Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = quasi-static field model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5810 KB  
Article
Scalable Dual-Servo Pectoral Fin Platform for Biomimetic Robotic Fish: Hydrodynamic Experiments and Quasi-Steady CFD
by Chaohui Zhang, Zhanlin Bai, Zhenghe Liu, Jinbo Kuang, Pei Li, Qifang Yan, Gaochao Zhao and Elena Atroshchenko
Machines 2026, 14(1), 121; https://doi.org/10.3390/machines14010121 - 21 Jan 2026
Viewed by 71
Abstract
Biomimetic pectoral fin propulsion offers a low-noise, highly maneuverable alternative to conventional propellers for next-generation underwater robotic systems. This study develops a manta ray-inspired dual-servo pectoral fin module with a CPG-based controller and employs it as a single-fin test article in a recirculating [...] Read more.
Biomimetic pectoral fin propulsion offers a low-noise, highly maneuverable alternative to conventional propellers for next-generation underwater robotic systems. This study develops a manta ray-inspired dual-servo pectoral fin module with a CPG-based controller and employs it as a single-fin test article in a recirculating water tunnel to quantify its hydrodynamic performance. Controlled experiments demonstrate that the fin generates stable thrust over a range of flapping amplitudes, with mean thrust increasing markedly as the amplitude rises, while also revealing an optimal frequency band in which thrust and thrust work are maximized and beyond which efficiency saturates. To interpret these trends, a quasi-steady CFD analysis using the k–ω SST turbulence model is conducted for a series of static angles of attack representative of the instantaneous effective angles experienced during flapping. The simulations show a transition from attached flow with favorable lift-to-drag ratios at moderate angles of attack to massive separation, deep stall, and high drag at extreme angles, corresponding to high-amplitude fin motion. By linking the experimentally observed thrust saturation to the onset of deep stall in the numerical flow fields, this work establishes a unified experimental–numerical framework that clarifies the hydrodynamic limits of pectoral fin propulsion and provides guidance for the design and operation of low-noise, highly maneuverable biomimetic underwater robots. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

17 pages, 4080 KB  
Article
Dynamic Characteristics and Vibration Behavior of SKL-15 Rail Fastening Clip in High-Speed Railway Systems
by Yunpeng Li, Hong Xiao, Shaolei Wei, Yang Wang, Jianbo He and Mahantesh M. Nadakatti
Appl. Sci. 2026, 16(1), 197; https://doi.org/10.3390/app16010197 - 24 Dec 2025
Viewed by 292
Abstract
Current research on the vibration characteristics of fastener clips primarily employs modal experiments combined with finite element simulations; however, limited attention has been given to the dynamic vibration behavior of clips during actual train operations. This study investigates both the quasi-static and dynamic [...] Read more.
Current research on the vibration characteristics of fastener clips primarily employs modal experiments combined with finite element simulations; however, limited attention has been given to the dynamic vibration behavior of clips during actual train operations. This study investigates both the quasi-static and dynamic vibration characteristics using an integrated approach of finite element simulation and dynamic testing. Based on the Vossloh W300-1 fastener system, a three-dimensional model is established. Modal and frequency response analyses, together with field test validation, reveal two significant vibration modes within 0–1000 Hz: a first-order mode at 500 Hz and a second-order mode at 560 Hz. These modes are characterized by vertical overturning of the clip arm. Dynamic testing demonstrates that the dominant frequency of the arm acceleration is strongly correlated with the second-order natural frequency, confirming that wheel–rail excitation readily triggers second-order mode resonance. The study further shows that, at train speeds of 200–350 km/h, rail corrugation with wavelengths of 99.2–173.6 mm induces high-frequency excitation at 560 Hz, resulting in resonance fatigue of the clip. As a mitigation measure, regular rail grinding is recommended to eliminate corrugation at critical wavelengths. Additionally, optimizing the clip structure to avoid resonance frequency bands is proposed. These findings elucidate the coupling mechanism between the vibration characteristics of the clip and dynamic loads, providing theoretical support for the safety evaluation of high-speed rail fastener systems and the vibration-resistant design of clips. Full article
Show Figures

