Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = quasiclassical trajectories

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5587 KiB  
Article
Rotational vs. Vibrational Excitations in a Chemical Laser
by José Daniel Sierra Murillo
Physchem 2025, 5(3), 26; https://doi.org/10.3390/physchem5030026 - 4 Jul 2025
Viewed by 201
Abstract
The research reviews and contrasts two studies based on the gas-phase reaction OH + D2(v, j). In these studies, Quasi-Classical Trajectory (QCT) calculations and the Gaussian Binning (GB) technique were used on the Wu–Schatz–Lendvay–Fang–Harding (WSLFH) potential energy surface. Large sample sizes [...] Read more.
The research reviews and contrasts two studies based on the gas-phase reaction OH + D2(v, j). In these studies, Quasi-Classical Trajectory (QCT) calculations and the Gaussian Binning (GB) technique were used on the Wu–Schatz–Lendvay–Fang–Harding (WSLFH) potential energy surface. Large sample sizes allow for precise energy state distribution analysis across translational, vibrational, and rotational components in the products. A key observation is the influence of the vibrational and rotational excitation of D2 on the total angular momentum (J′) of the HOD* product. This study reveals that increasing the vibrational level, vD2, significantly shifts P(J′) distributions toward higher values, broadening them due to increased isotropy. In contrast, increasing the rotational level, jD2, results in a smaller shift but introduces greater anisotropy, leading to a more selective distribution of J′ values. The dual Gaussian Binning selection—Vibrational-GB followed by Rotational-GB—further highlights a preference for either odd or even J′ values, depending on the specific excitation conditions. These findings have implications for the development of chemical lasers, as the excitation and emission properties of HOD* can be leveraged in the laser design. Future research aims to extend this study to a broader range of initial conditions, refining the understanding of reaction dynamics in controlled gas-phase environments. Full article
(This article belongs to the Section Application of Lasers to Physical Chemistry)
Show Figures

Figure 1

11 pages, 1889 KiB  
Article
Chemical Lasers Based on Polyatomic Reaction Dynamics: Research of Vibrational Excitation in a Reactive
by José Daniel Sierra Murillo
Atoms 2025, 13(1), 5; https://doi.org/10.3390/atoms13010005 - 9 Jan 2025
Cited by 1 | Viewed by 754
Abstract
The research presented by the author investigates a polyatomic reaction occurring in the gas phase. This study employs the Quasi-Classical Trajectory (QCT) approach using the Wu–Schatz–Lendvay–Fang–Harding (WSLFH) potential energy surface (PES), recognized as one of the most reliable PES models for this type [...] Read more.
The research presented by the author investigates a polyatomic reaction occurring in the gas phase. This study employs the Quasi-Classical Trajectory (QCT) approach using the Wu–Schatz–Lendvay–Fang–Harding (WSLFH) potential energy surface (PES), recognized as one of the most reliable PES models for this type of analysis. The substantial sample size enables the derivation of detailed results that corroborate previous findings while also identifying potential objectives for future experimental work. The Gaussian Binning (GB) technique is utilized to more effectively highlight the variation in the total angular momentum (J′) of the excited product molecule, HOD*. A key aim of the study is to explore the reaction dynamics due to their importance in excitation and emission processes, which may contribute to the development of a chemical laser based on this reaction. Increasing the vibrational level, v, of one reactant, D2, significantly enhances the excitation of HOD* and shifts the P(J′) distributions towards higher J′ values, while also broadening the distribution. Although the current research focuses on a few initial conditions, the author plans to extend the study to encompass a wider range of initial conditions within the reaction chamber of this type of chemical laser. Full article
Show Figures

