High-Dimensional and Multi-Intensity One-Photon-Interference Quantum Secure Direct Communication
Abstract
1. Introduction
2. Our Protocol
3. Security Analysis
4. Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Details of Encoding and Decoding Processes
- (1)
- Alice uses to pre-encrypt into the ciphertext .
- (2)
- Alice pre-encodes into , which is stored in a cache.
- (3)
- Alice fetches the -bit length of from the cache to accomplish secure coding, where the parameters should satisfy Equation (A1) and the output is .
- (4)
- Alice applies INCUM using a locally generated random bit string , and obtains .
- (5)
- Alice modulates into qubits if she selects the coding mode in Step 2 of our protocol, otherwise she prepares the multi-intensity mode.
- (6)
- Charlie conducts Step 3.
- (7)
- Steps (5) to (6) are repeated until is entirely transmitted.
- (8)
- Alice and Bob conduct Step 4 and Step 5 and use these parameters to calculate , , and . If Equation (A1) is satisfied, a shared key could be distilled for future frames.
- (9)
- Steps (3) to (8) are repeated until is entirely transmitted.
- (10)
- Alice announces random bit values of in positions where Bob has received information. Bob first applies de-INCUM to obtain and then decodes to with a secure coding decoder. After that he obtains from a -LDPC decoder and finally retrieves the original message utilizing the shared key .
Appendix B. Details of Security Analysis
References
- Bennett, C.H.; Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 10–12 December 1984; pp. 175–179. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum Cryptography Based on Bell’s Theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Mermin, N.D. Quantum Cryptography without Bell’s Theorem. Phys. Rev. Lett. 1992, 68, 557–559. [Google Scholar] [CrossRef]
- Lo, H.K.; Chau, H.F. Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances. Science 1999, 283, 2050–2056. [Google Scholar] [CrossRef]
- Tomamichel, M.; Leverrier, A. A Largely Self-Contained and Complete Security Proof for Quantum Key Distribution. Quantum 2017, 1, 14. [Google Scholar] [CrossRef]
- Curty, M.; Azuma, K.; Lo, H.K. Simple Security Proof of Twin-Field Type Quantum Key Distribution Protocol. npj Quantum Inf. 2019, 5, 11. [Google Scholar] [CrossRef]
- Lo, H.K.; Ma, X.F.; Chen, K. Decoy State Quantum Key Distribution. Phys. Rev. Lett. 2005, 94, 230504. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.F.; Qi, B.; Zhao, Y.; Lo, H.K. Practical Decoy State for Quantum Key Distribution. Phys. Rev. A 2005, 72, 012326. [Google Scholar] [CrossRef]
- Wang, X.B. Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography. Phys. Rev. Lett. 2005, 94, 230503. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.K.; Curty, M.; Qi, B. Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 2012, 108, 130503. [Google Scholar] [CrossRef]
- Wang, W.; Tamaki, K.; Curty, M. Measurement-Device-Independent Quantum Key Distribution with Leaky Sources. Sci. Rep. 2021, 11, 1678. [Google Scholar] [CrossRef]
- Wang, C.; Yin, Z.Q.; Wang, S.; Chen, W.; Guo, G.C.; Han, Z.F. Measurement-Device-Independent Quantum Key Distribution Robust against Environmental Disturbances. Optica 2017, 4, 1016–1023. [Google Scholar] [CrossRef]
- Long, G.L.; Liu, X.S. Theoretically Efficient High-Capacity Quantum-Key-Distribution Scheme. Phys. Rev. A 2002, 65, 032302. [Google Scholar] [CrossRef]
