Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = quasi-ductile fracture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6795 KiB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Viewed by 176
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

27 pages, 21183 KiB  
Article
Fracture Initiation in Aluminum Alloys Under Multiaxial Loading at Various Low Strain Rates
by Mehmet Haskul and Eray Arslan
Metals 2025, 15(7), 785; https://doi.org/10.3390/met15070785 - 11 Jul 2025
Viewed by 295
Abstract
The initiation of ductile fractures in medium-strength AW5754 and high-strength AW6082 aluminum alloys at different quasi-static strain rates and under multiaxial stress states was investigated through a series of tensile tests using various specimen geometries. The sensitivity of the stress triaxiality locus to [...] Read more.
The initiation of ductile fractures in medium-strength AW5754 and high-strength AW6082 aluminum alloys at different quasi-static strain rates and under multiaxial stress states was investigated through a series of tensile tests using various specimen geometries. The sensitivity of the stress triaxiality locus to variations in the loading rate was examined for these two aluminum alloy families. Fractographic and elemental analyses were also conducted via SEM and EDS. Numerical simulations based on the finite element method (FEM) were performed using ABAQUS/Standard to determine the actual stress triaxialities and the equivalent plastic strains at fracture. The numerical approach was validated by comparing the simulation results with the experimental findings. These simulations facilitated the generation of a stress triaxiality locus through a curve-fitting process. Among the considered fitting functions, an exponential function was selected as it provided the most accurate relation between the equivalent plastic strain at fracture and the corresponding stress state across different strain rates. The results reveal different strain rate dependencies for the two alloys within a very low strain rate range. The resulting stress triaxiality loci provide a valuable tool for predicting fracture strains and for more accurately evaluating stress states. Overall, the findings of this study significantly advance the understanding of the fracture initiation behavior of aluminum alloys under multiaxial loading conditions and their sensitivity to various quasi-static loading rates. Full article
Show Figures

Figure 1

12 pages, 2630 KiB  
Article
Off-Axis Fabric Orientation Angle Effect on the Flexural Characterisation of Mineral Basalt-Fibre-Reinforced Novel Acrylic Thermoplastic Composites
by Mohamad Alsaadi, Aswani Kumar Bandaru, Tomas Flanagan and Declan M. Devine
J. Compos. Sci. 2025, 9(7), 347; https://doi.org/10.3390/jcs9070347 - 5 Jul 2025
Cited by 1 | Viewed by 364
Abstract
A fabric orientation angle has a significant influence on the failure mechanisms at the lamina level. Any change in this angle can lead to a sudden reduction in strength, potentially resulting in catastrophic failures due to variations in load-carrying capacity. This study examined [...] Read more.
A fabric orientation angle has a significant influence on the failure mechanisms at the lamina level. Any change in this angle can lead to a sudden reduction in strength, potentially resulting in catastrophic failures due to variations in load-carrying capacity. This study examined the impact of off-axis fabric orientation angles (0°, 15°, 30°, 45°, 60°, and 90°) on the flexural properties of non-crimp basalt-fibre-reinforced acrylic thermoplastic composites. The basalt/Elium® composite panels were manufactured using a vacuum-assisted resin transfer moulding technique. The results show that the on-axis (0°) composite specimens exhibited linear stress–strain behaviour and quasi-brittle failure characterised by fibre dominance, achieving superior strength and failure strain values of 1128 MPa and 3.85%, respectively. In contrast, the off-axis specimens exhibited highly nonlinear ductile behaviour. They failed at lower load values due to matrix dominance, with strength and failure strain values of 144 MPa and 6.0%, respectively, observed at a fabric orientation angle of 45°. The in-plane shear stress associated with off-axis angles influenced the flexural properties. Additionally, the degree of deformation and the fracture mechanisms were analysed. Full article
(This article belongs to the Special Issue Advances in Continuous Fiber Reinforced Thermoplastic Composites)
Show Figures