Figure 1

12 pages, 2269 KiB  
Article
Cross-Sections for Projectile Ionization, Electron Capture, and System Breakdown of C5+ and Li2+ Ions with Atomic Hydrogen
by Saed J. Al Atawneh
Atoms 2024, 12(12), 63; https://doi.org/10.3390/atoms12120063 - 2 Dec 2024
Viewed by 758
Abstract
For many disciplines of science, all conceivable collisional cross-sections and reactions must be precisely known. Although recent decades have seen a trial of large-scale research to obtain such data, many essential atomic and molecular cross-section data are still missing, and the reliability of [...] Read more.
For many disciplines of science, all conceivable collisional cross-sections and reactions must be precisely known. Although recent decades have seen a trial of large-scale research to obtain such data, many essential atomic and molecular cross-section data are still missing, and the reliability of the existing cross-sections has to be validated. In this paper, we present projectile ionization, electron capture, and system breakdown cross-sections in carbon (C5+) ions and lithium (Li2+) ion collisions with atomic hydrogen based on the Monte Carlo models of classical and quasi-classical trajectories. According to our expectation, the QCTMC results show higher results in comparison to standard CTMC data, emphasizing the role of the Heisenberg correction constraint, especially in the low-energy regime. On the other hand, at high energy, the Heisenberg correction term has less influence as the projectile momentum increases. We present the total cross-sections of projectile ionization, electron capture, and system breakdown in C5+ ions and Li2+ ion collisions with atomic hydrogen in the impact energy range from 10 keV to 160 keV, which is of interest in astrophysical plasmas, atmospheric sciences, plasma laboratories, and fusion research. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

17 pages, 4321 KiB  
Article
Theoretical Investigation of Rate Coefficients and Dynamical Mechanisms for N + N + N Three-Body Recombination Based on Full-Dimensional Potential Energy Surfaces
by Chong Xu, Zhenxuan Wei, Huayu Hu, Xixi Hu and Daiqian Xie
Molecules 2024, 29(20), 4933; https://doi.org/10.3390/molecules29204933 - 18 Oct 2024
Viewed by 1057
Abstract
Three-body recombination reactions, in which two particles form a bound state while a third one bounces off after the collision, play significant roles in many fields, such as cold and ultracold chemistry, astrochemistry, atmospheric physics, and plasma physics. In this work, the dynamics [...] Read more.
Three-body recombination reactions, in which two particles form a bound state while a third one bounces off after the collision, play significant roles in many fields, such as cold and ultracold chemistry, astrochemistry, atmospheric physics, and plasma physics. In this work, the dynamics of the recombination reaction for the N3 system over a wide temperature range (5000–20,000 K) are investigated in detail using the quasi-classical trajectory (QCT) method based on recently developed full-dimensional potential energy surfaces. The recombination products are N2(X) + N(4S) in the 14A″ state, N2(A) + N(4S) in the 24A″ state, and N2(X) + N(2D) in both the 12A″ and 22A″ states. A three-body collision recombination model involving two sets of relative translational energies and collision parameters and a time-delay parameter is adopted in the QCT calculations. The recombination process occurs after forming an intermediate with a certain lifetime, which has a great influence on the recombination probability. Recombination processes occurring through a one-step three-body collision mechanism and two distinct two-step binary collision mechanisms are found in each state. And the two-step exchange mechanism is more dominant than the two-step transfer mechanism at higher temperatures. N2(X) formed in all three related states is always the major recombination product in the temperature range from 5000 K to 20,000 K, with the relative abundance of N2(A) increasing as temperature decreases. After hyperthermal collisions, the formed N2(X/A) molecules are distributed in highly excited rotational and vibrational states, with internal energies mainly distributed near the dissociation threshold. Additionally, the rate coefficients for this three-body recombination reaction in each state are determined and exhibit a negative correlation with temperature. The dynamic insights presented in this work might be very useful to further simulate non-equilibrium dynamic processes in plasma physics involving N3 systems. Full article
(This article belongs to the Special Issue Molecular Dynamics Study on Chemical Reactions)
Show Figures

Figure 1

15 pages, 586 KiB  
Article
State-to-State Rate Constants for the O(3P)H2(v) System: Quasiclassical Trajectory Calculations
by Alexey V. Pelevkin, Ilya V. Arsentiev, Ilya N. Kadochnikov, Ivan A. Zubrilin, Evgeny P. Filinov and Denis V. Yakushkin
Fire 2024, 7(7), 220; https://doi.org/10.3390/fire7070220 - 28 Jun 2024
Viewed by 1342
Abstract
The rate constants of elementary processes in the atom–diatom system O(3P)+H2(v), including the processes of vibrational relaxation and dissociation, were studied using the quasiclassical trajectory method. All calculations were carried out along [...] Read more.
The rate constants of elementary processes in the atom–diatom system O(3P)+H2(v), including the processes of vibrational relaxation and dissociation, were studied using the quasiclassical trajectory method. All calculations were carried out along the ground potential energy surface (PES) 3A that was approximated by a neural network. Approximation data were obtained using ab initio quantum chemistry methods at the extended multi-configuration quasi-degenerate second-order perturbation theory XMCQDPT2 in a basis set limit. The calculated cross-sections of the reaction channels are in good agreement with the literature data. A complete set of state-to-state rate constants was obtained for the metathesis reaction, the dissociation and relaxation of the H2 molecule upon collision with an O atom. According to these data, Arrhenius approximations over a wide temperature range were obtained for the thermal rate constants of considered processes. Data obtained on the dissociation constants and VT relaxation of vibrationally excited H2 molecules can be used in constructing kinetic models describing the oxidation of hydrogen at high temperatures or highly nonequilibrium conditions. Full article
(This article belongs to the Special Issue State-of-the-Art on Hydrogen Combustion)
Show Figures