- Deng, F.G.; Long, G.L. Secure Direct Communication with a Quantum One-Time Pad. Phys. Rev. A 2004, 69, 052319. [Google Scholar] [CrossRef]
- Mi, S.; Wang, T.j.; Jin, G.s.; Wang, C. High-Capacity Quantum Secure Direct Communication with Orbital Angular Momentum of Photons. IEEE Photonics J. 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Wu, F.; Yang, G.; Wang, H.; Xiong, J.; Alzahrani, F.; Hobiny, A.; Deng, F. High-Capacity Quantum Secure Direct Communication with Two-Photon Six-Qubit Hyperentangled States. Sci. China Phys. Mech. Astron. 2017, 60, 120313. [Google Scholar] [CrossRef]
- Ahn, B.; Park, J.; Lee, J.; Lee, S. High-Dimensional Single Photon Based Quantum Secure Direct Communication Using Time and Phase Mode Degrees. Sci. Rep. 2024, 14, 888. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, L.; Liang, K.; Chai, G.; Peng, J. Continuous-Variable Quantum Secure Direct Communication Based on Gaussian Mapping. Phys. Rev. Appl. 2021, 16, 024012. [Google Scholar] [CrossRef]
- Niu, P.H.; Zhou, Z.R.; Lin, Z.S.; Sheng, Y.B.; Yin, L.G.; Long, G.L. Measurement-Device-Independent Quantum Communication without Encryption. Sci. Bull. 2018, 63, 1345–1350. [Google Scholar] [CrossRef]
- Liu, L.; Niu, J.L.; Fan, C.R.; Feng, X.T.; Wang, C. High-Dimensional Measurement-Device-Independent Quantum Secure Direct Communication. Quantum Inf. Process. 2020, 19, 404. [Google Scholar] [CrossRef]
- Ying, J.W.; Zhou, L.; Zhong, W.; Sheng, Y.B. Measurement-Device-Independent One-Step Quantum Secure Direct Communication. Chin. Phys. B 2022, 31, 120303. [Google Scholar] [CrossRef]
- Zhou, L.; Sheng, Y.B. One-Step Device-Independent Quantum Secure Direct Communication. Sci. China Phys. Mech. Astron. 2022, 65, 250311. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, B.W.; Zhong, W.; Sheng, Y.B. Device-Independent Quantum Secure Direct Communication with Single-Photon Sources. Phys. Rev. Appl. 2023, 19, 014036. [Google Scholar] [CrossRef]
- Das, N.; Basu, S.; Paul, G.; Rao, V.S. User-Authenticated Device-Independent Quantum Secure Direct Communication Protocol. In Proceedings of the 2024 IEEE 37th International System-on-Chip Conference (SOCC), Dresden, Germany, 16–19 September 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Pan, D.; Long, G.L.; Yin, L.; Sheng, Y.B.; Ruan, D.; Ng, S.X.; Lu, J.; Hanzo, L. The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet. IEEE Commun. Surv. Tutor. 2024, 26, 1898–1949. [Google Scholar] [CrossRef]
- Ding, Y.; Bacco, D.; Dalgaard, K.; Cai, X.; Zhou, X.; Rottwitt, K.; Oxenløwe, L.K. High-Dimensional Quantum Key Distribution Based on Multicore Fiber Using Silicon Photonic Integrated Circuits. npj Quantum Inf. 2017, 3, 25. [Google Scholar] [CrossRef]
- Kwek, L.C.; Cao, L.; Luo, W.; Wang, Y.; Sun, S.; Wang, X.; Liu, A.Q. Chip-Based Quantum Key Distribution. AAPPS Bull. 2021, 31, 15. [Google Scholar] [CrossRef]
- Xie, Y.M.; Lu, Y.S.; Weng, C.X.; Cao, X.Y.; Jia, Z.Y.; Bao, Y.; Wang, Y.; Fu, Y.; Yin, H.L.; Chen, Z.B. Breaking the Rate-Loss Bound of Quantum Key Distribution with Asynchronous Two-Photon Interference. PRX Quantum 2022, 3, 020315. [Google Scholar] [CrossRef]
- Yang, K.X.; Mao, Y.L.; Chen, H.; Dong, X.; Zhu, J.; Wu, J.; Li, Z.D. Experimental Measurement-Device-Independent Quantum Conference Key Agreement. Phys. Rev. Lett. 2024, 133, 210803. [Google Scholar] [CrossRef]