Figure 1

22 pages, 7158 KiB  
Article
Experimental Study on the Seismic Performance of Pre-Inserted Prefabricated Shear Walls
by Quanbiao Xu, Shenghang Yang, Benyue Li, Mingwei Xu and Mingshan Zhang
Buildings 2025, 15(11), 1945; https://doi.org/10.3390/buildings15111945 - 4 Jun 2025
Viewed by 364
Abstract
The pre-inserted method for precast shear walls involves casting concealed beams at floor slabs between upper and lower structures, with precast concrete supports spaced at intervals. Vertical rebars at the base of upper walls are pre-inserted and anchored in the beams before slab [...] Read more.
The pre-inserted method for precast shear walls involves casting concealed beams at floor slabs between upper and lower structures, with precast concrete supports spaced at intervals. Vertical rebars at the base of upper walls are pre-inserted and anchored in the beams before slab casting. It offers advantages such as convenient construction without the need for grouting, demonstrating broad application prospects and significant promotional value. To evaluate seismic performance, quasi-static cyclic loading tests were conducted on five specimens: three full-scale pre-inserted precast walls and two cast-in-place counterparts. Under increasing lateral displacement, low axial-load specimens failed via tensile fracture of the outermost rebars, while high axial-load specimens failed by concrete crushing in compression. The test results showed that under identical axial-load ratios, the precast walls exhibited comparable bearing capacity, stiffness degradation, and energy dissipation to cast-in-place walls, but superior deformation ductility. The ultimate drift ratios of pre-inserted walls exceeded those of cast-in-place walls by 16.7% (axial-load ratio 0.2) and 22.2% (axial-load ratio 0.4), demonstrating robust seismic performance. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 16060 KiB  
Article
Manufacturing and Characterisation of a Tungsten Fibre-Reinforced Polymer Composite
by Daniel Dickes, Stephan Maidl, Johann Riesch, Rudolf Neu and Klaus Drechsler
J. Compos. Sci. 2025, 9(4), 161; https://doi.org/10.3390/jcs9040161 - 27 Mar 2025
Viewed by 503
Abstract
Using metal fibres in fibre-reinforced polymers is a way to tailor not only the mechanical properties but also material properties like, e.g., electrical and thermal conductivity or toughness. While recent works focus on ductile steel fibres, this work demonstrates the manufacturability of tungsten [...] Read more.
Using metal fibres in fibre-reinforced polymers is a way to tailor not only the mechanical properties but also material properties like, e.g., electrical and thermal conductivity or toughness. While recent works focus on ductile steel fibres, this work demonstrates the manufacturability of tungsten fibre-reinforced polymers. The Vacuum Assisted Process works well to quasi-unidirectionally reinforce an epoxy matrix with tungsten fibres of 150 µm diameter, achieving a fibre volume content of 23 ± 1% (±standard deviation). Tensile tests of 10 mm-wide tungsten fibre-reinforced polymer specimens yield a Young’s modulus of 89 ± 5 GPa, an ultimate tensile strength of 615 ± 33 MPa, and a failure strain of 1.9 ± 0.2%. The fractured specimens are further investigated, revealing that 66% of the tungsten fibres fail in a dominantly ductile manner with a strongly localised region of plastic deformation. This is a unique feature of tungsten fibres with the potential to enhance the fracture toughness of fibre-reinforced polymers. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