Figure 1

15 pages, 1097 KiB  
Article
PyQCAMS: Python Quasi-Classical Atom–Molecule Scattering
by Rian Koots and Jesús Pérez-Ríos
Atoms 2024, 12(5), 29; https://doi.org/10.3390/atoms12050029 - 11 May 2024
Cited by 2 | Viewed by 1682
Abstract
We present Python Quasi-classical atom–molecule scattering (PyQCAMS v0.1.0), a new Python package for atom–diatom scattering within the quasi-classical trajectory approach. The input consists of the mass, collision energy, impact parameter, and pair-wise/three-body interactions. As the output, the code provides the vibrational quenching, dissociation, [...] Read more.
We present Python Quasi-classical atom–molecule scattering (PyQCAMS v0.1.0), a new Python package for atom–diatom scattering within the quasi-classical trajectory approach. The input consists of the mass, collision energy, impact parameter, and pair-wise/three-body interactions. As the output, the code provides the vibrational quenching, dissociation, and reactive cross sections along with the rovibrational energy distribution of the reaction products. We benchmark the program for a reaction involving a molecular ion in a high-density ultracold gas, RbBa+ + Rb. Furthermore, we treat H2 + Ca → CaH + H reactions as a prototypical example to illustrate the properties and performance of the software. Finally, we study the parallelization performance of the code by looking into the speedup of the program as a function of the number of CPUs used. Full article
Show Figures

Figure 1

9 pages, 1650 KiB  
Communication
Ionization of Hydrogen Atom by Proton Impact—How Accurate Is the Ionization Cross Section?
by Károly Tőkési and Saleh Alassaf
Atoms 2023, 11(9), 122; https://doi.org/10.3390/atoms11090122 - 15 Sep 2023
Viewed by 1644
Abstract
For the control of fusion reactors, we need to accurately know all the possible reactions and collisional cross sections. Although large-scale trials have been performed over the last decades to obtain this data, many basic atomic and molecular cross section data are missing [...] Read more.
For the control of fusion reactors, we need to accurately know all the possible reactions and collisional cross sections. Although large-scale trials have been performed over the last decades to obtain this data, many basic atomic and molecular cross section data are missing and the accuracy of the available cross sections need to be checked. Using the available measured cross sections and theoretical predictions of hydrogen atom ionization by proton impact, critical analysis of the data is presented. Moreover, we also present our recent classical results based on the standard classical trajectory Monte Carlo (CTMC) and quasi-classical trajectory Monte Carlo (C-QCTMC) models. According to our model calculations and comparison with the experimental data, recom-mended cross sections for ionization of hydrogen were presented in a wide range of pro-jectile impact energies. We found that, while in the low energy region, the experimental cross sections are very close to the C-QCTMC results, at higher energies, they are close to the results of our standard CTMC results. Full article
Show Figures

Figure 1

15 pages, 2510 KiB  
Article
Quasi-Classical Trajectory Dynamics Study of the Reaction OH + H2S→H2O + SH and Its Isotopic Variants: Comparison with Experiment
by Zhao Tu, Jiaqi Li, Yan Wang and Hongwei Song
Symmetry 2023, 15(2), 256; https://doi.org/10.3390/sym15020256 - 17 Jan 2023
Cited by 3 | Viewed by 1970
Abstract
The hydrogen abstraction reaction OH + H2S→H2O + SH plays an important role in acid rain formation, air pollution and climate change. In this work, the product energy disposals of the reaction and its isotopic variants OD + H [...] Read more.
The hydrogen abstraction reaction OH + H2S→H2O + SH plays an important role in acid rain formation, air pollution and climate change. In this work, the product energy disposals of the reaction and its isotopic variants OD + H2S and OD + D2S are calculated on a new ab-initio-based ground electronic state potential energy surface (PES) using the quasi-classical trajectory method. The PES is developed by fitting a total of 72,113 points calculated at the level of UCCSD(T)-F12a/aug-cc-pVTZ and using the fundamental invariant-neural network method, resulting in a total RMSE of 4.14 meV. The product H2O formed in the OH + H2S reaction at 298 K is found to be largely populated in the first overtone states of its symmetric and asymmetric stretching modes, while the vibrational distributions of the products HOD and D2O in the isotopically substituted reactions are visibly different. The computed product vibrational state distributions agree reasonably well with experimental results and are rationalized by the sudden vector projection model. Full article
Show Figures

