Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = quantum-secure direct communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 389 KiB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Viewed by 858
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

21 pages, 4241 KiB  
Article
Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy Preserving and Real-Time Threat Detection Capabilities
by Milad Rahmati and Antonino Pagano
Informatics 2025, 12(3), 62; https://doi.org/10.3390/informatics12030062 - 4 Jul 2025
Cited by 1 | Viewed by 727
Abstract
The rapid expansion of the Internet of Things (IoT) ecosystem has transformed industries but also exposed significant cybersecurity vulnerabilities. Traditional centralized methods for securing IoT networks struggle to balance privacy preservation with real-time threat detection. This study presents a Federated Learning-Driven Cybersecurity Framework [...] Read more.
The rapid expansion of the Internet of Things (IoT) ecosystem has transformed industries but also exposed significant cybersecurity vulnerabilities. Traditional centralized methods for securing IoT networks struggle to balance privacy preservation with real-time threat detection. This study presents a Federated Learning-Driven Cybersecurity Framework designed for IoT environments, enabling decentralized data processing through local model training on edge devices to ensure data privacy. Secure aggregation using homomorphic encryption supports collaborative learning without exposing sensitive information. The framework employs GRU-based recurrent neural networks (RNNs) for anomaly detection, optimized for resource-constrained IoT networks. Experimental results demonstrate over 98% accuracy in detecting threats such as distributed denial-of-service (DDoS) attacks, with a 20% reduction in energy consumption and a 30% reduction in communication overhead, showcasing the framework’s efficiency over traditional centralized approaches. This work addresses critical gaps in IoT cybersecurity by integrating federated learning with advanced threat detection techniques. It offers a scalable, privacy-preserving solution for diverse IoT applications, with future directions including blockchain integration for model aggregation traceability and quantum-resistant cryptography to enhance security. Full article
Show Figures

Figure 1

23 pages, 2407 KiB  
Article
Enhancing Quantum Information Distribution Through Noisy Channels Using Quantum Communication Architectures
by Francisco Delgado
Information 2025, 16(6), 485; https://doi.org/10.3390/info16060485 - 11 Jun 2025
Viewed by 1056
Abstract
Quantum information transmission is subject to imperfections in communication processes and systems. These phenomena alter the original content due to decoherence and noise. However, suitable communication architectures incorporating quantum and classical redundancy can selectively remove these errors, boosting destructive interference. In this work, [...] Read more.
Quantum information transmission is subject to imperfections in communication processes and systems. These phenomena alter the original content due to decoherence and noise. However, suitable communication architectures incorporating quantum and classical redundancy can selectively remove these errors, boosting destructive interference. In this work, a selection of architectures based on path superposition or indefinite causal order were analyzed under appropriate configurations, alongside traditional methods such as classical redundancy, thus enhancing transmission. For that purpose, we examined a broad family of decoherent channels associated with the qubit chain transmission by passing through tailored arrangements or composite architectures of imperfect channels. The outcomes demonstrated that, when combined with traditional redundancy, these configurations could significantly improve the transmission across a substantial subset of the channels. For quantum key distribution purposes, two alternative bases were considered to encode the information chain. Because a control system must be introduced in the proposed architectures, two strategies for its disposal at the end of the communication process were compared: tracing and measurement. In addition, eavesdropping was also explored under a representative scenario, to quantify its impact on the most promising architecture analyzed. Thus, in terms of transmission quality and security, the analysis revealed significant advantages over direct transmission schemes. Full article
(This article belongs to the Section Information and Communications Technology)
Show Figures