19 pages, 11904 KiB  
Article
Dynamic Mechanical Properties and Deformation Mechanisms of Lightweight High-Strength TWIP Steel
by Jia Yang, Xiyue Liu, Yu Tang, Shuxin Bai, Yicong Ye, Manchao He and Min Xia
Buildings 2025, 15(6), 897; https://doi.org/10.3390/buildings15060897 - 13 Mar 2025
Viewed by 884
Abstract
This study developed a twinning-induced plasticity (TWIP) steel characterized by lightweight, high strength, and high toughness. Tensile tests were conducted at strain rates ranging from 10−4 to 6500 s−1 using a universal testing machine and a Hopkinson bar to evaluate the [...] Read more.
This study developed a twinning-induced plasticity (TWIP) steel characterized by lightweight, high strength, and high toughness. Tensile tests were conducted at strain rates ranging from 10−4 to 6500 s−1 using a universal testing machine and a Hopkinson bar to evaluate the material’s mechanical properties. A Johnson–Cook (J-C) constitutive model was developed based on the mechanical performance data for high-strain behavior. X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) were employed to analyze the microstructural evolution and fracture mechanisms of tensile specimens. The results show that the TWIP steel exhibits positive strain rate sensitivity (PSRS) under both quasi-static and dynamic strain rates. At high strain rates, the yield strength increased from 1133.0 MPa to 1430.6 MPa, and the tensile strength rose from 1494.3 MPa to 1640.34 MPa. The J-C model fits well at strain rates of 1000 s−1 and 3000 s−1, but fitting errors increase at higher strain rates due to the competition between thermal softening and strain hardening. XRD results reveal no significant phase transformation occurred during deformation, with twinning being the dominant mechanism. As the strain rate increased, deformation twins appeared in the material’s microstructure, inducing plastic deformation during tensile testing. The twin volume fraction increases progressively with the strain rate. At high strain rates, secondary twins emerge and intersect with primary twins, refining the grains through mutual interaction. The TWIP effect enhances the material’s mechanical performance by improving its strength and ductility while maintaining its lightweight nature. Full article
Show Figures

Figure 1

15 pages, 10121 KiB  
Article
A Study on Microstructure-Property Relationships and Notch-Sensitive Fracture Behavior of X80 Steel Welds
by Yangfan Zou, Lifeng Li, Shuxin Zhang, Xiangzhen Yan and Shuyi Xie
Processes 2025, 13(3), 763; https://doi.org/10.3390/pr13030763 - 6 Mar 2025
Viewed by 706
Abstract
X80 steel pipelines are widely used in oil and gas transportation, and the quality and fracture behavior of the girth weld have an important influence on the safety and performance of the pipeline. This study presents a comprehensive investigation into the microstructure, mechanical [...] Read more.
X80 steel pipelines are widely used in oil and gas transportation, and the quality and fracture behavior of the girth weld have an important influence on the safety and performance of the pipeline. This study presents a comprehensive investigation into the microstructure, mechanical properties, and fracture characteristics of X80 steel welded joints. Through microstructure analysis and mechanical testing, the hardness, impact, and tensile properties of the base metal, heat-affected zone, and weld zone are evaluated. Digital Image Correlation (DIC) technology is employed to scrutinize the strain behavior under quasi-static tensile tests for both smooth and notched round bar specimens, providing a detailed strain distribution analysis. The findings indicate that, while X80 welded joints are well-formed without significant defects, the hardness and impact properties vary across different zones, with the base metal exhibiting the highest impact toughness and the weld zone the lowest. Notched tensile tests reveal that the presence and geometry of notches significantly alter the stress state and deformation characteristics, influencing the fracture mode. The DIC analysis further elucidates the strain concentration and localization behavior in the weld zone, highlighting the importance of notch size in determining the load-bearing capacity and ductility of the welded joints. This study contributes to a deeper understanding of the fracture mechanics in X80 pipeline girth welds and offers valuable insights for the optimization of welding practices and the assessment of pipeline integrity. Full article
Show Figures