Figure 1

7 pages, 685 KiB  
Article
nl-Selective Classical Charge-Exchange Cross Sections in Be4+ and Ground State Hydrogen Atom Collisions
by Iman Ziaeian and Károly Tőkési
Atoms 2022, 10(3), 90; https://doi.org/10.3390/atoms10030090 - 9 Sep 2022
Cited by 2 | Viewed by 2025
Abstract
Charge-exchange cross sections in Be4+ + H(1s) collisions are calculated using the three-body classical trajectory Monte Carlo method (CTMC) and the quasi-classical trajectory Monte Carlo method of Kirschbaum and Wilets (QCTMC) for impact energies between 10 keV/amu and 300 keV/amu. We present [...] Read more.
Charge-exchange cross sections in Be4+ + H(1s) collisions are calculated using the three-body classical trajectory Monte Carlo method (CTMC) and the quasi-classical trajectory Monte Carlo method of Kirschbaum and Wilets (QCTMC) for impact energies between 10 keV/amu and 300 keV/amu. We present charge-exchange cross sections in the projectile n = 2 and nl = 2s, 2p states. Our results are compared with the previous quantum-mechanical approaches. We found that the QCTMC model is a powerful classical model to describe the state-selective charge-exchange cross sections at lower impact energies and the QCTMC results are in good agreement with previous observations. Full article
(This article belongs to the Special Issue Interaction of Electrons with Atoms, Molecules and Surfaces)
Show Figures

Figure 1

12 pages, 4137 KiB  
Article
Dissection of the Multichannel Reaction O(3P) + C2H2: Differential Cross-Sections and Product Energy Distributions
by Shuwen Zhang, Qixin Chen, Junxiang Zuo, Xixi Hu and Daiqian Xie
Molecules 2022, 27(3), 754; https://doi.org/10.3390/molecules27030754 - 24 Jan 2022
Cited by 4 | Viewed by 2715
Abstract
The O(3P) + C2H2 reaction plays an important role in hydrocarbon combustion. It has two primary competing channels: H + HCCO (ketenyl) and CO + CH2 (triplet methylene). To further understand the microscopic dynamic mechanism of this [...] Read more.
The O(3P) + C2H2 reaction plays an important role in hydrocarbon combustion. It has two primary competing channels: H + HCCO (ketenyl) and CO + CH2 (triplet methylene). To further understand the microscopic dynamic mechanism of this reaction, we report here a detailed quasi-classical trajectory study of the O(3P) + C2H2 reaction on the recently developed full-dimensional potential energy surface (PES). The entrance barrier TS1 is the rate-limiting barrier in the reaction. The translation of reactants can greatly promote reactivity, due to strong coupling with the reaction coordinate at TS1. The O(3P) + C2H2 reaction progress through a complex-forming mechanism, in which the intermediate HCCHO lives at least through the duration of a rotational period. The energy redistribution takes place during the creation of the long-lived high vibrationally (and rotationally) excited HCCHO in the reaction. The product energy partitioning of the two channels and CO vibrational distributions agree with experimental data, and the vibrational state distributions of all modes of products present a Boltzmann-like distribution. Full article
(This article belongs to the Special Issue A Commemorative Special Issue Honoring Professor Donald Truhlar)
Show Figures

