Quantum Secure Direct Communication Technology-Enhanced Time-Sensitive Networks
Abstract
:1. Introduction
2. Results
2.1. Significance and Advantages of TSN and QSDC Fusion
2.2. Method of QSDC Combined with TSN
2.2.1. Overall Implementation Method
- Centralized network controller: Responsible for controlling and scheduling the data flow in the TSN, and communicating securely with the TSN switch through the QSDC controller.
- QSDC controller: Responsible for generating and managing quantum channels, and securely transmitting communication information to TSN switch through quantum states.
- PTP switching node: The PTP switching node is responsible for the secure transmission of time synchronization information and ensures that time-synchronization data is not tampered with through QSDC.
- TSN switch: Accept CNC control signaling and data flow, and carry out safe time synchronization and data transmission through QSDC.
- Centralized network controller: This node stands for centralized network controller, which communicates with TSN switch via QSDC controller.
- QSDC controller: As an intermediate layer, it is responsible for quantum encryption transmission of communication between CNC, PTP switching nodes and TSN switches.
- PTP switching node: Encrypts and transmits time synchronization information to ensure the security of PTP synchronization data.
- TSN switches 1 and 2: Represent the switching devices in the network, which communicate with the CNC via QSDC and receive data streams.
2.2.2. The Combination of Time Synchronization Mechanism
2.2.3. The Combination of Flow Control and Scheduling Mechanism
2.2.4. The Combination of Security Mechanisms
2.2.5. The Combination of Network Management and Configuration
2.2.6. Combination of the Physical Layer and Link Layer
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QSDC | Quantum-secure direct communication |
TSN | Time-sensitive network |
QBER | Quantum bit-error rate |
QKD | Quantum key distribution |
QoS | Quality of service |
PTP | Precise time protocol |
TAS | Time-triggered scheduling |
FRER | Frame replication and elimination for reliability |
CNC | Centralized network controller |
V2X | Vehicle-to-everything |
5G | Fifth-generation |
References
- Long, G.L.; Liu, X.S. Theoretical efficient high capacity quantum key distribution scheme. Phys. Rev. A 2000, 65, 032302. [Google Scholar] [CrossRef]
- Deng, F.G.; Long, G.L.; Liu, X.S. Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 2003, 68, 042317. [Google Scholar] [CrossRef]
- Qin, H.; Tang, W.K.; Tso, R. Establishing Rational Networking Using the DL04 Quantum Secure Direct Communication Protocol. Quantum Inf. Process. 2018, 17, 152. [Google Scholar] [CrossRef]
- Chandra, D.; Cacciapuoti, A.S.; Caleffi, M.; Hanzo, L. Direct quantum communications in the presence of realistic noisy entanglement. IEEE Trans. Commun. 2021, 70, 469–484. [Google Scholar] [CrossRef]
- Zhou, Z.R.; Sheng, Y.B.; Niu, P.H.; Yin, L.G.; Long, G.L.; Hanzo, L. Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 2020, 63, 230362. [Google Scholar] [CrossRef]
- Zhou, L.; Sheng, Y.B.; Long, G.L. Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 2020, 65, 12–20. [Google Scholar] [CrossRef]
- Zheng, C.; Long, G.L. Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. China Phys. Mech. 2014, 57, 1238–1243. [Google Scholar] [CrossRef]
- Ying, J.W.; Wang, J.Y.; Xiao, Y.X.; Gu, S.P.; Wang, X.F.; Zhong, W.; Du, M.M.; Li, X.Y.; Shen, S.T.; Zhang, A.L.; et al. Passive-state preparation for quantum secure direct communication. Sci. China Phys. Mech. Astron. 2025, 68, 240312. [Google Scholar] [CrossRef]
