Ionization of Hydrogen Atom by Proton Impact—How Accurate Is the Ionization Cross Section?
Abstract
1. Introduction
2. Theory
2.1. CTMC Model
2.2. QCTMC Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.C.Y.; Watson, K.M. Electronic Transitions in Slow Collisions of Atoms and Molecules. II. Calculations of Wave Functions and Green’s Functions in the Eikonal Approximation. Phys. Rev. 1969, 188, 236–256. [Google Scholar] [CrossRef]
- Alt, E.O.; Kadyrov, A.S.; Mukhamedzhanov, A.M. Protons in collision with hydrogen atoms: Influence of unitarity and multiple scattering. Nucl. Phys. A 2001, 689, 525–528. [Google Scholar] [CrossRef]
- Nengming, W. The collision of proton with hydrogen atom. J. At. Mol. Phys. 1991, 1772–1781. [Google Scholar]
- Avazbaev, S.K.; Kadyrov, A.S.; Abdurakhmanov, I.B.; Fursa, D.V.; Bray, I. Polarization of Lyman-α emission in proton-hydrogen collisions studied using a semiclassical two-center convergent close-coupling approach. Phys. Rev. A 2016, 93, 022710. [Google Scholar] [CrossRef]
- Kadyrov, A.S.; Abdurakhmanov, I.B.; Alladustov, S.U.; Bailey, J.J.; Bray, I. Development of convergent close-coupling approach to hadron interactions with matter. J. Phys. Conf. Ser. 2019, 1154, 012013. [Google Scholar] [CrossRef]
- Abdurakhmanov, I.B.; Plowman, C.; Kadyrov, A.S.; Bray, I.; Mukhamedzhanov, A.M. One-center close-coupling approach to two-center rearrangement collisions. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 145201. [Google Scholar] [CrossRef]
- Leung, A.C.K.; Kirchner, T. Proton impact on ground and excited states of atomic hydrogen. Eur. Phys. J. D 2019, 73, 246. [Google Scholar] [CrossRef]
- Dalgarno, A.; Yadav, H.N. Eletcron Capture II: Resonance Capture from Hydrogen Atoms by Slow Protons. Proc. Phys. Soc. Sect. A 1953, 66, 173. [Google Scholar] [CrossRef]
- McDowell, M.R.C. Elastic Scattering of Slow Ions in their Parent Gases. Proc. Phys. Soc. 1958, 72, 1087. [Google Scholar] [CrossRef]
- Dalgarno, A. Low Energy Stopping Power of Atomic Hydrogen. Proc. Phys. Soc. 1960, 75, 374. [Google Scholar] [CrossRef]
- Bates, D.R.; Williams, D.A. Low energy collisions between hydrogen atoms and protons. Proc. Phys. Soc. 1964, 83, 425. [Google Scholar] [CrossRef]
- Parcell, L.A.; May, R.M. Resonance charge transfer between H(1s) and H+ calculated by a perturbed stationary-state approximation including identity exchange effects. Proc. Phys. Soc. 1967, 91, 54. [Google Scholar] [CrossRef]
- Francis, J.S. Nuclear symmetry in H+ + H (1s) elastic and resonant exchange collisions. Proc. Phys. Soc. 1967, 92, 866. [Google Scholar]
- Bates, D.R.; Tweed, R.J. Impact parameter treatment of H+-H collisions. J. Phys. B At. Mol. Phys. 1974, 7, 117. [Google Scholar] [CrossRef]
- Harel, C.; Jouin, H.; Pons, B. Cross sections for electron capture from atomic hydrogen by fully stripped ions in the 0.05–1.00 au impact velocity range. At. Data Nucl. Data Tables 1998, 68, 279. [Google Scholar] [CrossRef]
- Fritsch, W.; Lin, C.D. Atomic-orbital-expansion studies of electron transfer in bare-nucleus Z (Z= 2, 4− 8)—Hydrogen-atom collisions. Phys. Rev. A. 1984, 29, 3039. [Google Scholar] [CrossRef]