Figure 1

20 pages, 4527 KB  
Article
Magnetic Field Simulation and Verification for MMC-HVDC Submodules Under Double Pulse Test Including Dynamic Switching Behavior of 4.5 kV/5 kA IGBTs
by Hailin Li, Lulu Liu, Zhilei Si, Yongjie Hu, Kun Liu, Zhongting Chang, Yongrui Huang, Kepeng Xia, Shuhong Wang and Xiaofeng Zhou
Energies 2026, 19(1), 81; https://doi.org/10.3390/en19010081 - 23 Dec 2025
Viewed by 232
Abstract
An MMC is widely applied to the HVDC power transmission system. With a large number of insulated gate bipolar transistors (IGBTs) utilized in MMC-HVDC converter stations, an extremely complicated EM environment is generated due to the dv/dt and di/dt during the IGBT switching [...] Read more.
An MMC is widely applied to the HVDC power transmission system. With a large number of insulated gate bipolar transistors (IGBTs) utilized in MMC-HVDC converter stations, an extremely complicated EM environment is generated due to the dv/dt and di/dt during the IGBT switching process. A magnetic field simulation model is proposed to calculate the magnetic field generated by a 4.5 kV/5 kA IGBT-based MMC submodule under the DPT, with the dynamic switching behavior of IGBTs considered. Firstly, a behavior model of 4.5 kV/5 kA IGBTs is built with the help of commercial software. To validate its effectiveness, a DPT simulation model is built. A comparison between the simulation result and the measured data is performed. Finally, a quasi-static Maxwell model is utilized to approximate the near field caused by the current Ic of the DPT. The simulation result of the magnetic field strength at the point near the gate driver PCB is verified by the measurement data. The proposed magnetic field simulation model can help to analyze the EMI behavior and EMI design for MMC-HVDC submodules under DPT. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

15 pages, 4391 KB  
Article
Magnetically Saturated Pulsed Eddy Current for Inner-Liner Collapse in Bimetal Composite Pipelines: Physics, Identifiability, and Field Validation
by Shuyi Xie, Peng Xu, Liya Ma, Tao Liang, Xiaoxiao Ma, Jinheng Luo and Lifeng Li
Processes 2025, 13(11), 3409; https://doi.org/10.3390/pr13113409 - 24 Oct 2025
Viewed by 464
Abstract
Underground gas storage (UGS) is critical to national reserves and seasonal peak-shaving, and its safe operation is integral to energy security. In UGS surface process pipelines, heterogeneous bimetal composite pipes—carbon-steel substrates lined with stainless steel—are widely used but susceptible under coupled thermal–pressure–flow loading [...] Read more.
Underground gas storage (UGS) is critical to national reserves and seasonal peak-shaving, and its safe operation is integral to energy security. In UGS surface process pipelines, heterogeneous bimetal composite pipes—carbon-steel substrates lined with stainless steel—are widely used but susceptible under coupled thermal–pressure–flow loading to geometry-induced instabilities (local buckling, adhesion, and collapse), which can restrict flow, concentrate stress, and precipitate rupture and unplanned shutdowns. Conventional ultrasonic testing and magnetic flux leakage have limited sensitivity to such instabilities, while standard eddy-current testing is impeded by the ferromagnetic substrate’s high permeability and electromagnetic shielding. This study introduces magnetically saturated pulsed eddy-current testing (MS-PECT). A quasi-static bias field drives the substrate toward magnetic saturation, reducing differential permeability and increasing effective penetration; combined with pulsed excitation and differential reception, the approach improves defect responsiveness and the signal-to-noise ratio. A prototype was developed and evaluated through mechanistic modeling, numerical simulation, laboratory pipe trials, and in-service demonstrations. Field deployment on composite pipelines at the Hutubi UGS (Xinjiang, China) enabled rapid identification and spatial localization of liner collapse under non-shutdown or minimally invasive conditions. MS-PECT provides a practical tool for composite-pipeline integrity management, reducing the risk of unplanned outages, enhancing peak-shaving reliability, and supporting resilient UGS operations. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems—2nd Edition)
Show Figures

