures. The sensitivity analysis yielded no effect on sleep quality or interaction effects on any COP measure. There were no significant correlations between the PSQI global scores and COP variables. Conclusions: Overall, the results indicate that sleep quality alone had a limited effect and did not significantly interact with dual tasks or load carriage during quiet standing. Practitioners working with individuals who commonly experience poor sleep quality and perform load carriage and dual tasks should consider that common COP screens to assess postural stability may not detect differences due to self-reported sleep quality in healthy, young adults. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

17 pages, 7064 KB  
Article
Design and Test of a Cone Dielectric Elastomer Actuator Driving Hopping Robot
by Yunguang Luan, Huaming Wang, Ling Zhou and Haichao Song
Actuators 2025, 14(1), 3; https://doi.org/10.3390/act14010003 - 26 Dec 2024
Cited by 1 | Viewed by 1360
Abstract
Dielectric elastomer actuators (DEAs) are increasingly recognized for their potential in robotic applications due to their ability to undergo significant deformation when subjected to an electric field. However, they are often limited by their low output power, which can make their integration into [...] Read more.
Dielectric elastomer actuators (DEAs) are increasingly recognized for their potential in robotic applications due to their ability to undergo significant deformation when subjected to an electric field. However, they are often limited by their low output power, which can make their integration into dynamic systems like hopping robots particularly challenging. This research optimizes the performance by introducing a cone DEA with a novel type of semi-diamond preload mechanism. This type of preload mechanism can meet the requirements of a negative-stiffness preload and a light weight. According to the experiments, the DEA can provide 3.62 mW power and its mass is only about 17.5 g. In order to drive hopping robots based on a cone DEA, this research introduces an energy accumulation mechanism coupled with a constant-torque cam for a hopping robot. The hopping robot weighs approximately 30.3 g and stands 10 cm tall in its upright position. Its energy accumulation mechanism involves a gear and cam transmission system, which is the key to store and release energy efficiently. The primary components of this mechanism include a torsion spring that stores mechanical energy when twisted, a constant-torque actuation cam that ensures the consistent application of torque during the energy storage phase, and a conical DEA that acts as an actuator. When the conical DEA is activated, it pushes a one-way clutch to the rocker, rotating the gear and cam mechanism and subsequently twisting the torsion spring to store energy. Upon release, the stored energy in the torsion spring is rapidly converted into kinetic energy, propelling the robot into the air. The experiments reveal that the designed DEA can drive the hopping robot by using the energy storage mechanism. Its hopping height is related to the pre-compression angle of the torsion spring. The DEA can drive the rigid hopping mechanism, and the maximum hopping height of the robot is up to 2.5 times its height. DEA hopping robots have obvious advantages, such as easy control, quietness and safety. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

13 pages, 2247 KB  
Article
Posterior Correction and Fusion Using a 4D Anatomical Spinal Reconstruction Technique Improves Postural Stability Under the Eye-Closed Condition in Patients with Adolescent Idiopathic Scoliosis
by Satoshi Osuka, Hideki Sudo, Katsuhisa Yamada, Hiroyuki Tachi, Akira Fukushima, Hiroki Mani, Kentaro Watanabe, Fuma Sentoku, Takeshi Chiba, Hiroaki Hori, Norimasa Iwasaki, Masahiko Mukaino and Harukazu Tohyama
J. Clin. Med. 2024, 13(21), 6366; https://doi.org/10.3390/jcm13216366 - 24 Oct 2024
Cited by 1 | Viewed by 1583
Abstract
Background: Patients with adolescent idiopathic scoliosis (AIS) has been reported to exhibit impaired postural stability. Posterior correction and fusion using four-dimensional (4D) anatomical spinal reconstruction techniques may improve postural stability to correct the spine for optimal anatomical alignment. This prospective study aimed [...] Read more.
Background: Patients with adolescent idiopathic scoliosis (AIS) has been reported to exhibit impaired postural stability. Posterior correction and fusion using four-dimensional (4D) anatomical spinal reconstruction techniques may improve postural stability to correct the spine for optimal anatomical alignment. This prospective study aimed to determine the effect of posterior correction and fusion using a 4D anatomical spinal reconstruction technique on postural stability in the eye-open and eye-closed standing position in patients with thoracic AIS. Methods: Thirty-three patients with AIS, excluding those with Lenke type 5C AIS, participated in the study. The mean and standard deviation of the minimum values of the time-to-boundary (TTB) were determined. All patients were asked to perform the quiet standing position under the eye-open and eye-closed condition on a force plate preoperatively and at 1 week and 2 years postoperatively. The TTB value was calculated from the velocity and distance to the foot boundary of the acquired center-of-pressure data. Results: Under the eye-closed condition, the mean and standard deviation of the minimum TTB were significantly higher at 2 years postoperatively than preoperatively and at 1 week postoperatively. The mean and standard deviation of the minimum TTB values were significantly lower at 1 week postoperatively than preoperatively. Conclusions: The results of this study suggest that surgery using the 4D anatomical spinal reconstruction technique reduces postural stability immediately after surgery; however, it improves postural stability at 2 years compared to the preoperative values. Full article
(This article belongs to the Special Issue Current Practice and Future Perspectives in Scoliosis Treatment)
Show Figures

Figure 1

Back to TopTop