Figure 1

29 pages, 819 KiB  
Review
Visible Light Communication for Underwater Applications: Principles, Challenges, and Future Prospects
by Vindula L. Jayaweera, Chamodi Peiris, Dhanushika Darshani, Sampath Edirisinghe, Nishan Dharmaweera and Uditha Wijewardhana
Photonics 2025, 12(6), 593; https://doi.org/10.3390/photonics12060593 - 10 Jun 2025
Viewed by 1002
Abstract
Underwater wireless communications face significant challenges due to high attenuation, turbulence, and water turbidity. Traditional methods like acoustic and radio frequency (RF) communication suffer from low data rates (<100 kbps), high latency (>1 s), and limited transmission distances (<10 km).Visible Light Communication (VLC) [...] Read more.
Underwater wireless communications face significant challenges due to high attenuation, turbulence, and water turbidity. Traditional methods like acoustic and radio frequency (RF) communication suffer from low data rates (<100 kbps), high latency (>1 s), and limited transmission distances (<10 km).Visible Light Communication (VLC) emerges as a promising alternative, offering high-speed data transmission (up to 5 Gbps), low latency (<1 ms), and immunity to electromagnetic interference. This paper provides an in-depth review of underwater VLC, covering fundamental principles, environmental factors (scattering, absorption), and dynamic water properties. We analyze modulation techniques, including adaptive and hybrid schemes (QAM-OFDM achieving 4.92 Gbps over 1.5 m), and demonstrate their superiority over conventional methods. Practical applications—underwater exploration, autonomous vehicle control, and environmental monitoring—are discussed alongside security challenges. Key findings highlight UVLC’s ability to overcome traditional limitations, with experimental results showing 500 Mbps over 150 m using PAM4 modulation. Future research directions include integrating quantum communication and Reconfigurable Intelligent Surfaces (RISs) to further enhance performance, with simulations projecting 40% improved spectral efficiency in turbulent conditions. Full article
Show Figures

Figure 1

28 pages, 1228 KiB  
Article
Combating Fake News with Cryptography in Quantum Era with Post-Quantum Verifiable Image Proofs
by Maksim Iavich
J. Cybersecur. Priv. 2025, 5(2), 31; https://doi.org/10.3390/jcp5020031 - 5 Jun 2025
Viewed by 1340
Abstract
In an age of AI-generated content and deepfakes, fake news and disinformation are increasingly spread using manipulated or fabricated images. To address this challenge, we introduce Post-Quantum VerITAS, a cryptographic framework for verifying the authenticity and history of digital images—even in a future [...] Read more.
In an age of AI-generated content and deepfakes, fake news and disinformation are increasingly spread using manipulated or fabricated images. To address this challenge, we introduce Post-Quantum VerITAS, a cryptographic framework for verifying the authenticity and history of digital images—even in a future where quantum computers threaten classical encryption. Our system supports common image edits, like cropping or resizing, while proving that the image is derived from a legitimate, signed source. Using quantum-resistant tools, like lattice-based hashing, modified Poseidon functions, and zk-SNARK proofs, we ensure fast, privacy-preserving verification without relying on trusted third parties. Post-Quantum VerITAS offers a scalable, post-quantum-ready solution for image integrity, with direct applications in journalism, social media, and secure digital communication. Full article
Show Figures

Figure 1

14 pages, 2088 KiB  
Review
Optical Link Design for Quantum Key Distribution-Integrated Optical Access Networks
by Sunghyun Bae and Seok-Tae Koh
Photonics 2025, 12(5), 418; https://doi.org/10.3390/photonics12050418 - 27 Apr 2025
Viewed by 731
Abstract
To achieve commercial scalability, fiber-based quantum key distribution (QKD) systems must be integrated into existing optical communication infrastructures, rather than deployed exclusively on dedicated dark fibers. Integrating QKD into optical access networks (OANs) would be particularly advantageous, as these networks provide direct connectivity [...] Read more.
To achieve commercial scalability, fiber-based quantum key distribution (QKD) systems must be integrated into existing optical communication infrastructures, rather than deployed exclusively on dedicated dark fibers. Integrating QKD into optical access networks (OANs) would be particularly advantageous, as these networks provide direct connectivity to end users for whom security is critical. Such integration can address the inherent security vulnerabilities in current OANs, which are primarily based on time-division multiplexing passive optical networks (TDM-PONs). However, integrating QKD into PONs poses significant challenges due to Raman noise and other detrimental effects induced by PON signals, which intensify as the launched power of PONs increases to support higher transmission speeds. In this study, we review recent advancements in both QKD and access network technologies, evaluate the technical feasibility of QKD-OAN integration, and propose cost-effective strategies to facilitate the widespread deployment of QKD in future access networks. Full article
(This article belongs to the Special Issue Optical Signal Processing for Advanced Communication Systems)
Show Figures