Figure 1

17 pages, 4733 KB  
Article
Dynamic Mechanical Properties and Damage Evolution Mechanism of Polyvinyl Alcohol Modified Alkali-Activated Materials
by Feifan Chen, Yunpeng Liu, Yimeng Zhao, Binghan Li, Yubo Zhang, Yen Wei and Kangmin Niu
Buildings 2025, 15(19), 3612; https://doi.org/10.3390/buildings15193612 - 9 Oct 2025
Viewed by 536
Abstract
To investigate the failure characteristics and high-strain-rate mechanical response of polyvinyl alcohol-modified alkali-activated materials (PAAMs) under static and dynamic impact loads, quasi-static and uniaxial impact compression tests were performed on AAMs with varying PVA content. These tests employed a universal testing machine and [...] Read more.
To investigate the failure characteristics and high-strain-rate mechanical response of polyvinyl alcohol-modified alkali-activated materials (PAAMs) under static and dynamic impact loads, quasi-static and uniaxial impact compression tests were performed on AAMs with varying PVA content. These tests employed a universal testing machine and an 80 mm diameter split Hopkinson pressure bar (SHPB). Digital image correlation (DIC) was then utilized to study the surface strain field of the composite material, and the crack propagation process during sample failure was analyzed. The experimental results demonstrate that the compressive strength of AAMs diminishes with higher PVA content, while the flexural strength initially increases before decreasing. It is suggested that the optimal PVA content should not exceed 5%. When the strain rate varies from 25.22 to 130.08 s−1, the dynamic compressive strength, dissipated energy, and dynamic compressive increase factor (DCIF) of the samples all exhibit significant strain rate effects. Furthermore, the logarithmic function model effectively fits the dynamic strength evolution pattern of AAMs. DIC observations reveal that, under high strain rates, the crack mode of the samples gradually transitions from tensile failure to a combined tensile–shear multi-crack pattern. Furthermore, the crack propagation rate rises as the strain rate increases, which demonstrates the toughening effect of PVA on AAMs. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

23 pages, 2810 KB  
Article
Engineering Analysis and Design Method for Blast-Resistant Laminated Glass Composite Systems
by Ahmed Elkilani, Hani Salim and Ahmed Elbelbisi
J. Compos. Sci. 2025, 9(9), 466; https://doi.org/10.3390/jcs9090466 - 1 Sep 2025
Viewed by 1366
Abstract
Laminated glass (LG) composite systems are increasingly being utilized in architectural and security applications due to their enhanced strength and safety features. Understanding the structural response of LG systems is crucial for optimizing their performance under blast loads. This paper presents a comprehensive [...] Read more.
Laminated glass (LG) composite systems are increasingly being utilized in architectural and security applications due to their enhanced strength and safety features. Understanding the structural response of LG systems is crucial for optimizing their performance under blast loads. This paper presents a comprehensive study of an analytical model for predicting the static and dynamic resistance functions of various LG systems used in blast-resistant designs to advance engineering analysis and design methods. The proposed analytical model integrates the strain-rate-dependent interlayer behavior with the glass dynamic increase factors to generate a physically consistent post-fracture membrane resistance, offering a unified framework for deriving the static and dynamic resistance functions directly applicable to single-degree-of-freedom (SDOF) analyses across different LG layups. The developed models were validated statistically using full-scale water chamber results and dynamically against experimental blast field data and the results from shock tube testing. We validated the model’s accuracy for various LG layup configurations, including variations in the glass and interlayer sizes, types, and thicknesses. The established dynamic resistance model was developed by incorporating a strain-rate-dependent interlayer material model. The energy absorption of LG panels, influenced by factors like interlayer thickness and type, is critical for blast design, as it determines the panels’ ability to withstand and dissipate energy, thereby reducing the transmitted forces and deformations to a building’s structure. The dynamic model closely matched the dynamic deflection time histories, with a maximum difference of 6% for all the blast experiments. The static resistance validations across the various LG configurations consistently demonstrated reliable prediction results. The energy absorption comparisons between the analytical and quasi-static LG panel responses ranged from 1% to 17%. These advancements provide higher-fidelity SDOF predictions and clear guidance for selecting the interlayer type and thickness to optimize energy absorption. This will result in enhanced blast resistance and contribute to more effective blast mitigation in glazing system design. Full article
Show Figures