Figure 1

17 pages, 10341 KiB  
Article
Unveiling the Strengthening and Ductility Mechanisms of a CoCr0.4NiSi0.3 Medium-Entropy Alloy at Cryogenic Temperatures
by Li Zhang, Lingwei Zhang and Xiang Chen
Crystals 2025, 15(2), 170; https://doi.org/10.3390/cryst15020170 - 10 Feb 2025
Cited by 1 | Viewed by 761
Abstract
Materials utilized in extreme environments, such as those necessitating protection and impact resistance at cryogenic temperatures, must exhibit high strength, ductility, and structural stability. However, most alloys fail to maintain adequate toughness at cryogenic temperatures, thereby compromising their safety during cryogenic temperature service. [...] Read more.
Materials utilized in extreme environments, such as those necessitating protection and impact resistance at cryogenic temperatures, must exhibit high strength, ductility, and structural stability. However, most alloys fail to maintain adequate toughness at cryogenic temperatures, thereby compromising their safety during cryogenic temperature service. This study investigates the quasi-static mechanical properties of a CoCr0.4NiSi0.3 medium-entropy alloy (MEA) at room temperature, −75 °C, and −150 °C. The deformation behavior and mechanisms responsible for strengthening and toughening at reduced cryogenic temperatures are analyzed, revealing that decreasing cryogenic temperature enhances the strength of the as-cast MEA. Specifically, both the yield strength (YS) and ultimate tensile strength (UTS) of the MEA increase significantly with decreasing temperature during cryogenic tensile testing. Under tensile testing at −150 °C, the YS reaches 617.5 MPa, the UTS is 1055.0 MPa, and the elongation to fracture remains approximately 21.0% at both −150 °C and −75 °C. After cryogenic temperature tensile deformation, the matrix exhibits a dispersed distribution of nanoscaled tetragonal and orthorhombic phases, a coherent hexagonal close-packed phase, L12 phase and layered long-period stacking ordered (LPSO) structures, which are rarely observed in the cryogenic deformation of metals and alloys. The metastable phase evolution path of this MEA at cryogenic temperatures is closely associated with the decomposition of perfect dislocations into a/6<112> Shockley partial dislocations and their subsequent evolution at reduced cryogenic temperatures. At −75 °C, the a/6<112> Shockley partial dislocation interacts with the L12 phase to form antiphase boundaries (APBs) approximately 3 nm thick. At −150 °C, two phase transition paths from stacking faults (SFs) to nanotwins and LPSO occur, leading to the formation of layered LPSO structures and deformation-induced nanotwins. The dispersion of these coherent nanophases and nanotwins induced by the reduced stacking fault energy under cryogenic temperatures is the key factor contributing to the excellent balance of strength and plasticity in the as-cast MEA, providing an important basis for research on the cryogenic mechanical properties of CoCrNi-based MEAs. Full article
Show Figures

Figure 1

19 pages, 18317 KiB  
Article
A Study on the Impact Toughness of the Simulated Heat-Affected Zone in Multi-Layer and Multi-Pass Welds of 1000 MPa Grade Steel for Hydroelectric Applications
by Yuwei Li, Yuanbo Li and Jianxiu Chang
Metals 2024, 14(12), 1455; https://doi.org/10.3390/met14121455 - 19 Dec 2024
Cited by 1 | Viewed by 855
Abstract
The microstructure and impact toughness of a steel material subjected to multi-layer and multi-pass welding with varying secondary peak temperatures were investigated using welding thermal simulation. The detailed microstructures and fracture morphologies were examined by SEM, TEM, and EBSD. When the secondary peak [...] Read more.
The microstructure and impact toughness of a steel material subjected to multi-layer and multi-pass welding with varying secondary peak temperatures were investigated using welding thermal simulation. The detailed microstructures and fracture morphologies were examined by SEM, TEM, and EBSD. When the secondary peak temperature reaches 650 °C, the microstructure resembles that of a primary thermal cycle at 1300 °C, characterized by coarse grains and straight grain boundaries. As the temperature increases to 750 °C, chain-like structures of bulky M/A (martensite/austenite) constituents form at grain boundaries, widening them significantly. At 850 °C, grain boundaries become discontinuous, and large bulky M/A constituents disappear. At 1000 °C, smaller austenitic grains form granular bainite during cooling. However, at 1200 °C, grain coarsening occurs due to the significant increase in peak temperature, accompanied by a lath martensite structure at higher cooling rates. In terms of toughness, the steel exhibits better toughness at 850 °C and 1000 °C, with ductile fracture characteristics. Conversely, at 650 °C, 750 °C, and 1200 °C, the steel shows brittle fracture features. Microscopically, the fracture surfaces at these temperatures exhibit quasi-cleavage fracture characteristics. Notably, chain-like M/A constituents at grain boundaries significantly affect impact toughness and are the primary cause of toughness deterioration in the intercritical coarse-grained heat-affected zone. Full article
Show Figures