- Wang, S.; He, D.Y.; Yin, Z.Q.; Lu, F.Y.; Cui, C.H.; Chen, W.; Zhou, Z.; Guo, G.C.; Han, Z.F. Beating the Fundamental Rate-Distance Limit in a Proof-of-Principle Quantum Key Distribution System. Phys. Rev. X 2019, 9, 021046. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, D.S.; Sheng, Y.B.; Zhou, L.; Shi, B.S.; Guo, G.C. Quantum Secure Direct Communication with Quantum Memory. Phys. Rev. Lett. 2017, 118, 220501. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, W.; Sheng, Y.; Huang, Y. Experimental Long-Distance Quantum Secure Direct Communication. Sci. Bull. 2017, 62, 1519–1524. [Google Scholar] [CrossRef]
- Qi, Z.; Li, Y.; Huang, Y.; Feng, J.; Zheng, Y.; Chen, X. A 15-User Quantum Secure Direct Communication Network. Light Sci. Appl. 2021, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Lu, Y.; Chai, G.; Yu, H.; Liang, K.; Wang, L. Realization of Quantum Secure Direct Communication with Continuous Variable. Research 2023, 6, 0193. [Google Scholar] [CrossRef]
- Pan, D.; Liu, Y.C.; Niu, P.; Zhang, H.; Zhang, F.; Wang, M.; Song, X.T.; Chen, X.; Zheng, C.; Long, G.L. Simultaneous Transmission of Information and Key Exchange Using the Same Photonic Quantum States. Sci. Adv. 2025, 11, eadt4627. [Google Scholar] [CrossRef]
- Wu, J.; Lin, Z.; Yin, L.; Long, G.L. Security of Quantum Secure Direct Communication Based on Wyner’s Wiretap Channel Theory. Quantum Eng. 2019, 1, e26. [Google Scholar] [CrossRef]
- Sun, Z.; Song, L.; Huang, Q.; Yin, L.; Long, G.L.; Lu, J.; Hanzo, L. Toward Practical Quantum Secure Direct Communication: A Quantum-Memory-Free Protocol and Code Design. IEEE Trans. Commun. 2020, 68, 5778–5792. [Google Scholar] [CrossRef]
- Wyner, A.D. The Wire-Tap Channel. Bell Syst. Tech. J. 1975, 54, 1355–1387. [Google Scholar] [CrossRef]
- Bellare, M.; Tessaro, S.; Vardy, A. Semantic Security for the Wiretap Channel. In Advances in Cryptology—CRYPTO 2012; Safavi-Naini, R., Canetti, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 294–311. [Google Scholar] [CrossRef]
- Shah, S.M.; Sharma, V. Enhancing Secrecy Rates in a Wiretap Channel. Digit. Commun. Netw. 2020, 6, 129–135. [Google Scholar] [CrossRef]
- Lucamarini, M.; Yuan, Z.L.; Dynes, J.F.; Shields, A.J. Overcoming the Rate-Distance Limit of Quantum Key Distribution without Quantum Repeaters. Nature 2018, 557, 400–403. [Google Scholar] [CrossRef]
- Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. Fundamental Limits of Repeaterless Quantum Communications. Nat. Commun. 2017, 8, 15043. [Google Scholar] [CrossRef]
- Ma, X.F.; Zeng, P.; Zhou, H. Phase-Matching Quantum Key Distribution. Phys. Rev. X 2018, 8, 031043. [Google Scholar] [CrossRef]
- Wang, X.B.; Yu, Z.W.; Hu, X.L. Sending or Not Sending: Twin-Field Quantum Key Distribution with Large Misalignment Error. Phys. Rev. A 2018, 98, 062323. [Google Scholar] [CrossRef]
- Yu, Z.W.; Hu, X.L.; Jiang, C.; Xu, H.; Wang, X.B. Sending-or-Not-Sending Twin-Field Quantum Key Distribution in Practice. Sci. Rep. 2019, 9, 3080. [Google Scholar] [CrossRef]
- Cui, C.; Yin, Z.Q.; Wang, R.; Chen, W.; Wang, S.; Guo, G.C.; Han, Z.F. Twin-Field Quantum Key Distribution without Phase Postselection. Phys. Rev. Appl. 2019, 11, 034053. [Google Scholar] [CrossRef]