Figure 1

20 pages, 1343 KiB  
Article
Loop-Back Quantum Key Distribution (QKD) for Secure and Scalable Multi-Node Quantum Networks
by Luis Adrián Lizama-Perez and J. M. López-Romero
Symmetry 2025, 17(4), 521; https://doi.org/10.3390/sym17040521 - 30 Mar 2025
Viewed by 816
Abstract
Quantum key distribution (QKD) is a cornerstone of secure communication in the quantum era, yet most existing protocols are designed for point-to-point transmission, limiting their scalability in networked environments. In this work, we introduce Loop-Back QKD, a novel QKD protocol that supports both [...] Read more.
Quantum key distribution (QKD) is a cornerstone of secure communication in the quantum era, yet most existing protocols are designed for point-to-point transmission, limiting their scalability in networked environments. In this work, we introduce Loop-Back QKD, a novel QKD protocol that supports both two-party linear configurations and scalable multiuser ring topologies. By leveraging a structured turn-based mechanism and bidirectional pulse propagation, the protocol enables efficient key distribution while reducing the quantum bit error rate (QBER) through a multi-pulse approach. Unlike trusted-node QKD networks, Loop-Back QKD eliminates intermediate-node vulnerabilities, as secret keys are never processed by intermediate nodes. Furthermore, unlike Measurement-Device-Independent (MDI-QKD) and Twin-Field QKD (TF-QKD), which require complex entanglement-based setups, Loop-Back QKD relies solely on direct polarization transformations, reducing vulnerability to side-channel attacks and practical implementation challenges. Additionally, our analysis indicates that multi-pulse Loop-Back QKD can tolerate higher QBER thresholds. However, this increased robustness comes at the cost of a lower key rate efficiency compared to standard QKD schemes. This design choice enhances its robustness against real-world adversarial threats, making it a strong candidate for secure multiuser communication in local and metropolitan-scale quantum networks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

34 pages, 3195 KiB  
Review
Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication
by Rahat Ullah, Sibghat Ullah, Jianxin Ren, Hathal Salamah Alwageed, Yaya Mao, Zhipeng Qi, Feng Wang, Suhail Ayoub Khan and Umar Farooq
Sensors 2025, 25(7), 2109; https://doi.org/10.3390/s25072109 - 27 Mar 2025
Viewed by 1602
Abstract
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to [...] Read more.
The rapid advancement of terahertz (THz) communication systems has positioned this technology as a key enabler for next-generation telecommunication networks, including 6G, secure communications, and hybrid wireless-optical systems. This review comprehensively analyzes THz communication, emphasizing its integration with free-space optical (FSO) systems to overcome conventional bandwidth limitations. While THz-FSO technology promises ultra-high data rates, it is significantly affected by atmospheric absorption, particularly absorption beyond 500 GHz, where the attenuation exceeds 100 dB/km, which severely limits its transmission range. However, the presence of a lower-loss transmission window at 680 GHz provides an opportunity for optimized THz-FSO communication. This paper explores recent developments in high-power THz sources, such as quantum cascade lasers, photonic mixers, and free-electron lasers, which facilitate the attainment of ultra-high data rates. Additionally, adaptive optics, machine learning-based beam alignment, and low-loss materials are examined as potential solutions to mitigating signal degradation due to atmospheric absorption. The integration of THz-FSO systems with optical and radio frequency (RF) technologies is assessed within the framework of software-defined networking (SDN) and multi-band adaptive communication, enhancing their reliability and range. Furthermore, this review discusses emerging applications such as self-driving systems in 6G networks, ultra-low latency communication, holographic telepresence, and inter-satellite links. Future research directions include the use of artificial intelligence for network optimization, creating energy-efficient system designs, and quantum encryption to obtain secure THz communications. Despite the severe constraints imposed by atmospheric attenuation, the technology’s power efficiency, and the materials that are used, THz-FSO technology is promising for the field of ultra-fast and secure next-generation networks. Addressing these limitations through hybrid optical-THz architectures, AI-driven adaptation, and advanced waveguides will be critical for the full realization of THz-FSO communication in modern telecommunication infrastructures. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Optical Communications)
Show Figures