Figure 1

15 pages, 5693 KiB  
Article
Thermomigration Microstructure and Properties of Ni Nanoparticle-Reinforced Sn58Bi Composite Solder/Cu Solder Joint
by Yuchun Fan, Keke Zhang, Weiming Chen, Jinna Wu and Yonglei Wang
Metals 2024, 14(12), 1420; https://doi.org/10.3390/met14121420 - 11 Dec 2024
Cited by 1 | Viewed by 1019
Abstract
A Sn58Bi composite solder reinforced by Ni nanoparticles was prepared using a mechanical mixing technique, and the thermomigration microstructure and properties of the solder joints were studied. The findings indicate that incorporating an appropriate quantity of Ni nanoparticles can enhance the microstructure of [...] Read more.
A Sn58Bi composite solder reinforced by Ni nanoparticles was prepared using a mechanical mixing technique, and the thermomigration microstructure and properties of the solder joints were studied. The findings indicate that incorporating an appropriate quantity of Ni nanoparticles can enhance the microstructure of the composite solder and mitigate the coarsening of Bi-phase segregation. At 0.75 weight percent Ni nanoparticle content, the composite solder’s tensile strength is 59.7 MPa and its elongation is 54.6%, both of which are noticeably greater than those of the base solder. When the thermal loading time is 576 h, the shear strength of the composite solder joint is 25.5 MPa, which is 30.1% higher than that of the base solder joint. This study reveals that the shear fracture path shifts from the boundary region between the solder seam and the IMC layer to the IMC layer itself. Concurrently, the fracture mode evolves from a mix of brittle–ductile fracture, characterized by quasi-cleavage, to a predominantly brittle fracture, marked by numerous “rock candy-like” cross-sectional features and secondary cracking. Adding Ni nanoparticles to the Sn58Bi composite solder/Cu solder junction can significantly extend its service life. Full article
Show Figures

Figure 1

21 pages, 12652 KiB  
Article
On the Choice of the Characteristic Length in the NMMD Model for the Simulation of Brittle Fractures
by Guangda Lu
Buildings 2024, 14(12), 3932; https://doi.org/10.3390/buildings14123932 - 10 Dec 2024
Cited by 2 | Viewed by 920
Abstract
The recently proposed nonlocal macro–meso-scale consistent damage (NMMD) model has been applied successfully to various static and dynamic fracture problems. The characteristic length in the NMMD model, although proven to be necessary for the mesh insensitivity of a strain-softening regime, remains to be [...] Read more.
The recently proposed nonlocal macro–meso-scale consistent damage (NMMD) model has been applied successfully to various static and dynamic fracture problems. The characteristic length in the NMMD model, although proven to be necessary for the mesh insensitivity of a strain-softening regime, remains to be estimated indirectly with considerable arbitrariness. Such an issue also exists in other nonlocal models, e.g., peridynamics and phase field models. To overcome this obstacle, a series of dog-bone specimens composed of polymethyl-methacrylate (PMMA) material with and without circular defects are investigated in this paper. It is found that the NMMD model with the appropriate influence radius can correctly capture the experimentally observed size effect of the defect, which challenges the conventional local criteria without involving the characteristic length. In addition to being directly measurable and identifiable in experiments, based on the two-scale mechanism of the NMMD model, the characteristic length is also theoretically calibrated to be related to the ratio of the fracture toughness to the tensile strength of the material. Comparisons with the predictions of other modified nonlocalized criteria involving some characteristic length demonstrate the superior ability of the NMMD model to simulate brittle crack initiation and propagation from a non-singular boundary. The revalidation of short bending beams demonstrates that theoretical calibration is also suitable for problems of mixed-mode fractures with stress singularity. Although limited to brittle materials like PMMA, the current work could be generalized to the analysis of quasi-brittle or even ductile fractures in the future. Full article
(This article belongs to the Special Issue Recent Advances in Technology and Properties of Composite Materials)
Show Figures