- Wang, R.; Yin, Z.Q.; Lu, F.Y.; Wang, S.; Chen, W.; Zhang, C.M.; Huang, W.; Xu, B.J.; Guo, G.C.; Han, Z.F. Optimized Protocol for Twin-Field Quantum Key Distribution. Commun. Phys. 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Zeng, P.; Zhou, H.; Wu, W.; Ma, X. Mode-Pairing Quantum Key Distribution. Nat. Commun. 2022, 13, 3903. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Wang, M.; Pan, X.B.; Zhang, Y.R.; Long, G.L. One-Photon-Interference Quantum Secure Direct Communication. Entropy 2024, 26, 811. [Google Scholar] [CrossRef]
- Long, G.L.; Zhang, H. Drastic Increase of Channel Capacity in Quantum Secure Direct Communication Using Masking. Sci. Bull. 2021, 66, 1267–1269. [Google Scholar] [CrossRef]
- Csiszar, I.; Korner, J. Broadcast Channels with Confidential Messages. IEEE Trans. Inf. Theory 1978, 24, 339–348. [Google Scholar] [CrossRef]
- Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V. Hacking Commercial Quantum Cryptography Systems by Tailored Bright Illumination. Nat. Photonics 2010, 4, 686–689. [Google Scholar] [CrossRef]
- Weier, H.; Krauss, H.; Rau, M.; Fürst, M.; Nauerth, S.; Weinfurter, H. Quantum Eavesdropping without Interception: An Attack Exploiting the Dead Time of Single-Photon Detectors. New J. Phys. 2011, 13, 073024. [Google Scholar] [CrossRef]
- Jain, N.; Anisimova, E.; Khan, I.; Makarov, V.; Marquardt, C.; Leuchs, G. Trojan-Horse Attacks Threaten the Security of Practical Quantum Cryptography. New J. Phys. 2014, 16, 123030. [Google Scholar] [CrossRef]
- Scarani, V.; Renner, R. Security Bounds for Quantum Cryptography with Finite Resources. In Theory of Quantum Computation, Communication, and Cryptography; Kawano, Y., Mosca, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 83–95. [Google Scholar] [CrossRef]
- Li, H.W.; Zhao, Y.B.; Yin, Z.Q.; Wang, S.; Han, Z.F.; Bao, W.S.; Guo, G.C. Security of Decoy States QKD with Finite Resources against Collective Attacks. Opt. Commun. 2009, 282, 4162–4166. [Google Scholar] [CrossRef]
- Tomamichel, M.; Lim, C.C.W.; Gisin, N.; Renner, R. Tight Finite-Key Analysis for Quantum Cryptography. Nat. Commun. 2012, 3, 634. [Google Scholar] [CrossRef]
- Wu, J.; Long, G.L.; Hayashi, M. Quantum Secure Direct Communication with Private Dense Coding Using a General Preshared Quantum State. Phys. Rev. Appl. 2022, 17, 064011. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Pan, D.; Cheng, Y.B.; Liu, Y.C.; Ruan, D.; Long, G.L. Multi-Intensity Quantum Secure Direct Communication Relying on Finite Block-Length. IEEE Trans. Commun. 2024, 72, 4633–4647. [Google Scholar] [CrossRef]
- Du, H.; Paraiso, T.K.; Pittaluga, M.; Lo, Y.S.; Dolphin, J.A.; Shields, A.J. Twin-Field Quantum Key Distribution with Optical Injection Locking and Phase Encoding on-Chip. Optica 2024, 11, 1385–1390. [Google Scholar] [CrossRef]
- Peng, Q.; Chen, J.P.; Xing, T.; Wang, D.; Wang, Y.; Liu, Y.; Huang, A. Practical Security of Twin-Field Quantum Key Distribution with Optical Phase-Locked Loop under Wavelength-Switching Attack. npj Quantum Inf. 2025, 11, 7. [Google Scholar] [CrossRef]
- Hao, H.; Zhao, Q.Y.; Huang, Y.H.; Deng, J.; Yang, F.; Ru, S.Y.; Liu, Z.; Wan, C.; Liu, H.; Li, Z.J.; et al. A Compact Multi-Pixel Superconducting Nanowire Single-Photon Detector Array Supporting Gigabit Space-to-Ground Communications. Light Sci. Appl. 2024, 13, 25. [Google Scholar] [CrossRef]
