Interaction of Be4+ and Ground State Hydrogen Atom—Classical Treatment of the Collision
Abstract
:1. Introduction
2. Theory
2.1. CTMC Method
2.2. QTMC-KW Method
3. Results and Discussion
3.1. Ionization
3.2. Charge Exchange (CX)
3.3. Excitation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pitts, R.; Carpentier, S.; Escourbiac, F.; Hirai, T.; Komarov, V.; Kukushkin, A.; Lisgo, S.; Loarte, A.; Merola, M.; Mitteau, R.; et al. Physics basis and design of the ITER plasma-facing components. J. Nucl. Mater. 2011, 415, S957–S964. [Google Scholar] [CrossRef]
- Hackman, J.; Uhlenbusch, J. Test of a beryllium limiter in the tokamak unitor. J. Nucl. Mater. 1984, 128/129, 418–421. [Google Scholar] [CrossRef]
- Igenbergs, K.; Schweinzer, J.; Aumayer, F. Charge exchange in Be4+ -H(n=1,2) collision studied systematically by atomic-orbital close-coupling calculations. J. Phys. B: At. Mol. Opt. Phys. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Qu, Y.Z.; Liu, L.; Liu, C.H.; Li, T.C.; Wang, J.G.; Janev, R.K. Charge transfer cross section calculation and evaluation for Beq+ + H collisions. In Proceedings of the Eighth International Conference on Atomic and Molecular Data and Their Applications, NIST, Cambridge, MA, USA, 30 September –4 October 2012; pp. 232–241. [Google Scholar]
- Krstic, P.S.; Radmilovic, M. Charge exchange, excitation and ionization in slow Be4+ + H and B5+ + H collisions. J. Nuclear Fusion. 1992, 3, 113–125. [Google Scholar]
- Kimura, M.; Thorson, W.R. Molecular-state studies of charge transfer in Li3+-H, Be4+-H and B5+-H collisions. J. Phys. B At. Mol. Phys. 1983, 16, 1471–1480. [Google Scholar] [CrossRef]
- Olivera, G.H.; Ramirez, C.A.; Rivarola, R.D. Cross-Sections for Excitation and Ionization of Helium and Hydrogen by Be4+ and B6+ Ions. Physica Scripta. 1996, T62, 84–87. [Google Scholar] [CrossRef]
- Olson, R.E.; Reinhold, C.O.; Schultz, D.R. High-Energy Ion-Atom Collisions. In Proceedings of the IVth Workshop on High-Energy Ion-Atom Collision Processes, Debrecen, Hungary, 17–19 September 1990. [Google Scholar]
- Olson, R.E.; Salop, A. Charge-transfer and impact-ionization cross sections for fully and partially stripped positive ions colliding with atomic hydrogen. Phys. Rev. A 1977, 16, 531–541. [Google Scholar] [CrossRef]
- Tőkési, K.; Hock, G. Versatility of the exit channels in the three-body CTMC method. Nucl. Instrum Meth. Phys. Res. B 1994, 86, 201–204. [Google Scholar] [CrossRef]
- Tőkési, K.; Hock, G. Double electron capture in collision up to 1500 keV/amu projectile impac. J. Phys. B 1996, 29, L119–L125. [Google Scholar] [CrossRef]
- Kirschbaun, C.L.; Wilet, L. Classical many-body model for atomic collisions incorporating the Heisenberg and Pauli principles. Phys. Rev. A 1980, 21, 834–841. [Google Scholar] [CrossRef]
- Wilet, L.; Cohen, J.S. Fermion molecular dynamics in atomic, molecular and optical Physics. Contemp. Phys. 1998, 39, 163–175. [Google Scholar] [CrossRef]
- Cohen, J.S. Molecular effects on antiproton capture by H2 and the states of pp formed. Phys. Rev. A. 1997, 56, 3583–3596. [Google Scholar] [CrossRef]
- Cohen, J.S. Extension of quasiclassical effective Hamiltonian structure of atoms through Z=94. Phys. Rev. A 1998, 57, 4964–4966. [Google Scholar] [CrossRef]
- Cohen, J.S. Multielectron effects in capture of antiprotons and muons by helium and neon. Phys. Rev. A 2000, 62, 022512. [Google Scholar] [CrossRef]
- Jorge, A.; Illescas, C.; Mendez, L.; Pons, B. Switching classical trajectory Monte Carlo method to describe two-active-electron collisions. Phys. Rev. A 2016, 94, 022710. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, B.; Otranto, S. Evaluation of differential cross sections using classical two-active electron models for He. Eur. Phys. J. D. 2019, 73, 1–6. [Google Scholar]
- Tőkési, K.; Kövér, Á. Electron capture to the continuum at 54.4 eV positron-argon atom collisions. J. Phys. B 2000, 33, 3067–3077. [Google Scholar] [CrossRef]
- Becker, R.L.; Mackellar, A. Theoretical initial l dependence of ion-Rydberg-atom collision cross sections. J. Phys. B At. Mol. Opt. Phys. 1984, 17, 3923–3942. [Google Scholar] [CrossRef]
- Tőkési, K.; Mukoyama, T. Theoretical Investigation of ECC Peak for Charged Particles with the CTMC Method. Bull Ins Chem Res Kyoto Univ. 1994, 72, 62–68. [Google Scholar]
- Ludde, H.J.; Dreizler, R.M. Electron capture with He2+, Li3+, Be4+ and B5+ projectiles from atomic hydrogen. J. Phys. B At. Mol. Phys. 1982, 15, 2713–2720. [Google Scholar] [CrossRef]
- Bransden, B.H.; Newby, C.W.; Noble, C.J. Electron capture by fully stripped ions of helium, lithium, beryllium and boron from atomic hydrogen. J. Phys. B At. Mol. Phys. 1980, 13, 4245–4255. [Google Scholar] [CrossRef]
- Harel, C.; Salin, A. Charge exchange in collision of highly ionised ions and atoms. J. Phys. B At. Mol. Phys. 1977, 10, 3511–3522. [Google Scholar] [CrossRef]
- Fritsch, W.; Lin, C.D. Atomic-orbital-expansion studies of electron transfer in bare-nucleus Z (Z=2,4-8)-hydrogen-atom collision. Phys. Rev. A 1984, 29, 3039–3051. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziaeian, I.; Tőkési, K. Interaction of Be4+ and Ground State Hydrogen Atom—Classical Treatment of the Collision. Atoms 2020, 8, 27. https://doi.org/10.3390/atoms8020027
Ziaeian I, Tőkési K. Interaction of Be4+ and Ground State Hydrogen Atom—Classical Treatment of the Collision. Atoms. 2020; 8(2):27. https://doi.org/10.3390/atoms8020027
Chicago/Turabian StyleZiaeian, I., and K. Tőkési. 2020. "Interaction of Be4+ and Ground State Hydrogen Atom—Classical Treatment of the Collision" Atoms 8, no. 2: 27. https://doi.org/10.3390/atoms8020027
APA StyleZiaeian, I., & Tőkési, K. (2020). Interaction of Be4+ and Ground State Hydrogen Atom—Classical Treatment of the Collision. Atoms, 8(2), 27. https://doi.org/10.3390/atoms8020027