Figure 1

21 pages, 28074 KiB  
Article
Hydrogen Embrittlement Sensitivity of X70 Welded Pipe Under a High-Pressure Pure Hydrogen Environment
by Kangxin Shuai, Haixiao Liu, Ming Li, Shubiao Yin, Ba Li, Bing Wang, Qingyou Liu and Shujun Jia
Materials 2024, 17(23), 5818; https://doi.org/10.3390/ma17235818 - 27 Nov 2024
Cited by 1 | Viewed by 1384
Abstract
With the rapid development of hydrogen pipelines, their safety issues have become increasingly prominent. In order to evaluate the properties of pipeline materials under a high-pressure hydrogen environment, this study investigates the hydrogen embrittlement sensitivity of X70 welded pipe in a 10 MPa [...] Read more.
With the rapid development of hydrogen pipelines, their safety issues have become increasingly prominent. In order to evaluate the properties of pipeline materials under a high-pressure hydrogen environment, this study investigates the hydrogen embrittlement sensitivity of X70 welded pipe in a 10 MPa high-pressure hydrogen environment, using slow strain rate testing (SSRT) and low-cycle fatigue (LCF) analysis. The microstructure, slow tensile and fatigue fracture morphology of base metal (BM) and weld metal (WM) were characterized and analyzed by means of ultra-depth microscope, scanning electron microscope (SEM), electron backscattering diffraction (EBSD), and transmission electron microscope (TEM). Results indicate that while the high-pressure hydrogen environment has minimal impact on ultimate tensile strength (UTS) for both BM and WM, it significantly decreases reduction of area (RA) and elongation (EL), with RA reduction in WM exceeding that in BM. Under the nitrogen environment, the slow tensile fracture of X70 pipeline steel BM and WM is a typical ductile fracture, while under the high-pressure hydrogen environment, the unevenness of the slow tensile fracture increased, and a large number of microcracks appeared on the fracture surface and edges, with the fracture mode changing to ductile fracture + quasi-cleavage fracture. In addition, the high-pressure hydrogen environment reduces the fatigue life of the BM and WM of X70 pipeline steel, and the fatigue life of the WM decreases more than that of the BM as well. Compared to the nitrogen environment, the fatigue fracture specimens of BM and WM in the hydrogen environment showed quasi-cleavage fracture patterns, and the fracture area in the instantaneous fracture zone (IFZ) was significantly reduced. Compared with the BM of X70 pipeline steel, although the effective grain size of the WM is smaller, WM’s microstructure, with larger Martensite/austenite (M/A) constituents and MnS and Al-rich oxides, contributes to a heightened embrittlement sensitivity. In contrast, the second-phase precipitation of nanosized Nb, V, and Ti composite carbon-nitride in the BM acts as an effective irreversible hydrogen trap, which can significantly reduce the hydrogen embrittlement sensitivity. Full article
Show Figures

Figure 1

15 pages, 7053 KiB  
Article
Effects of Temperature and Secondary Orientations on the Deformation Behavior of Single-Crystal Superalloys
by Sujie Liu, Cui Zong, Guangcai Ma, Yafeng Zhao, Junjie Huang, Yi Guo and Xingqiu Chen
Crystals 2024, 14(11), 996; https://doi.org/10.3390/cryst14110996 - 18 Nov 2024
Cited by 1 | Viewed by 1054
Abstract
The tensile behavior of single-crystal superalloys was investigated at room temperature (RT) and 850 °C, focusing on various secondary orientations. Transmission electron microscopy (TEM) and quasi in situ electron backscatter diffraction (EBSD) were employed to study the deformation mechanisms across length scales. Deformation [...] Read more.
The tensile behavior of single-crystal superalloys was investigated at room temperature (RT) and 850 °C, focusing on various secondary orientations. Transmission electron microscopy (TEM) and quasi in situ electron backscatter diffraction (EBSD) were employed to study the deformation mechanisms across length scales. Deformation at 850 °C enhanced the tensile ductility of the samples, evidenced by the more uniform coverage of dislocations across the γ and γ′ phases, and the fracture mode switched from pure cleavage at room temperature to mixed mode due to accelerated void growth. The influence of secondary orientations on mechanical properties is insignificant at room temperature. However, the ductility of the different secondary orientation samples shows significant variations at 850 °C, among which the one with [001] rotated 37° demonstrated superior ductility compared to others. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Behaviour of Structural Materials)
Show Figures