- Ying, J.W.; Zhao, P.; Zhong, W.; Du, M.M.; Li, X.Y.; Shen, S.T.; Zhang, A.L.; Zhou, L.; Sheng, Y.B. Passive decoy-state quantum secure direct communication with a heralded single-photon source. Phys. Rev. Appl. 2024, 22, 240040. [Google Scholar] [CrossRef]
- Zhao, P.; Zhong, W.; Du, M.M.; Li, X.Y.; Zhou, L.; Sheng, Y.B. Quantum secure direct communication with hybrid entanglement. Front. Phys. 2024, 19, 51201. [Google Scholar] [CrossRef]
- Sheng, Y.B.; Zhou, L.; Long, G.L. One-step quantum secure direct communication. Sci. Bull. 2022, 67, 367. [Google Scholar] [CrossRef]
- Li, T.; Long, G.L. Quantum secure direct communication based on single-photon bell-state measurement. New J. Phys. 2020, 22, 063017. [Google Scholar] [CrossRef]
- Cao, Z.W.; Wang, L.; Liang, K.X.; Chai, G.; Peng, J.Y. Continuous-Variable Quantum Secure Direct Communication Based on Gaussian Mapping. Sci. China Phys. Mech. Astron. 2021, 16, 024012. [Google Scholar] [CrossRef]
- Dhillon, B.S.; Nene, M.J. QSDC: Future of Quantum Communication A Study. In Proceedings of the 2021 Fourth International Conference on Computational Intelligence and Communication Technologies (CCICT), Sonepat, India, 3 July 2021; pp. 77–83. [Google Scholar]
- Cao, Z.W.; Lu, Y.; Chai, G.; Yu, H.; Liang, K.X.; Wang, L. Realization of Quantum Secure Direct Communication with Continuous Variable. Research 2024, 6, 0193. [Google Scholar] [CrossRef] [PubMed]
- Paparelle, I.; Mousavi, F.; Scazza, F.; Bassi, A.; Paris, M.; Zavatta, A. Practical quantum secure direct communication with squeezed states. arXiv 2023, arXiv:2306.143. [Google Scholar]
- Pan, D.; Song, X.T.; Long, G.L. Free-space quantum secure direct communication: Basics, progress, and outlook. Adv. Devices Instrum. 2023, 4, 4. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Z.; Qi, R.; Yin, L.; Long, G.L.; Lu, J. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. 2022, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.Y.; Yu, B.; Jing, M.Y.; Xiao, L.T.; Jia, S.T.; Qin, G.Q.; Long, G.L. Experimental quantum secure direct communication with single photons. Light Sci. Appl. 2016, 5, e16144. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.Y.; Sun, Z.; Lin, Z.S.; Niu, P.H.; Hao, W.T.; Song, L.Y.; Huang, Q.; Gao, J.C.; Yin, L.G.; Long, G.L. Implementation and security analysis of practical quantum secure direct commu-nication. Light Sci. Appl. 2019, 8, 22. [Google Scholar] [CrossRef]
- Qi, Z.T.; Li, Y.H.; Huang, Y.W.; Feng, J.; Zheng, Y.L.; Chen, X.F. A 15-user quantum secure direct communication network. Light Sci. Appl. 2016, 5, e16144. [Google Scholar] [CrossRef] [PubMed]
- Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802–803. [Google Scholar] [CrossRef]
- Dieks, D. Communication by EPR devices. Phys. Lett. A 1982, 92, 271–272. [Google Scholar] [CrossRef]
- Milonni, P.W.; Hardies, M.L. Photons cannot always be replicated. Phys. Lett. A 1982, 92, 321–322. [Google Scholar] [CrossRef]
- Shapiro, J.H.; Zhang, Z.; Wong, F.N. Secure communication via quantum illumination. Quantum Inf. Process. 2014, 13, 2171–2193. [Google Scholar] [CrossRef]
- Wang, C.; Deng, F.G.; Li, Y.S.; Liu, X.S.; Long, G.L. Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 2005, 71, 044305. [Google Scholar] [CrossRef]
- Liu, Z.X.; Yang, M.; Chiribella, G. Quantum communication through devices with indefinite input-output direction. New J. Phys. 2023, 25, 043017. [Google Scholar] [CrossRef]
- Liu, D.; Chen, J.L.; Jiang, W. High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 2012, 51, 2923–2929. [Google Scholar] [CrossRef]
- Cao, K.; He, G.T.; Li, X.Z. Simulation Study of Two-step QSDC Scheme Based on EPR Pair Block. J. Chongqing Norm. Univ. (Nat. Sci. Ed.) 2015, 32, 133–137. [Google Scholar]