- Le, A.T.; Hesse, M.; Lin, C.D. Hyperspherical close-coupling calculations for charge transfer cross sections in Si4++ H (D) and Be4++ H collisions at low energies. J. Phys. B 2003, 36, 3281. [Google Scholar] [CrossRef][Green Version]
- Ludde, H.J.; Dreizler, R.M. Electron capture with He2+, Li3+, Be4+ and B5+ projectiles from atomic hydrogen. J. Phys. B 1982, 15, 2713. [Google Scholar] [CrossRef]
- Minami, T.; Pindzola, M.S.; Lee, T.G.; Schultz, D.R. Lattice, time-dependent Schrödinger equation approach for charge transfer in collisions of Be4+ with atomic hydrogen. J. Phys. B At. Mol. Opt. Phys. 2006, 39, 2877. [Google Scholar] [CrossRef]
- Sattin, F. Classical overbarrier model to compute charge exchange and ionization between ions and one-optical-electron atoms. Phys. Rev. A 2000, 62, 042711. [Google Scholar] [CrossRef]
- Errea, L.F.; Harel, C.; Jouin, H.; Méndez, L.; Pons, B.; Riera, A. Quantal and semiclassical calculations of charge transfer cross sections in+ H collisions for impact energies of. J. Phys. B 1998, 31, 3527. [Google Scholar] [CrossRef]
- Das, M.; Purkait, M.; Mandal, C.R. Charge-transfer cross sections in collisions of Be q+(q = 1–4) and B q+(q = 1–5) with ground-state atomic hydrogen. Phys. Rev. A 1998, 57, 3573. [Google Scholar] [CrossRef]
- Abrines, R.; Percival, I.C. Classical theory of charge transfer and ionization of hydrogen atoms by protons. Proc. Phys. Soc. 1966, 88, 861. [Google Scholar] [CrossRef]
- Olson, R.E.; Salop, A. Charge-transfer and impact-ionization cross sections for fully and partially stripped positive ions colliding with atomic hydrogen. Phys. Rev. A 1977, 16, 531–541. [Google Scholar] [CrossRef]
- McKenzie, M.L.; Olson, R.E. Ionization and charge exchange in multiply-charged-ion--helium collisions at intermediate energies. Phys. Rev. A 1987, 35, 2863–2868. [Google Scholar] [CrossRef] [PubMed]
- Bachi, N.; Otranto, S. Evaluation of differential cross sections using classical two-active electron models for He. Eur. Phys. J. D 2019, 73, 4. [Google Scholar] [CrossRef]
- Ziaeian, I.; Tőkési, K. Interaction of Be4+ and Ground State Hydrogen Atom—Classical Treatment of the Collision. Atoms 2020, 8, 27. [Google Scholar] [CrossRef]
- Ziaeian, I.; Tőkési, K. State-selective charge exchange cross sections in Be+4—H(2lm) collision based on the classical trajectory Monte Carlo method. Eur. Phys. J. D 2021, 75, 138. [Google Scholar] [CrossRef]
- Ziaeian, I.; Tőkési, K. The effects of Heisenberg constraint on the classical cross sections in proton hydrogen collision. J. Phys. B At. Mol. Opt. Phys. 2022, 55, 245201. [Google Scholar] [CrossRef]
- Ziaeian, I.; Tőkési, K. nl-Selective Classical Charge-Exchange Cross Sections in Be4+ and Ground State Hydrogen Atom Collisions. Atoms 2022, 10, 90. [Google Scholar] [CrossRef]
- Kirschbaum, C.L.; Wilets, L. Classical many-body model for atomic collisions incorporating the Heisenberg and Pauli principles. Phys. Rev. A 1980, 21, 834–841. [Google Scholar] [CrossRef]
- Al Atawneh, S.J.; Tőkési, K. Target electron removal in C5+ + H collision. Nucl. Fusion 2022, 62, 026009. [Google Scholar] [CrossRef]
- Cohen, J.S. Quasiclassical effective Hamiltonian structure of atoms with Z=1 to 38. Phys. Rev. A 1995, 51, 266–277. [Google Scholar] [CrossRef]
