Cross-Sections for Projectile Ionization, Electron Capture, and System Breakdown of C5+ and Li2+ Ions with Atomic Hydrogen
Abstract
1. Introduction
2. Theory
2.1. The CTMC Models
2.2. The QCTMC Model
3. Result and Discussion
3.1. Carbon (C5+)–Hydrogen (H) Collision Cross-Sections
3.2. Lithium (Li2+)–Hydrogen (H) Collision Cross-Sections
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sang, C.; Ding, R.; Bonnin, X.; Wang, L.; Wang, D.; EAST Team. Effects of carbon impurities on the power radiation and tungsten target erosion in EAST. Phys. Plasmas 2018, 25, 072511. [Google Scholar] [CrossRef]
- Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C.; Haasz, A.A.; Hassanein, A.; Philipps, V.; Pitcher, C.S.; Roth, J.; et al. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors. Nucl. Fusion 2001, 41, 1967. [Google Scholar] [CrossRef]
- Pitts, R.A.; Carpentier, S.; Escourbiac, F.; Hirai, T.; Komarov, V.; Kukushkin, A.S.; Lisgo, S.; Loarte, A.; Merola, M.; Mitteau, R.; et al. Physics basis and design of the ITER plasma-facing components. J. Nucl. Mater. 2011, 415, S957–S964. [Google Scholar] [CrossRef]
- Čadež, I.; Markelj, S.; Rupnik, Z.; Pelicon, P. Processes with neutral hydrogen and deuterium molecules relevant to edge plasma in tokamaks. J. Phys. Conf. Ser. 2008, 133, 012029. [Google Scholar] [CrossRef]
- Al Atawneh, S.J.; Tokesi, K. Target electron removal in C5++ H collision. Nucl. Fusion 2021, 62, 026009. [Google Scholar] [CrossRef]
- Guszejnov, D.; Pokol, G.I.; Pusztai, I.; Refy, D.; Zoletnik, S.; Lampert, M.; Nam, Y.U. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas. Rev. Sci. Instrum. 2012, 83, 113501. [Google Scholar] [CrossRef]
- Al Atawneh, S.J.; Asztalos, Ö.; Szondy, B.; Pokol, G.I.; Tőkési, K. Ionization Cross Sections in the Collision between Two Ground State Hydrogen Atoms at Low Energies. Atoms 2020, 8, 31. [Google Scholar] [CrossRef]
- Bunker, D.L. Vibrationally Excited Products of Bimolecular Exchange Reactions. Nature 1962, 194, 1277. [Google Scholar] [CrossRef]
- Blais, N.C.; Bunker, J. Monte Carlo calculations. II. The reactions of alkali atoms with methyl iodide. Chem. Phys. 1962, 3, 2713. [Google Scholar] [CrossRef]
- Olson, R.E.; Reinhold, C.O.; Schultz, D.R. High-Energy Ion-Atom Collisions, Proceedings of the 4th Workshop on High-Energy Ion-Atom Collision Processes, Debrecen, Hungary, 17–19 September 1990; Berenyi, D., Hock, G., Eds.; Lecture Notes in Physics; Springer: New York, NY, USA, 1991; Volume 376, p. 69. [Google Scholar]
- Abrines, R.; Percival, I.C. Classical theory of charge transfer and ionization of hydrogen atoms by protons. Proc. Phys. Soc. 1966, 88, 861–872. [Google Scholar] [CrossRef]
- Janev, R.K.; McDowell, M.R.C. Electron removal from H and He atoms in collisions with Cq+, Oq+ ions. Phys. Lett. A 1984, 102, 405–408. [Google Scholar] [CrossRef]
- Al Atawneh, S.J. Modelling of Atomic Processes in Fusion Plasma. Ph.D. Dissertation, Debrecen, Hungary, Cambridge, UK, 2022. Available online: http://hdl.handle.net/2437/329082 (accessed on 17 August 2022).