- Pan, D.; Lin, Z.S.; Wu, J.W.; Zhang, H.R.; Sun, Z.; Ruan, D.; Yin, L.G.; Long, G.L. Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 2020, 8, 1522–1531. [Google Scholar] [CrossRef]
- Liu, X.; Luo, D.; Lin, G.S.; Chen, Z.H.; Huang, C.F.; Li, S.Z.; Zhang, C.X.; Zhang, Z.R.; Wei, K.J. Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. 2022, 65, 120311. [Google Scholar] [CrossRef]
- Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 2010, 4, 686–689. [Google Scholar] [CrossRef]
- Deng, F.G.; Liu, X.S.; Ma, Y.J.; Xiao, L.; Long, G.L. A theoretical scheme for multi-user quantum key distribution with N Einstein-Podolsky-Rosen pairs on a passive optical network. Chin. Phys. Lett. 2002, 19, 893–896. [Google Scholar]
- Li, X.H.; Zhou, P.; Liang, Y.J.; Li, C.Y.; Zhou, H.Y.; Deng, F.G. Quantum secure direct communication network with two-step protocol. Chin. Phys. Lett. 2006, 23, 1080–1083. [Google Scholar]
- Razavi, M. Multiple-access quantum key distribution networks. IEEE Trans. Commun. 2012, 60, 3071–3079. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Li, Y.; Man, Z.X. Multiparty quantum secret sharing. Phys. Rev. A 2005, 71, 044301. [Google Scholar] [CrossRef]
- Xin, J.; Shou, Z. Secure quantum dialogue based on single-photon. Chin. Phys. 2006, 15, 1418–1420. [Google Scholar] [CrossRef]
- Zhao, Z.W.; Naseri, M.; Zheng, Y.Q. Secure quantum sealed-bid auction with post-confirmation. Opt. Commun. 2010, 283, 3194–3197. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, Z.W.; Zhao, Z.J.; Long, H.M.; Su, W.; Yang, Y.X. The loophole of the improved secure quantum sealed-bid auction with post confirmation and solution. Quantum Inf. Process. 2013, 12, 295–302. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, C.; Gu, S.P.; Wang, X.F.; Zhou, L.; Sheng, Y.B. Receiver-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 2025, 68, 250311. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, B.W.; Zhong, W.; Sheng, Y.B. Device-Independent Quantum Secure Direct Communication with Single-Photon. Phys. Rev. Appl. 2023, 19, 014036. [Google Scholar] [CrossRef]
- Zeng, H.; Du, M.M.; Zhong, W.; Zhou, L.; Sheng, Y.B. High-capacity device-independent quantum secure direct communication based on hyper-encoding. Fundam. Res. 2024, 4, 852. [Google Scholar] [CrossRef] [PubMed]
- Long, G.L.; Zhang, H.R. Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. 2021, 66, 1267–1269. [Google Scholar] [CrossRef]
- Wollschlaeger, M.; Sauter, T.; Jasperneite, J. The future of industrial communication: Automation networks in the era of the Internet of Things and Industry 4.0. IEEE Ind. Electron. Mag. 2017, 11, 17–27. [Google Scholar] [CrossRef]
- Simsek, M.; Aijaz, A.; Dohler, M.; Sachs, J.; Fettweis, G. 5G-enabled tactile Internet. IEEE J. Sel. Areas Commun. 2016, 34, 460–473. [Google Scholar] [CrossRef]
- IEEE Std. IEEE P802.1AS/D7.7; IEEE Draft Standard for Local and Metropolitar Area Networks-Timing and Synchronization for Time-Sensitive Applications in Bridged local Area Networks. IEEE: Piscataway, NJ, USA, 2010; pp. 1–296, WG802.1.
- IEEE Std. IEEE802.1Q-2014; IEEE Standard for Local and Metropolitan Area Networks-Bridges and Bridged Networks. IEEE: Piscataway, NJ, USA, 2014; pp. 1–1832, WG802.1.
- Gutiérrez, M.; Steiner, W.; Dobrin, R.; Punnekkat, S. Synchronization quality of IEEE 802.1 AS in large-scale industrial automation networks. In Proceedings of the 2017 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Pittsburg, PA, USA, 18–21 April 2017; pp. 273–282. [Google Scholar]
- IEEE Std. IEEE 802.1Qav-2009; IEEE Standard for Local and Metropolitar Area Networks-Virtual Bridged Local Area Networks Amendment 12 Forwarding and Queuing Enhancements for Time-Sensitive Streams. IEEE: Piscataway, NJ, USA, 2009; pp. 1–72, WG802.1.