Figure 1

14 pages, 4412 KB  
Article
Mathematical Modeling and Analysis of the Mechanical Properties of a Nonferromagnetic Panel Under the Action of a Quasi-Steady Electromagnetic Field
by Roman Musii, Viktor Pabyrivskyi, Myroslava Klapchuk, Dariusz Całus, Piotr Gębara, Zenoviy Kohut and Ewelina Szymczykiewicz
Energies 2025, 18(14), 3680; https://doi.org/10.3390/en18143680 - 12 Jul 2025
Viewed by 511
Abstract
A physical and mathematical model and a methodology for studying the mechanical properties of a nonferromagnetic conductive panel under the action of a quasi-steady electromagnetic field are proposed. A two-dimensional thermomechanics problem is formulated for the considered panel of a rectangular cross-section. The [...] Read more.
A physical and mathematical model and a methodology for studying the mechanical properties of a nonferromagnetic conductive panel under the action of a quasi-steady electromagnetic field are proposed. A two-dimensional thermomechanics problem is formulated for the considered panel of a rectangular cross-section. The initial relations for finding the determinant functions, namely, the components of the quasi-static stress tensor, are given. The thermomechanical problem was addressed using the author’s approach, which involves approximating the defining functions by cubic polynomials along the thickness direction. This approach enabled the transformation of the initial two-dimensional boundary value problems into one-dimensional formulations based on the integral characteristics of the defining functions. Using a finite integral transformation in the transverse coordinate, the expressions of all integral characteristics and determinant functions were obtained. On the basis of the proposed mathematical model, a computer analysis of all components of the quasi-static stress tensor and stress intensity in a tungsten panel depending on the dimensionless Fourier time, the Biot criterion, and the induction heating parameters was carried out. The thermomechanical behavior of the panel was analyzed using two modes of near-surface and in-depth induction heating of the panel by a homogeneous quasi-steady electromagnetic field. Full article
Show Figures

Figure 1

22 pages, 7169 KB  
Article
Thermodielectric Properties of Polyurethane Composites with Aluminium Nitride and Wurtzite Boron Nitride Microfillers: Analysis Below and near Percolation Threshold
by Alexey Gunya, Jozef Kúdelčík, Štefan Hardoň and Marián Janek
Sensors 2025, 25(13), 4055; https://doi.org/10.3390/s25134055 - 29 Jun 2025
Viewed by 910
Abstract
This study explores microcomposites’ thermodielectric properties—thermal conductivity (keff) and dielectric permittivity (εr)—across filler concentrations from 1 wt% (φ0.0035) to 60 wt% (φ0.45) spanning the pre- (φ<0.16 [...] Read more.
This study explores microcomposites’ thermodielectric properties—thermal conductivity (keff) and dielectric permittivity (εr)—across filler concentrations from 1 wt% (φ0.0035) to 60 wt% (φ0.45) spanning the pre- (φ<0.16) and within-percolation threshold (0.16φ0.29). Thermal measurements were conducted using a newly designed, cost-effective thermal measurement setup. The setup utilised a transient heat pulse methodology with a heater and NTC thermistors, with a precision better than ±0.01m1·K1. Dielectric properties were measured using a three-electrode system over a broad frequency and temperature range. The measurements demonstrate an effective thermal conductivity keff of 0.72 W·m1·K1 for AlN at φ=0.36 and 0.65 W·m1·K1 for wBN already at φ=0.12. Although theoretical models suggest that, considering interfacial Kapitza resistance, it can yield a keff corresponding to approximately 1–3% of the conductivity of pure material filler, the experimental measurements indicate a maximum of around 0.5%. Dielectric measurements show that in comparison to pure polyurethane, the presence of 60% AlN or 40% wBN at 60 °C decreased the loss tangent by 20 times in the condition of a quasistatic electric field. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