Figure 1

27 pages, 737 KiB  
Article
Vibrational Energy Transfer in CO+N2 Collisions: A Database for V–V and V–T/R Quantum-Classical Rate Coefficients
by Qizhen Hong, Massimiliano Bartolomei, Cecilia Coletti, Andrea Lombardi, Quanhua Sun and Fernando Pirani
Molecules 2021, 26(23), 7152; https://doi.org/10.3390/molecules26237152 - 25 Nov 2021
Cited by 15 | Viewed by 3187
Abstract
Knowledge of energy exchange rate constants in inelastic collisions is critically required for accurate characterization and simulation of several processes in gaseous environments, including planetary atmospheres, plasma, combustion, etc. Determination of these rate constants requires accurate potential energy surfaces (PESs) that describe in [...] Read more.
Knowledge of energy exchange rate constants in inelastic collisions is critically required for accurate characterization and simulation of several processes in gaseous environments, including planetary atmospheres, plasma, combustion, etc. Determination of these rate constants requires accurate potential energy surfaces (PESs) that describe in detail the full interaction region space and the use of collision dynamics methods capable of including the most relevant quantum effects. In this work, we produce an extensive collection of vibration-to-vibration (V–V) and vibration-to-translation/rotation (V–T/R) energy transfer rate coefficients for collisions between CO and N2 molecules using a mixed quantum-classical method and a recently introduced (A. Lombardi, F. Pirani, M. Bartolomei, C. Coletti, and A. Laganà, Frontiers in chemistry, 7, 309 (2019)) analytical PES, critically revised to improve its performance against ab initio and experimental data of different sources. The present database gives a good agreement with available experimental values of V–V rate coefficients and covers an unprecedented number of transitions and a wide range of temperatures. Furthermore, this is the first database of V–T/R rate coefficients for the title collisions. These processes are shown to often be the most probable ones at high temperatures and/or for highly excited molecules, such conditions being relevant in the modeling of hypersonic flows, plasma, and aerospace applications. Full article
Show Figures

Figure 1

16 pages, 586 KiB  
Article
A Theoretical Study of the N2 + H2 Reactive Collisions for High Vibrational and Translational Energies
by Juan de Dios Garrido and Maikel Yusat Ballester
Atmosphere 2021, 12(10), 1349; https://doi.org/10.3390/atmos12101349 - 15 Oct 2021
Cited by 2 | Viewed by 2407
Abstract
High translational temperatures appear in the air inside the shock waves layers created by relatively large meteorites, reentry space vehicles, and hypersonic missiles. Under these conditions, reactions between molecular nitrogen and hydrogen are energetically permitted. In the present work, a quasiclassical trajectories study [...] Read more.
High translational temperatures appear in the air inside the shock waves layers created by relatively large meteorites, reentry space vehicles, and hypersonic missiles. Under these conditions, reactions between molecular nitrogen and hydrogen are energetically permitted. In the present work, a quasiclassical trajectories study of the N2(v)+H2(v) reaction for relative translational energies covering the range of translational energy 20.0Etr/kcalmol1120.0 is presented. In the calculations, several values of vibrational quantum numbers v=0,4,6,8,10,12 and v=4,6,8,10,12 have been considered. To model the interatomic interactions, a six-dimension global potential energy surface for the ground electronic state of N2H2 was used. The specific initial state reaction cross-sections and rate coefficients are reported. The energy effects produced by the reaction that could influence the shock wave modeling are here considered. An analysis of the possible impact of these processes under the atmospheric composition is also presented. Full article
(This article belongs to the Special Issue Theoretical Chemistry of Atmospheric Processes)
Show Figures

Figure 1

19 pages, 2504 KiB  
Article
Quasi-Classical Trajectory Study of the CN + NH3 Reaction Based on a Global Potential Energy Surface
by Joaquin Espinosa-Garcia, Cipriano Rangel, Moises Garcia-Chamorro and Jose C. Corchado
Molecules 2021, 26(4), 994; https://doi.org/10.3390/molecules26040994 - 13 Feb 2021
Cited by 6 | Viewed by 3534
Abstract
Based on a combination of valence-bond and molecular mechanics functions which were fitted to high-level ab initio calculations, we constructed an analytical full-dimensional potential energy surface, named PES-2020, for the hydrogen abstraction title reaction for the first time. This surface is symmetrical with [...] Read more.
Based on a combination of valence-bond and molecular mechanics functions which were fitted to high-level ab initio calculations, we constructed an analytical full-dimensional potential energy surface, named PES-2020, for the hydrogen abstraction title reaction for the first time. This surface is symmetrical with respect to the permutation of the three hydrogens in ammonia, it presents numerical gradients and it improves the description presented by previous theoretical studies. In order to analyze its quality and accuracy, stringent tests were performed, exhaustive kinetics and dynamics studies were carried out using quasi-classical trajectory calculations, and the results were compared with the available experimental evidence. Firstly, the properties (geometry, vibrational frequency and energy) of all stationary points were found to reasonably reproduce the ab initio information used as input; due to the complicated topology with deep wells in the entrance and exit channels and a “submerged” transition state, the description of the intermediate complexes was poorer, although it was adequate to reasonably simulate the kinetics and dynamics of the title reaction. Secondly, in the kinetics study, the rate constants simulated the experimental data in the wide temperature range of 25–700 K, improving the description presented by previous theoretical studies. In addition, while previous studies failed in the description of the kinetic isotope effects, our results reproduced the experimental information. Finally, in the dynamics study, we analyzed the role of the vibrational and rotational excitation of the CN(v,j) reactant and product angular scattering distribution. We found that vibrational excitation by one quantum slightly increased reactivity, thus reproducing the only experimental measurement, while rotational excitation strongly decreased reactivity. The scattering distribution presented a forward-backward shape, associated with the presence of deep wells along the reaction path. These last two findings await experimental confirmation. Full article
(This article belongs to the Special Issue Intermolecular Forces: From Atoms and Molecules to Nanostructures)
Show Figures