Figure 1

17 pages, 1129 KiB  
Article
High-Dimensional and Multi-Intensity One-Photon-Interference Quantum Secure Direct Communication
by Yu-Ting Lei, Xiang-Jie Li, Xing-Bo Pan, Yun-Rong Zhang and Gui-Lu Long
Entropy 2025, 27(4), 332; https://doi.org/10.3390/e27040332 - 22 Mar 2025
Viewed by 608
Abstract
As a novel paradigm in quantum communication, quantum secure direct communication (QSDC) enables secure, reliable, and deterministic information transmission, leveraging the principles of quantum mechanics. One-photon-interference QSDC is particularly attractive because it mitigates the vulnerabilities in measurement devices while extending transmission distances. In [...] Read more.
As a novel paradigm in quantum communication, quantum secure direct communication (QSDC) enables secure, reliable, and deterministic information transmission, leveraging the principles of quantum mechanics. One-photon-interference QSDC is particularly attractive because it mitigates the vulnerabilities in measurement devices while extending transmission distances. In this paper, we propose a high-dimensional one-photon-interference QSDC protocol that exploits the advantages of high-dimensional encoding in the phase of weak coherent pluses to further enhance transmission distances and improve secrecy channel capacity. The security of this protocol is analyzed using quantum wiretap channel theory, and its resistance to common quantum threats is discussed. Numerical simulations demonstrate that our protocol outperforms its predecessor in terms of its secrecy capacity and extends the maximum communication distance achievable up to 494 km, which is over 13% longer than the two-dimensional case, effectively doubling the transmission length of traditional protocols. These improvements highlight the protocol’s potential for use in quantum communication applications in this era of frequent data breaches and information leaks. Full article
(This article belongs to the Special Issue Quantum Information: Working Towards Applications)
Show Figures

Figure 1

26 pages, 481 KiB  
Article
Controlled Double-Direction Cyclic Quantum Communication of Arbitrary Two-Particle States
by Nueraminaimu Maihemuti, Zhanheng Chen, Jiayin Peng, Yimamujiang Aisan and Jiangang Tang
Entropy 2025, 27(3), 292; https://doi.org/10.3390/e27030292 - 11 Mar 2025
Viewed by 721
Abstract
With the rapid development of quantum communication technologies, controlled double-direction cyclic (CDDC) quantum communication has become an important research direction. However, how to choose an appropriate quantum state as a channel to achieve double-direction cyclic (DDC) quantum communication for multi-particle entangled states remains [...] Read more.
With the rapid development of quantum communication technologies, controlled double-direction cyclic (CDDC) quantum communication has become an important research direction. However, how to choose an appropriate quantum state as a channel to achieve double-direction cyclic (DDC) quantum communication for multi-particle entangled states remains an unresolved challenge. This study aims to address this issue by constructing a suitable quantum channel and investigating the DDC quantum communication of two-particle states. Initially, we create a 25-particle entangled state using Hadamard and controlled-NOT (CNOT) gates, and provide its corresponding quantum circuit implementation. Based on this entangled state as a quantum channel, we propose two new four-party CDDC schemes, applied to quantum teleportation (QT) and remote state preparation (RSP), respectively. In both schemes, each communicating party can synchronously transmit two different arbitrary two-particle states to the other parties under supervisory control, achieving controlled quantum cyclic communication in both clockwise and counterclockwise directions. Additionally, the presented two schemes of four-party CDDC quantum communication are extended to situations where n>3 communicating parties. In each proposed scheme, we provide universal analytical formulas for the local operations of the sender, supervisor, and receiver, demonstrating that the success probability of each scheme can reach 100%. These schemes only require specific two-particle projective measurements, single-particle von Neumann measurements, and Pauli gate operations, all of which can be implemented with current technologies. We have also evaluated the inherent efficiency, security, and control capabilities of the proposed schemes. In comparison to earlier methods, the results demonstrate that our schemes perform exceptionally well. This study provides a theoretical foundation for bidirectional controlled quantum communication of multi-particle states, aiming to enhance security and capacity while meeting the diverse needs of future network scenarios. Full article
(This article belongs to the Special Issue Classical and Quantum Networks: Theory, Modeling and Optimization)
Show Figures