13 pages, 7340 KB  
Article
Research on the Constitutive Relationship of the Coarse-Grained Heat-Affected Zone in Ship Thick-Plate Welded Joints of Ship Structures
by Linzhi Xu, Pengyu Zhan, Tao Yi, Shukai Zhang, Jian He and Mengzhen Li
J. Mar. Sci. Eng. 2025, 13(7), 1260; https://doi.org/10.3390/jmse13071260 - 29 Jun 2025
Viewed by 696
Abstract
This study addresses the constitutive relationship of the welded coarse-grained heat-affected zone (CGHAZ) in 80-mm-thick DH36 marine steel plates. By integrating quasi-static tensile testing, digital image correlation (DIC) technology, and metallographic analysis, we systematically investigated the mechanical property differences and underlying mechanisms between [...] Read more.
This study addresses the constitutive relationship of the welded coarse-grained heat-affected zone (CGHAZ) in 80-mm-thick DH36 marine steel plates. By integrating quasi-static tensile testing, digital image correlation (DIC) technology, and metallographic analysis, we systematically investigated the mechanical property differences and underlying mechanisms between the CGHAZ and base metal (BM). High-precision DIC technology enabled strain field characterization at the microscale in the CGHAZ, while the Ramberg-Osgood model was adopted to establish a dual-material constitutive equation. The results demonstrate that grain coarsening induced by welding thermal cycles significantly influenced the mechanical responses: the CGHAZ exhibited enhanced tensile strength but reduced plastic compatibility due to decreased grain boundary density. Notably, gradient differences in elastic modulus (CGHAZ: 184 GPa vs. BM: 213 GPa) and yield strength (CGHAZ: 363 MPa vs. BM: 373 MPa) between the BM and CGHAZ necessitate strict differentiation in engineering design. This work overcomes the limitations of oversimplified CGHAZ properties in conventional design approaches, providing a novel methodology for strength assessment and lightweight design of marine structures. The findings offer critical theoretical insights and practical guidelines for enhancing the reliability of offshore engineering equipment. Full article
Show Figures

Figure 1

17 pages, 2146 KB  
Article
Efficient Phase-Field Modeling of Quasi-Static and Dynamic Crack Propagation Under Mechanical and Thermal Loadings
by Lotfi Ben Said, Hamdi Hentati, Mohamed Turki, Alaa Chabir, Sattam Alharbi and Mohamed Haddar
Mathematics 2025, 13(11), 1742; https://doi.org/10.3390/math13111742 - 24 May 2025
Viewed by 2759
Abstract
The main objective of this work was to model the failure mechanisms of brittle materials subjected to thermal and mechanical loads. A diffusive representation of the crack topology provides the basis for the regularized kinematic framework used. With a smooth transition from the [...] Read more.
The main objective of this work was to model the failure mechanisms of brittle materials subjected to thermal and mechanical loads. A diffusive representation of the crack topology provides the basis for the regularized kinematic framework used. With a smooth transition from the undamaged to the fully damaged state, the fracture surface was roughly represented as a diffusive field. By integrating a staggered scheme and spectral decomposition, the variational formulation was used after being mathematically written and developed. Its effectiveness was analyzed using extensive benchmark tests, demonstrating the effectiveness of the phase-field model in modeling the behavior of brittle materials. This proposed approach was experimentally tested through the examination of crack propagation paths in brittle materials that were subjected to variable mechanical and thermal loads. This work focused on the integration of a spectral decomposition-based phase-field model with thermo-mechanical coupling for dynamic fracture, supported by benchmark validation and the comparative assessment of energy decomposition strategies. The results highlight the accuracy and robustness of numerical and experimental methodologies proposed to model fracture mechanics in brittle materials subjected to complex loading conditions. Full article
(This article belongs to the Special Issue Scientific Computing for Phase-Field Models)
Show Figures