- Thangamuthu, S.; Concer, N.; Cuijpers, P.J.; Lukkien, J.J. Analysis of ethernet-switch traffic shapers for in-vehicle networking applications. In Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2015; pp. 55–60. [Google Scholar]
- Zhou, Z.; Yan, Y.; Berger, M.; Ruepp, S. Analysis and Modeling of Asynchronous Traffic Shaping in Time Sensitive Networks. In Proceedings of the 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, 13–15 June 2018; pp. 1–43. [Google Scholar]
- Danielis, P.; Parzyjegla, H.; Mühl, G.; Schweissguth, E.; Timmermann, D. Frame replication and elimination for reliability in time-sensitive networks. arXiv 2021, arXiv:2109.13677. [Google Scholar]
- Zhang, H.; Ferrari, D. Rate-controlled static-priority queueing. In Proceedings of the IEEE INFOCOM’93 the Conference on Computer Communications, San Francisco, CA, USA, 28 March–1 April 1993; pp. 227–236. [Google Scholar]
- IEEE Std. IEEE802.1Qbv-2015; lEEE Standard for Local and Metropolitan Area Networks-Bridges and Bridged Networks-Amendment 25 Enhancements for Scheduled Traffic. IEEE: Piscataway, NJ, USA, 2016; pp. 1–57, WG802.1.
- Atiq, M.K.; Muzaffar, R. Time Synchronization for Deterministic Communication. arXiv 2024, arXiv:2401.10670. [Google Scholar]
- Zhou, X.; He, F.; Zhao, L.X.; Li, E.S. Hybrid Scheduling of Tasks and Messages for TSN-Based Avionics Systems. IEEE Trans. Ind. Inform. 2023, 20, 1081–1092. [Google Scholar] [CrossRef]
- Pedreiras, P.; Gai, P.; Almeida, L.; Buttazzo, G.C. FTT-Ethernet: A flexible real-time communication protocol that supports dynamic QoS management on Ethernet-based systems. IEEE Trans. Ind. Inform. 2005, 1, 162–172. [Google Scholar] [CrossRef]
- Kopetz, H.; Ademaj, A.; Grillinger, P.; Steinhammer, K. The time-triggered Ethernet (TTE) design. In Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05), Seattle, WA, USA, 18–20 May 2005; pp. 22–33. [Google Scholar]
- Makowitz, R.; Temple, C. Flexray-a communication network for automotive control systems. In Proceedings of the 2006 IEEE International Workshop on Factory Communication Systems, Torino, Italy, 27 June 2006; pp. 207–212. [Google Scholar]
- lEEE Std. IEEE 802. 1Qch-2017; IEEE Standard for Local and metropolitan Area Networks-Bridges and Bridged Networks-Amendment 29: Cyclic Queuing and Forwarding. IEEE: Piscataway, NJ, USA, 2017; pp. 1–30, WG802.1.
- IEEE Std. IEEE 802.3br-2016; IEEE Standard for Ethernet Amendment 5: Specification and Management Parameters for Interspersing Express Traffic. IEEE: Piscataway, NJ, USA, 2016; pp. 1–58, WG802.1.
- IEEE Std. IEEE 802.1Qbu-2016; lEEE Standard for Local and Metropolitan Area Networks-Bridges and Bridged Networks-Amendment 26: Frame Preemption. lEEE: Piscataway, NJ, USA, 2016; pp. 1–52, WG802.1.