Figure 1

26 pages, 849 KiB  
Article
A Novel Two- and Three-Player Scheme for Quantum Direct Communication
by Theodore Andronikos and Alla Sirokofskich
Symmetry 2025, 17(3), 379; https://doi.org/10.3390/sym17030379 - 2 Mar 2025
Viewed by 532
Abstract
This paper introduces two information-theoretically quantum secure direct communication protocols that accomplish information exchange between Alice and Bob in the first case, and among Alice, Bob, and Charlie in the second case. Both protocols use a novel method, different from existing similar protocols, [...] Read more.
This paper introduces two information-theoretically quantum secure direct communication protocols that accomplish information exchange between Alice and Bob in the first case, and among Alice, Bob, and Charlie in the second case. Both protocols use a novel method, different from existing similar protocols, to embed the secret information in the entangled compound system. This new way of encoding the secret information is one of the main novelties of this paper, and a distinguishing feature compared to previous works in this field. A second critical advantage of our method is its scalability and extensibility because it can be seamlessly generalized to a setting involving three, or more, players, as demonstrated by the second protocol. This trait is extremely beneficial in many real-life situations, where many spatially separated players posses only part the secret information that must be transmitted to Alice, so that she may obtain the complete secret. Using the three-player protocol, this task can be achieved in one go, without the need to apply a typical QSDC protocol twice, where Alice first receives Bob’s and then Charlie’s information. The proposed protocol does not require pre-shared keys or quantum signatures, making it less complicated and more straightforward. Finally, in anticipation of the coming era of distributed quantum computing, our protocols offer the important practical advantage of straightforward implementation on contemporary quantum computers, as they only require standard CNOT and Hadamard gates. Full article
(This article belongs to the Special Issue Symmetry in Quantum Key Distribution and Quantum Communication)
Show Figures

Figure 1

15 pages, 1102 KiB  
Article
Quantum Secure Direct Communication Technology-Enhanced Time-Sensitive Networks
by Shiqi Zhang and Chao Zheng
Entropy 2025, 27(3), 221; https://doi.org/10.3390/e27030221 - 21 Feb 2025
Viewed by 1193
Abstract
Quantum information has emerged as a frontier in scientific research and is transitioning to real-world technologies and applications. In this work, we explore the integration of quantum secure direct communication (QSDC) with time-sensitive networking (TSN) for the first time, proposing a novel framework [...] Read more.
Quantum information has emerged as a frontier in scientific research and is transitioning to real-world technologies and applications. In this work, we explore the integration of quantum secure direct communication (QSDC) with time-sensitive networking (TSN) for the first time, proposing a novel framework to address the security and latency challenges of Ethernet-based networks. Because our QSDC-TSN protocol inherits all the advantages from QSDC, it will enhance the security of the classical communications both in the traditional TSN- and QKD-based TSN by the quantum principle and reduce the communication latency by transmitting information directly via quantum channels without using keys. By analyzing the integration of QSDC and TSN in terms of time synchronization, flow control, security mechanisms, and network management, we show how QSDC enhances the real-time performance and security of TSN. These advantages enable our QSDC-TSN to keep the balance between and meet the requirements of both high security and real-time performance in industrial control, in a digital twin of green power and green hydrogen systems in distributed energy networks, etc., showing its potential applications in future quantum-classical-hybrid systems. Full article
(This article belongs to the Special Issue Quantum Information: Working Towards Applications)
Show Figures