Figure 1

14 pages, 5833 KiB  
Article
Performance of the GH4169 Joint Using a Novel Ni-Based Amorphous Brazing Filler Metal
by Xiaohong Yang, Kaitao Zhu, Dan Huang and Lin Yang
Metals 2024, 14(11), 1274; https://doi.org/10.3390/met14111274 - 9 Nov 2024
Viewed by 1020
Abstract
A novel Ni-Cr-Si-B filler metal (JNi-5) was designed and further fabricated into the amorphous brazing filler metal for joining the GH4169 alloy. The effect of brazing temperature on the microstructure and mechanical properties of GH4169 joints was investigated. The typical microstructure of the [...] Read more.
A novel Ni-Cr-Si-B filler metal (JNi-5) was designed and further fabricated into the amorphous brazing filler metal for joining the GH4169 alloy. The effect of brazing temperature on the microstructure and mechanical properties of GH4169 joints was investigated. The typical microstructure of the joint at 1030 °C is composed of four specific zones: the base metal (BM), heat-affected zone (HAZ), isothermal solidification zone (ISZ), and athermal solidification zone (ASZ). The typical microstructure of the joint is GH4169/(Nb, Mo)-rich boride+(Cr, Nb, Mo)-rich boride/γ(Ni)/Ni-rich boride+γ(Ni)/γ(Ni)/(Cr, Nb, Mo)-rich boride+(Nb, Mo)-rich boride/GH4169. As the temperature increased, the HAZ continued to widen and the ASZ depleted at 1090 °C and 1120 °C. Additionally, the borides within the HAZ coarsened at temperatures of 1090 °C and 1120 °C. At 1030 °C, the fracture path is in the ASZ, and the existence of the brittle phase in the ASZ provides the potential origin for crack growth. The fracture mode is a quasi-cleavage fracture. At 1060 °C, 1090 °C, and 1120 °C, the fracture behavior mainly happened in the HAZ, and the existence of borides in the HAZ provides the potential origin for crack growth. Namely, the shear strength of joints was principally dominated by the brittle precipitations in the HAZ. The fracture mode of these joints is the hybrid ductile. At 1060 °C, the shear strength of the obtained joint is the highest value (693.78 MPa) due to the volume fraction increase in the Ni-based solid solution. Finally, the optimized brazing parameter of 1060 °C/10 min was determined, and the corresponding highest shear strength of 693.78 MPa was obtained owing to the increased content of the Ni-based solid solution in the joint. Full article
Show Figures

Figure 1

13 pages, 41685 KiB  
Article
Evaluating the Effect of Blended and Pure Hydrogen in X60 Pipeline Steel for Low-Pressure Transmission Using Hollow-Specimen Slow-Strain-Rate Tensile Testing
by Rashiga Walallawita, Matthew C. Hinchliff, Dimitry Sediako, John Quinn, Vincent Chou, Kim Walker and Matthew Hill
Metals 2024, 14(10), 1132; https://doi.org/10.3390/met14101132 - 4 Oct 2024
Cited by 4 | Viewed by 1912
Abstract
This study employs a custom hollow specimen setup to investigate the HE in API 5L X60 pipeline base and welded materials exposed to pure hydrogen and a 20% hydrogen–natural gas blend at 2.07 MPa. Results indicate embrittlement with increasing hydrogen concentration. The base [...] Read more.
This study employs a custom hollow specimen setup to investigate the HE in API 5L X60 pipeline base and welded materials exposed to pure hydrogen and a 20% hydrogen–natural gas blend at 2.07 MPa. Results indicate embrittlement with increasing hydrogen concentration. The base material showed a hydrogen embrittlement index (HEI) of 11.6% at 20% hydrogen and 12.4% at 100% hydrogen. For the welded material, the HEI was 14.6% at 20% hydrogen and 18.0% at 100% hydrogen. Fractography analysis revealed that the base and welded materials exhibited typical ductile fracture features in the absence of hydrogen, transitioning to a mixture of quasi-cleavage and micro-void coalescence (MVC) features in hydrogen environments. Additionally, with hydrogen, increased formation of secondary cracks was observed. Notably, the study identified the Hydrogen-Enhanced Localized Plasticity (HELP) mechanism as a probable contributor to hydrogen-assisted fracture. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Metals and Alloys)
Show Figures

Graphical abstract

Back to TopTop