- Wang, X.L.; Yao, H.P.; Mai, T.L.; Guo, S.; Liu, Y.J. Reinforcement Learning-Based Particle Swarm Optimization for End-to-End Traffic Scheduling in TSN-5G Networks. IEEE/ACM Trans. Netw. 2023, 31, 3254–3268. [Google Scholar] [CrossRef]
- Wang, Z.X.; Li, Z.H.; Qiao, X.; Zheng, Y.M.; Ai, B.; Song, X.Y. Time Synchronization for 5G and TSN Integrated Networking. arXiv 2024, arXiv:2401.17721. [Google Scholar]
- Bush, S.F. Time-Sensitive Quantum Key Distribution (TSQKD); Report; GE Global Research: Niskayuna, NY, USA, 2021. [Google Scholar]
- Ahmad, S.F.; Ferjani, M.Y.; Kasliwal, K. Enhancing Security in the Industrial IoT Sector Using Quantum Computing. In Proceedings of the 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Dubai, United Arab Emirates, 28 November–1 December 2021; pp. 1–5. [Google Scholar]
- Bush, S.F.; Iversen, C.G.; Challener, W.A. Design for High-Precision Time-Sensitive Networking: Synchronization for the Quantum Network Control Plane. IEEE J. Sel. Areas Commun. 2024, 42, 1861–1870. [Google Scholar] [CrossRef]
- Kish, L.B. Time Synchronization Protocol for the KLJN Secure Key Exchange Scheme. Fluct. Noise Lett. 2022, 21, 2250046. [Google Scholar] [CrossRef]
- Bush, S.F.; Challener, W.A.; Mantelet, G. A perspective on industrial quantum networks. AVS Quantum Sci. 2021, 3, 035001. [Google Scholar] [CrossRef]
- Pande, M.B. Use Cases of Quantum Networks for Industry and Science. In Proceedings of the 2023 7th International Conference On Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 18–19 August 2023; pp. 1–6. [Google Scholar]
- Miao, Y.J.; Dong, P.; Li, M.H.; Ma, Z.C.; Qi, W. Overview of quantum secure communication technology for time-sensitive networking. Inf. Commun. Technol. Policy 2024, 7, 2–8. [Google Scholar]
- Pan, D.; Long, G.L.; Yin, L.G.; Sheng, Y.B.; Ruan, D.; Ng, S.X.; Lu, J.H.; Hanzo, L. The evolution of quantum secure direct communication: On the road to the qinternet. IEEE Commun. Surv. Tutor. 2024, 26, 1898–1949. [Google Scholar] [CrossRef]
- Ahmad, S.F.; Ferjani, M.Y.; Kasliwal, K. Quantumsecure direct communication based on quantum error correction code. Appl. Phys. Lett. 2025, 126, 024002. [Google Scholar]
Feature | QSDC | QKD | TSN (Classic Technology) |
---|---|---|---|
Encryption Process | Simultaneous encryption and data transfer | Separate key distribution and encryption | Uses classical encryption methods (e.g., AES, RSA) |
Key Management | No need for key management infrastructure | Requires key distribution system | Requires relatively complex key management infrastructure |
Security | Resilient to both quantum and classical attacks | More vulnerable to attacks | Resilient to classical attacks but vulnerable to quantum attacks in future contexts |
Latency | Low latency due to simultaneous encryption | Higher latency due to key distribution | Higher latency, and can be affected by encryption and routing overhead |
Scalability | Highly scalable, no key update required | Limited scalability, requires frequent key updates | Scalable but requires strong network infrastructure and can face scalability issues with high traffic |
Aspect | Impact of QSDC on TSN |
---|---|
Security | Enhanced by quantum encryption at each hop |
Latency | Reduced through simultaneous encryption and transmission |
Scalability | Can handle high-throughput applications without key distribution bottleneck |
Time Synchronization | Secures PTP synchronization with encrypted timestamps |
Network Complexity | Simplified by eliminating traditional key management systems |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zheng, C. Quantum Secure Direct Communication Technology-Enhanced Time-Sensitive Networks. Entropy 2025, 27, 221. https://doi.org/10.3390/e27030221
Zhang S, Zheng C. Quantum Secure Direct Communication Technology-Enhanced Time-Sensitive Networks. Entropy. 2025; 27(3):221. https://doi.org/10.3390/e27030221
Chicago/Turabian StyleZhang, Shiqi, and Chao Zheng. 2025. "Quantum Secure Direct Communication Technology-Enhanced Time-Sensitive Networks" Entropy 27, no. 3: 221. https://doi.org/10.3390/e27030221
APA StyleZhang, S., & Zheng, C. (2025). Quantum Secure Direct Communication Technology-Enhanced Time-Sensitive Networks. Entropy, 27(3), 221. https://doi.org/10.3390/e27030221