- Al Atawneh, S.J.; Tőkési, K. Ionization cross sections in collisions between two hydrogen atoms by a quasi-classical trajectory Monte Carlo model. Phys. Chem. Chem. Phys. 2022, 24, 15280–15291. [Google Scholar] [CrossRef] [PubMed]
- Wilets, L.; Cohen, L.S. Fermion molecular dynamics in atomic, molecular, and optical physics. Cont. Phys. 1998, 39, 163–175. [Google Scholar] [CrossRef]
- Kirschbaum, C.L.; Wilets, L. Classical many-body model for atomic collisions incorporating the Heisenberg and Pauli principles. Phys. Rev. A 1980, 21, 834–841. [Google Scholar] [CrossRef]
- Suno, H.; Kato, T. Cross section database for carbon atoms and ions: Electron-impact ionization, excitation, and charge exchange in collisions with hydrogen atoms. At. Data Nucl. Data Tables 2006, 92, 407–455. [Google Scholar] [CrossRef]
- Velayati, A.; Ghanbari-Adivi, E. Classical simulation of differential single charge transfer in fast proton-helium collisions. Eur. Phys. J. D 2018, 72, 100. [Google Scholar] [CrossRef]
- Ghavaminia, H.; Ghanbari-Adivi, E. Influence of electron correlations on double-capture process in proton–helium collisions. Chin. Phys. B 2015, 24, 073401. [Google Scholar] [CrossRef]
- Federici, G.; Andrew, P.; Barabaschi, P.; Brooks, J.; Doerner, R.; Geier, A.; Herrmann, A.; Janeschitz, G.; Krieger, K.; Kukushkin, A.; et al. Key ITER plasma edge and plasma–material interaction issues. J. Nucl. Mater 2003, 313–316, 11–22. [Google Scholar] [CrossRef]
- de Castro, A.; Moynihan, C.; Stemmley, S.; Szott, M.; Ruzic, D.N. Lithium, a path to make fusion energy affordable. Phys. Plasmas 2021, 28, 050901. [Google Scholar] [CrossRef]
- Majeski, R. Liquid metal walls, lithium, and low recycling boundary conditions in tokamaks. AIP Conf. Proc. 2010, 1237, 122–137. [Google Scholar]
- Ono, M. Lithium as Plasma Facing Component for Magnetic Fusion Research; Nova Scientific Publications: Hauppauge, NY, USA; Princeton Plasma Physics Lab. (PPPL): Princeton, NJ, USA, 2012. [Google Scholar]
- Skokov, V.G.; Sergeev, V.Y.; Anufriev, E.A.; Kuteev, B.V. Comparison of lithium divertor options for the DEMO-FNS tokamak. Tech. Phys. 2021, 66, 664–674. [Google Scholar] [CrossRef]
- Goldston, R.J.; Myers, R.; Schwartz, J. The lithium vapor box divertor. Phys. Scr. 2016, T167, 014017. [Google Scholar] [CrossRef]
- Kaita, R. Fusion applications for lithium: Wall conditioning in magnetic confinement devices. Plasma Phys. Control. Fusion 2019, 61, 113001. [Google Scholar] [CrossRef]
- Rognlien, T.D.; Rensink, M.E. Impurity transport in edge plasmas with application to liquid walls. Phys. Plasmas 2002, 9, 2120–2126. [Google Scholar] [CrossRef]
- Mirnov, S.V.; Azizov, E.A.; Evtikhin, V.A.; Lazarev, V.B.; Lyublinski, I.E.; Vertkov, A.V.; Prokhorov, D.Y. Experiments with lithium limiter on T-11M tokamak and applications of the lithium capillary-pore system in future fusion reactor devices. Plasma Phys. Control. Fusion 2006, 48, 821–837. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Atawneh, S.J. Cross-Sections for Projectile Ionization, Electron Capture, and System Breakdown of C5+ and Li2+ Ions with Atomic Hydrogen. Atoms 2024, 12, 63. https://doi.org/10.3390/atoms12120063
Al Atawneh SJ. Cross-Sections for Projectile Ionization, Electron Capture, and System Breakdown of C5+ and Li2+ Ions with Atomic Hydrogen. Atoms. 2024; 12(12):63. https://doi.org/10.3390/atoms12120063
Chicago/Turabian StyleAl Atawneh, Saed J. 2024. "Cross-Sections for Projectile Ionization, Electron Capture, and System Breakdown of C5+ and Li2+ Ions with Atomic Hydrogen" Atoms 12, no. 12: 63. https://doi.org/10.3390/atoms12120063
APA StyleAl Atawneh, S. J. (2024). Cross-Sections for Projectile Ionization, Electron Capture, and System Breakdown of C5+ and Li2+ Ions with Atomic Hydrogen. Atoms, 12(12), 63. https://doi.org/10.3390/atoms12120063