- Zou, K.; Hu, X. Fabrication Development of High-Performance Fractal Superconducting Nanowire Single-Photon Detectors. IEEE J. Sel. Top. Quantum Electron. 2024, 31, 3801410. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, Z.Q.; Wang, R.Q.; Wang, S.; Chen, W.; Guo, G.C.; Han, Z.F. Twin-Field Quantum Key Distribution with Partial Phase Postselection. Phys. Rev. Appl. 2022, 18, 054026. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, J.; Jing, Y.; Yuan, Z. Twin-Field Quantum Key Distribution without Optical Frequency Dissemination. Nat. Commun. 2023, 14, 928. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Wang, W.; Qian, L.; Lo, H.K. Proof-of-Principle Experimental Demonstration of Twin-Field Quantum Key Distribution over Optical Channels with Asymmetric Losses. npj Quantum Inf. 2021, 7, 8. [Google Scholar] [CrossRef]
- Wang, S.; Yin, Z.Q.; He, D.Y.; Chen, W.; Wang, R.Q.; Ye, P.; Zhou, Y.; Fan-Yuan, G.J.; Wang, F.X.; Chen, W.; et al. Twin-Field Quantum Key Distribution over 830-Km Fibre. Nat. Photonics 2022, 16, 154–161. [Google Scholar] [CrossRef]
- Clivati, C.; Meda, A.; Donadello, S.; Virzì, S.; Genovese, M.; Levi, F.; Mura, A.; Pittaluga, M.; Yuan, Z.; Shields, A.J.; et al. Coherent Phase Transfer for Real-World Twin-Field Quantum Key Distribution. Nat. Commun. 2022, 13, 157. [Google Scholar] [CrossRef] [PubMed]
- Renner, R. Symmetry of Large Physical Systems Implies Independence of Subsystems. Nat. Phys. 2007, 3, 645–649. [Google Scholar] [CrossRef]
- Holevo, A.S. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Inf. 1973, 9, 3–11. [Google Scholar]
Parameter | Value | Description |
---|---|---|
0.2 dB/km | attenuation coefficient | |
14.5% | detector efficiency | |
8 × 10−8 | dark count rate | |
1.5% | misalignment error | |
f | 1.2 | FEC efficiency |
u | 0.15 | light intensity |
DL04 [14] | MDI-QSDC [19] | OPI-QSDC [49] | Our Protocols | |
---|---|---|---|---|
Quantum resources | single photons (ideal) WCSs (practical) | single photons and entanglement pairs | single photons (ideal) WCSs (practical) | single photons (ideal) WCSs (practical) |
Encode messages in | polarizations | Bell states | phases | multislice phases |
Resistance to measurement-device attacks? | No | Yes | Yes | Yes |
Resistance to PNS attacks? | No | No | Yes | Yes |
Quantum memory free? | No | No | Yes | Yes |
Break PLOB bound? | No | No | Yes | Yes |
Approx. secrecy capacity at 100 km (bit/pulse) | 1.03 × 10−5 | 1.16 × 10−8 | 5.72 × 10−4 | 1.05 × 10−3 () 1.15 × 10−4 () |
Approx. distance at 1 × 10−10 bit/pulse secrecy capacity | 156.48 km | 151.61 km | 434.76 km | 485.07 km () 493.94 km () |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.-T.; Li, X.-J.; Pan, X.-B.; Zhang, Y.-R.; Long, G.-L. High-Dimensional and Multi-Intensity One-Photon-Interference Quantum Secure Direct Communication. Entropy 2025, 27, 332. https://doi.org/10.3390/e27040332
Lei Y-T, Li X-J, Pan X-B, Zhang Y-R, Long G-L. High-Dimensional and Multi-Intensity One-Photon-Interference Quantum Secure Direct Communication. Entropy. 2025; 27(4):332. https://doi.org/10.3390/e27040332
Chicago/Turabian StyleLei, Yu-Ting, Xiang-Jie Li, Xing-Bo Pan, Yun-Rong Zhang, and Gui-Lu Long. 2025. "High-Dimensional and Multi-Intensity One-Photon-Interference Quantum Secure Direct Communication" Entropy 27, no. 4: 332. https://doi.org/10.3390/e27040332
APA StyleLei, Y.-T., Li, X.-J., Pan, X.-B., Zhang, Y.-R., & Long, G.-L. (2025). High-Dimensional and Multi-Intensity One-Photon-Interference Quantum Secure Direct Communication. Entropy, 27(4), 332. https://doi.org/10.3390/e27040332