Figure 1

17 pages, 14006 KB  
Article
Virtual Modelling Framework-Based Inverse Study for the Mechanical Metamaterials with Material Nonlinearity
by Yuhang Tian, Yuan Feng and Wei Gao
Modelling 2025, 6(1), 24; https://doi.org/10.3390/modelling6010024 - 20 Mar 2025
Cited by 13 | Viewed by 1455
Abstract
Mechanical metamaterials have become a critical research focus across various engineering fields. Recent advancements have pushed the development of reprogrammable mechanical metamaterials to achieve adaptive mechanical behaviours against external stimuli. The relevant designs strongly depend on a thorough understanding of the response spectrum [...] Read more.
Mechanical metamaterials have become a critical research focus across various engineering fields. Recent advancements have pushed the development of reprogrammable mechanical metamaterials to achieve adaptive mechanical behaviours against external stimuli. The relevant designs strongly depend on a thorough understanding of the response spectrum of the original structure, where establishing an accurate virtual model is regarded as the most efficient approach to this end up to now. By employing an extended support vector regression (X-SVR), a powerful machine learning algorithm model, this study explores the uncertainty and sensitivity analysis and inverse study of re-entrant honeycombs under quasi-static compressive loads. The proposed framework enables accurate uncertainty quantification, sensitivity analysis, and inverse study, facilitating the related design and optimisation of metastructures when extended to responsive materials. The proposed framework is considered an effective tool for uncertainty quantification and sensitivity analysis, enabling the identification of key parameters affecting mechanical performance. Finally, the inverse study approach leverages X-SVR to swiftly obtain the required structural configurations based on targeted mechanical responses. Full article
(This article belongs to the Special Issue The 5th Anniversary of Modelling)
Show Figures

Figure 1

20 pages, 24436 KB  
Article
Effect of Dynamic Flexural Strength on Impact Response Analysis of AlN Substrates for Aerospace Applications
by Zhen Wang and Yan Liu
Aerospace 2025, 12(3), 221; https://doi.org/10.3390/aerospace12030221 - 8 Mar 2025
Cited by 1 | Viewed by 2994
Abstract
Electronic devices play an extremely important role in the aerospace field. Aluminum nitride (AlN) is a promising ceramic material for high-reliability electronic packaging structures that are subjected to impact loads during service. Quasi-static and dynamic flexural tests were conducted to determine the rate-dependent [...] Read more.
Electronic devices play an extremely important role in the aerospace field. Aluminum nitride (AlN) is a promising ceramic material for high-reliability electronic packaging structures that are subjected to impact loads during service. Quasi-static and dynamic flexural tests were conducted to determine the rate-dependent flexural strengths of AlN ceramics. The impact response of the AlN substrates was investigated using experimental tests and a smeared fixed-crack numerical model. The critical velocity of the impactor and the failure mode of the ceramic plate can be accurately predicted using the Drucker–Prager criterion with the scaled fracture-strength parameter. The radial cracks on the ceramic plate upon impact were well reproduced via the proposed novel numerical technique, showing better accuracy compared to the widely used Johnson–Holmquist II (JH-2) model. The effect of impactor nose shape and deflection angles were further investigated to better illustrate the low-velocity impact response of AlN ceramic substrates. Based on the dynamic flexural-strength testing results, this study achieves the prediction of low-speed impact response for AlN ceramic structures, thereby providing technical support for the impact reliability analysis of aerospace ceramic-packaging devices. Full article
Show Figures

Graphical abstract

41 pages, 2797 KB  
Systematic Review
Assessing Safety in Physical Human–Robot Interaction in Industrial Settings: A Systematic Review of Contact Modelling and Impact Measuring Methods
by Samarathunga S. M. B. P. B., Marcello Valori, Giovanni Legnani and Irene Fassi
Robotics 2025, 14(3), 27; https://doi.org/10.3390/robotics14030027 - 28 Feb 2025
Cited by 6 | Viewed by 8218
Abstract
As collaborative robots (cobots) increasingly share workspaces with humans, ensuring safe physical human–robot interaction (pHRI) has become paramount. This systematic review addresses safety assessment in pHRI, focussing on the industrial field, with the objective of collecting approaches and practices developed so far for [...] Read more.
As collaborative robots (cobots) increasingly share workspaces with humans, ensuring safe physical human–robot interaction (pHRI) has become paramount. This systematic review addresses safety assessment in pHRI, focussing on the industrial field, with the objective of collecting approaches and practices developed so far for modelling, simulating, and verifying possible collisions in human–robot collaboration (HRC). To this aim, advances in human–robot collision modelling and test-based safety evaluation over the last fifteen years were examined, identifying six main categories: human body modelling, robot modelling, collision modelling, determining safe limits, approaches for evaluating human–robot contact, and biofidelic sensor development. Despite the reported advancements, several persistent challenges were identified, including the over-reliance on simplified quasi-static models, insufficient exploration of transient contact dynamics, and a lack of inclusivity in demographic data for establishing safety thresholds. This analysis also underscores the limitations of the biofidelic sensors currently used and the need for standardised validation protocols for the impact scenarios identified through risk assessment. By providing a comprehensive overview of the topic, this review aims to inspire researchers to address underexplored areas and foster innovation in developing advanced, but suitable, models to simulate human–robot contact and technologies and methodologies for reliable and user-friendly safety validation approaches. Further deepening those topics, even combined with each other, will bring about the twofold effect of easing the implementation while increasing the safety of robotic applications characterised by pHRI. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