Figure 1

17 pages, 1189 KiB  
Article
Ethernet Passive Mutual Authentication Scheme on Quantum Networks
by Jianuo Tian, Panke Qin, Zongqu Zhao and Baodong Qin
Entropy 2025, 27(2), 135; https://doi.org/10.3390/e27020135 - 27 Jan 2025
Viewed by 653
Abstract
In the context of increasing demand for secure and efficient communication networks, addressing the issue of mutual authentication in ethernet passive optical networks (EPONs) has become both valuable and practically significant. This paper proposes a solution based on ideal lattices. The proposed scheme [...] Read more.
In the context of increasing demand for secure and efficient communication networks, addressing the issue of mutual authentication in ethernet passive optical networks (EPONs) has become both valuable and practically significant. This paper proposes a solution based on ideal lattices. The proposed scheme leverages the security of the ring learning with errors (RLWE) problem to establish a robust public-key cryptosystem. By involving ONUs, OLTs, and an SDN controller in the authentication process, it enables mutual authentication through a series of message exchanges facilitated by the SDN controller. Utilizing approximate smooth projection hash functions for secure key exchange and verification, the scheme ensures robust security performance against various attacks, including man-in-the-middle, impersonation, replay, and known key secrecy attacks. Simulation results demonstrate that the proposed solution introduces minimal delay and maintains a high registration success rate compared to traditional authentication methods. Additionally, this paper explores the convergence of quantum network protocols with EPONs, highlighting their potential to achieve unprecedented levels of communication security. Integrating quantum technology with EPON networks, due to the unique security properties of quantum, can also better prevent man-in-the-middle attacks. Secure interception detection techniques based on fundamental quantum properties provide a fundamental security direction for future communication systems, aligning with the growing interest in quantum-resistant cryptographic protocols. Full article
(This article belongs to the Special Issue Nonlocality and Entanglement in Quantum Networks)
Show Figures

Figure 1

13 pages, 505 KiB  
Article
Two Novel Semi-Quantum Secure Direct Communication Protocols in IoT
by Yuan Tian, Nanyijia Zhang and Jian Li
Sensors 2024, 24(24), 7990; https://doi.org/10.3390/s24247990 - 14 Dec 2024
Viewed by 936
Abstract
As Internet of Things (IoT) technology continues to advance, there is a growing awareness of IoT security within the industry. Quantum communication technology can potentially significantly improve the communication security of IoT devices. Based on semi-quantum cryptography and utilizing single photons, this paper [...] Read more.
As Internet of Things (IoT) technology continues to advance, there is a growing awareness of IoT security within the industry. Quantum communication technology can potentially significantly improve the communication security of IoT devices. Based on semi-quantum cryptography and utilizing single photons, this paper introduces two semi-quantum secure direct communication (SQSDC) protocols for use in smart door locks. Protocol 1 is more efficient, and the efficiency analysis shows that the communication efficiency is as high as 28.57%. Security analysis demonstrates the asymptotic security of the protocols, effectively resisting intercept–measure–resend attacks and entangle–measure attacks from potential eavesdroppers. The extended SQSDC protocol (protocol 2) builds upon protocol 1 by enabling a single qubit to transmit two bits of information, resulting in a double efficiency outcome. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

35 pages, 663 KiB  
Article
A Cross-Layer Secure and Energy-Efficient Framework for the Internet of Things: A Comprehensive Survey
by Rashid Mustafa, Nurul I. Sarkar, Mahsa Mohaghegh and Shahbaz Pervez
Sensors 2024, 24(22), 7209; https://doi.org/10.3390/s24227209 - 11 Nov 2024
Cited by 11 | Viewed by 3239
Abstract
This survey delves into cross-layer energy-efficient solutions and cutting-edge security measures for Internet of Things (IoT) networks. The conventional security techniques are considered inadequate, leading to the suggestion of AI-powered intrusion detection systems and novel strategies such as blockchain integration. This research aims [...] Read more.
This survey delves into cross-layer energy-efficient solutions and cutting-edge security measures for Internet of Things (IoT) networks. The conventional security techniques are considered inadequate, leading to the suggestion of AI-powered intrusion detection systems and novel strategies such as blockchain integration. This research aims to promote the development of smart cities by enhancing sustainability, security, and efficiency in the industrial and agricultural sectors through the use of IoT, blockchain, AI, and new communication technologies like 5G. In this paper, we provide a comprehensive review and analysis of secure and energy-efficient cross-layer IoT frameworks based on survey of more than 100 published research articles. We highlight the significance of developing IoT security for robust and sustainable connected systems. We discuss multi-layered security approaches and ways to enhance the energy efficiency of resource-constrained devices in IoT networks. Finally, we identify open research issues and future research directions in the emerging field of cross-layer design for secure and energy-efficient IoT networks. In order to improve cybersecurity and efficiency in smart cities, the research also focuses on developing a secure, energy-efficient IoT framework integrating blockchain, artificial intelligence, and quantum-safe cryptography. Full article
(This article belongs to the Special Issue Sensors and Smart City)
Show Figures

Figure 1

Back to TopTop