- Cohen, J.S. Fermion Molecular Dynamics for Rearrangement Collisions with Simple Molecules; DP.21; American Physical Society: College Park, MD, USA, 1998. [Google Scholar]
- Al Atawneh, S.J.; Tőkési, K. Ionization cross sections in collisions between two hydrogen atoms by a quasi-classical trajectory Monte Carlo model. Phys. Chem. Chem. Phys. 2022, 24, 15280–15291. [Google Scholar] [CrossRef]
- Cohen, J.S. Extension of quasiclassical effective Hamiltonian structure of atoms through Z=94. Phys. Rev. A 1998, 57, 4964–4966. [Google Scholar] [CrossRef]
- Cohen, J.S. Quasiclassical-trajectory Monte Carlo methods for collisions with two-electron atoms. Phys. Rev. A 1996, 54, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Winter, T.G. Electron transfer, excitation, and ionization in $p\text{-H}(1s)$ collisions studied with Sturmian bases. Phys. Rev. A 2009, 80, 032701. [Google Scholar] [CrossRef]
- Kołakowska, A.; Pindzola, M.S.; Schultz, D.R. Total electron loss, charge transfer, and ionization in proton-hydrogen collisions at 10–100 keV. Phys. Rev. A 1999, 59, 3588–3591. [Google Scholar] [CrossRef]
- Abdurakhmanov, I.B.; Massen-Hane, K.; Alladustov, S.U.; Bailey, J.J.; Kadyrov, A.S.; Bray, I. Ionization and electron capture in collisions of bare carbon ions with hydrogen. Phys. Rev. A 2018, 98, 062710. [Google Scholar] [CrossRef]
- Abdurakhmanov, I.B.; Kadyrov, A.S.; Avazbaev, S.K.; Bray, I. Solution of the proton-hydrogen scattering problem using a quantum-mechanical two-center convergent close-coupling method. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 115203. [Google Scholar] [CrossRef]
- Toshima, N. Convergence and completeness of the pseudostate expansion for proton-hydrogen collisions in two-center close-coupling calculations. Phys. Rev. A 1999, 59, 1981–1987. [Google Scholar] [CrossRef]
- Shah, M.B.; Gilbody, H.B. Experimental study of the ionisation of atomic hydrogen by fast H+ and He2+ ions. J. Phys. B 1981, 14, 2361–2377. [Google Scholar] [CrossRef]
- Shah, M.B.; Elliott, D.S.; Gilbody, H.B. Ionisation of atomic hydrogen by 9-75 keV protons. J. Phys. B 1987, 20, 2481–2485. [Google Scholar] [CrossRef]
- Kerby, G.W., III.; Gealy, M.W.; Hsu, Y.Y.; Rudd, M.E.; Schultz, D.R.; Reinhold, C.O. Energy and angular distributions of electrons from ion impact on atomic and molecular hydrogen. II. 20-114-keV H++H. Phys. Rev. A 1995, 51, 2256–2264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tőkési, K.; Alassaf, S. Ionization of Hydrogen Atom by Proton Impact—How Accurate Is the Ionization Cross Section? Atoms 2023, 11, 122. https://doi.org/10.3390/atoms11090122
Tőkési K, Alassaf S. Ionization of Hydrogen Atom by Proton Impact—How Accurate Is the Ionization Cross Section? Atoms. 2023; 11(9):122. https://doi.org/10.3390/atoms11090122
Chicago/Turabian StyleTőkési, Károly, and Saleh Alassaf. 2023. "Ionization of Hydrogen Atom by Proton Impact—How Accurate Is the Ionization Cross Section?" Atoms 11, no. 9: 122. https://doi.org/10.3390/atoms11090122
APA StyleTőkési, K., & Alassaf, S. (2023). Ionization of Hydrogen Atom by Proton Impact—How Accurate Is the Ionization Cross Section? Atoms, 11(9), 122. https://doi.org/10.3390/atoms11090122