Figure 1

11 pages, 2397 KiB  
Article
Interaction of Be4+ and Ground State Hydrogen Atom—Classical Treatment of the Collision
by I. Ziaeian and K. Tőkési
Atoms 2020, 8(2), 27; https://doi.org/10.3390/atoms8020027 - 3 Jun 2020
Cited by 18 | Viewed by 3661
Abstract
The interaction between Be4+ and hydrogen atom is studied using the three-body classical trajectory Monte Carlo method (CTMC) and the quasiclassical trajectory Monte Carlo method of Kirschbaum and Wilets (QTMC-KW). We present total cross sections for target ionization, target excitation, and charge [...] Read more.
The interaction between Be4+ and hydrogen atom is studied using the three-body classical trajectory Monte Carlo method (CTMC) and the quasiclassical trajectory Monte Carlo method of Kirschbaum and Wilets (QTMC-KW). We present total cross sections for target ionization, target excitation, and charge exchange to the projectile bound states. Calculations are carried out in the projectile energy range between 10 and 1000 keV/au, relevant to the interest of fusion research when the target hydrogen atom is in the ground state. Our results are compared with previous theoretical results. We found that the classical treatment describes reasonably well the cross sections for various final channels. Moreover, we show that the calculations by the QTMC-KW model significantly improve the obtained cross sections. Full article
Show Figures

Figure 1

19 pages, 874 KiB  
Article
Elementary Processes and Kinetic Modeling for Hydrogen and Helium Plasmas
by Roberto Celiberto, Mario Capitelli, Gianpiero Colonna, Giuliano D’Ammando, Fabrizio Esposito, Ratko K. Janev, Vincenzo Laporta, Annarita Laricchiuta, Lucia Daniela Pietanza, Maria Rutigliano and Jogindra M. Wadehra
Atoms 2017, 5(2), 18; https://doi.org/10.3390/atoms5020018 - 2 May 2017
Cited by 15 | Viewed by 6423
Abstract
We report cross-sections and rate coefficients for excited states colliding with electrons, heavy particles and walls useful for the description of H 2 /He plasma kinetics under different conditions. In particular, the role of the rotational states in resonant vibrational excitations of the [...] Read more.
We report cross-sections and rate coefficients for excited states colliding with electrons, heavy particles and walls useful for the description of H 2 /He plasma kinetics under different conditions. In particular, the role of the rotational states in resonant vibrational excitations of the H 2 molecule by electron impact and the calculation of the related cross-sections are illustrated. The theoretical determination of the cross-section for the rovibrational energy exchange and dissociation of H 2 molecule, induced by He atom impact, by using the quasi-classical trajectory method is discussed. Recombination probabilities of H atoms on tungsten and graphite, relevant for the determination of the nascent vibrational distribution, are also presented. An example of a state-to-state plasma kinetic model for the description of shock waves operating in H 2 and He-H 2 mixtures is presented, emphasizing also the role of electronically-excited states in affecting the electron energy distribution function of free electrons. Finally, the thermodynamic properties and the electrical conductivity of non-ideal, high-density hydrogen plasma are finally discussed, in particular focusing on the pressure ionization phenomenon in high-pressure high-temperature plasmas. Full article
(This article belongs to the Special Issue Atomic and Molecular Data for Hydrogen and Helium in Fusion Plasma)
Show Figures

Figure 1

Back to TopTop