12 pages, 1917 KB  
Article
Aging Analysis and Anti-Aging Circuit Design of Strong-Arm Latch Circuits in 14 nm FinFET Technology
by Xin Xu, Meng Li, Yiqun Shi, Yunpeng Li, Hao Zhu and Qingqing Sun
Electronics 2025, 14(4), 772; https://doi.org/10.3390/electronics14040772 - 17 Feb 2025
Cited by 1 | Viewed by 1669
Abstract
Despite the advantages of fin field-effect transistors (FinFETs), there are hidden issues such as electric field enhancement and exacerbated self-heating effects, which will intensify device aging effects. Due to the escalating costs associated with aging protection at the device process level, there is [...] Read more.
Despite the advantages of fin field-effect transistors (FinFETs), there are hidden issues such as electric field enhancement and exacerbated self-heating effects, which will intensify device aging effects. Due to the escalating costs associated with aging protection at the device process level, there is an urgent need to reduce the impact of aging on circuit performance from the circuit design perspective. This study focuses on the specific structure of the strong-arm latch comparator and conducts a detailed aging analysis. Based on the quasi-static approximation (QSA) model, the threshold voltage shift under operational stress is simulated. It is concluded that both the hot carrier injection (HCI) effect and negative bias temperature instability (NBTI) effect play equally non-negligible roles. Furthermore, aging tests were conducted based on 14 nm FinFET devices, validating the substantial HCI effects induced by short-duration pulses. Simultaneously, the test results suggest that the aging effect becomes more remarkable with increasing current. An improved circuit is proposed to reduce the HCI effect by reducing the current pulse by the way of pre-charging, which effectively reduces the threshold voltage shift of the latch comparator input transistors. Full article
Show Figures

Figure 1

18 pages, 8358 KB  
Article
Research on Rotor Dynamic Characteristics of High Speed Aviation Piston Pump
by Lijun Chen, Rushen Deng, Jun Zha, Jianning Gu, Tianxiang Xia and Runlin Chen
Lubricants 2025, 13(2), 51; https://doi.org/10.3390/lubricants13020051 - 25 Jan 2025
Cited by 1 | Viewed by 1703
Abstract
The high-speed aviation piston pump plays a vital role in hydraulic systems in the aviation field. Extremely complex force situations happen during running operations due to the coupling between multiple components, as a result of the overall dynamic characteristics being complex and changeable, [...] Read more.
The high-speed aviation piston pump plays a vital role in hydraulic systems in the aviation field. Extremely complex force situations happen during running operations due to the coupling between multiple components, as a result of the overall dynamic characteristics being complex and changeable, which brings great difficulties and challenges to its performance optimization. Taking the high-speed aviation piston pump as the research object, a mechanical balance equation of the piston based on the dynamic balance method was proposed. The reaction force of the swashplate and the influence of rotational speed and outlet pressure on it were modeled. Through the balance of the system and the component subsystem, the load of the support bearing of the piston pump under different working conditions is analyzed, as well as the influence of the rotational speed and the outlet pressure on the bearing stiffness by the quasi-static method. In addition, the discrete model of the piston pump spindle and the discrete model of the rotor system are established. The accuracy of the model is verified by the finite element method. The maximum error of the spindle discrete model is 6.13%, and the maximum error of the rotor system discrete model is 15.28%. The transfer matrix analysis shows that the working condition parameters have little effect on the critical speed of the spindle and rotor system, and the outlet pressure has a more significant effect than the speed. The research results provide a theoretical basis and analysis method for the dynamic analysis and structural optimization of the high-speed aviation piston pump. Full article
Show Figures

Figure 1

Back to TopTop