Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (950)

Search Parameters:
Keywords = quantum sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6376 KiB  
Article
Components for an Inexpensive CW-ODMR NV-Based Magnetometer
by André Bülau, Daniela Walter and Karl-Peter Fritz
Magnetism 2025, 5(3), 18; https://doi.org/10.3390/magnetism5030018 (registering DOI) - 1 Aug 2025
Abstract
Quantum sensing based on NV-centers in diamonds has been demonstrated many times in multiple publications. The majority of publications use lasers in free space or lasers with fiber optics, expensive optical components such as dichroic mirrors, or beam splitters with dichroic filters and [...] Read more.
Quantum sensing based on NV-centers in diamonds has been demonstrated many times in multiple publications. The majority of publications use lasers in free space or lasers with fiber optics, expensive optical components such as dichroic mirrors, or beam splitters with dichroic filters and expensive detectors, such as Avalanche photodiodes or single photon detectors, overall, leading to custom and expensive setups. In order to provide an inexpensive NV-based magnetometer setup for educational use in schools, to teach the three topics, fluorescence, optically detected magnetic resonance, and Zeeman splitting, inexpensive, miniaturized, off-the-shelf components with high reliability have to be used. The cheaper such a setup, the more setups a school can afford. Hence, in this work, we investigated LEDs as light sources, considered different diamonds for our setup, tested different color filters, proposed an inexpensive microwave resonator, and used a cheap photodiode with an appropriate transimpedance amplifier as the basis for our quantum magnetometer. As a result, we identified cheap and functional components and present a setup and show that it can demonstrate the three topics mentioned at a hardware cost <EUR 100. Full article
Show Figures

Figure 1

20 pages, 5041 KiB  
Review
Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications
by Ahmed Dawood, Mohsen Ghali, Laura Micheli, Medhat H. Hashem and Clara Piccirillo
Clean Technol. 2025, 7(3), 64; https://doi.org/10.3390/cleantechnol7030064 (registering DOI) - 1 Aug 2025
Abstract
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots [...] Read more.
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots (AB-CDs)—briefly summarizing green synthesis approaches (e.g., hydrothermal carbonization, pyrolysis, and microwave-assisted treatments) that minimize environmental impact. Subsequent sections highlight the varied applications of AB-CDs, particularly in biosensing (including the detection of marine biotoxins), environmental monitoring of water pollutants, and drug delivery systems. Physically AB-CDs show unique optical and physicochemical properties—tunable fluorescence, high quantum yields, enhanced sensitivity, selectivity, and surface bio-functionalization—that make them ideal for a wide array of applications. Overall, the discussion underlines the significance of this approach; indeed, transforming aquatic biomass into carbon dots can contribute to sustainable nanotechnology, offering eco-friendly solutions in sensing, environmental monitoring, and therapeutics. Finally, current challenges and future research directions are discussed to give a perspective of the potential of AB-CDs; the final aim is their integration into multifunctional, real-time monitoring and therapeutic systems—for sustainable nanotechnology innovations. Full article
Show Figures

Graphical abstract

10 pages, 1977 KiB  
Proceeding Paper
Finite-Element and Experimental Analysis of a Slot Line Antenna for NV Quantum Sensing
by Dennis Stiegekötter, Jonas Homrighausen, Ann-Sophie Bülter, Ludwig Horsthemke, Frederik Hoffmann, Jens Pogorzelski, Peter Glösekötter and Markus Gregor
Eng. Proc. 2025, 101(1), 9; https://doi.org/10.3390/engproc2025101009 - 30 Jul 2025
Viewed by 16
Abstract
Nitrogen vacancy (NV) diamonds are promising room temperature quantum sensors. As the technology moves towards application, efficient use of energy and cost become critical for miniaturization. This work focuses on microwave-based spin control using the short-circuited end of a slot line, analyzed by [...] Read more.
Nitrogen vacancy (NV) diamonds are promising room temperature quantum sensors. As the technology moves towards application, efficient use of energy and cost become critical for miniaturization. This work focuses on microwave-based spin control using the short-circuited end of a slot line, analyzed by finite element method (FEM) for magnetic field amplitude and uniformity. A microstrip-to-slot-line converter with a 10 dB bandwidth of 3.2 GHz was implemented. Rabi oscillation measurements with an NV microdiamond on a glass fiber show uniform excitation over 1.5 MHz across the slot, allowing spin manipulation within the coherence time of the NV center. Full article
Show Figures

Figure 1

24 pages, 1538 KiB  
Review
H+ and Confined Water in Gating in Many Voltage-Gated Potassium Channels: Ion/Water/Counterion/Protein Networks and Protons Added to Gate the Channel
by Alisher M. Kariev and Michael E. Green
Int. J. Mol. Sci. 2025, 26(15), 7325; https://doi.org/10.3390/ijms26157325 - 29 Jul 2025
Viewed by 237
Abstract
The mechanism by which voltage-gated ion channels open and close has been the subject of intensive investigation for decades. For a large class of potassium channels and related sodium channels, the consensus has been that the gating current preceding the main ionic current [...] Read more.
The mechanism by which voltage-gated ion channels open and close has been the subject of intensive investigation for decades. For a large class of potassium channels and related sodium channels, the consensus has been that the gating current preceding the main ionic current is a large movement of positively charged segments of protein from voltage-sensing domains that are mechanically connected to the gate through linker sections of the protein, thus opening and closing the gate. We have pointed out that this mechanism is based on evidence that has alternate interpretations in which protons move. Very little literature considers the role of water and protons in gating, although water must be present, and there is evidence that protons can move in related channels. It is known that water has properties in confined spaces and at the surface of proteins different from those in bulk water. In addition, there is the possibility of quantum properties that are associated with mobile protons and the hydrogen bonds that must be present in the pore; these are likely to be of major importance in gating. In this review, we consider the evidence that indicates a central role for water and the mobility of protons, as well as alternate ways to interpret the evidence of the standard model in which a segment of protein moves. We discuss evidence that includes the importance of quantum effects and hydrogen bonding in confined spaces. K+ must be partially dehydrated as it passes the gate, and a possible mechanism for this is considered; added protons could prevent this mechanism from operating, thus closing the channel. The implications of certain mutations have been unclear, and we offer consistent interpretations for some that are of particular interest. Evidence for proton transport in response to voltage change includes a similarity in sequence to the Hv1 channel; this appears to be conserved in a number of K+ channels. We also consider evidence for a switch in -OH side chain orientation in certain key serines and threonines. Full article
Show Figures

Graphical abstract

29 pages, 4763 KiB  
Review
Quantum-Empowered Fiber Sensing Metrology
by Xiaojie Zuo, Zhangguan Tang, Boyao Li, Xiaoyong Chen and Jinghua Sun
Photonics 2025, 12(8), 763; https://doi.org/10.3390/photonics12080763 - 29 Jul 2025
Viewed by 233
Abstract
Quantum sensing leverages quantum resources to enable ultra-precise measurements beyond classical limits, driving transformative advancements in metrology. Optical fiber quantum sensing, integrating optical fiber sensing with quantum technologies, enhances measurement precision and sensitivity from multiple perspectives, such as exploring high-sensitivity optical fiber sensing [...] Read more.
Quantum sensing leverages quantum resources to enable ultra-precise measurements beyond classical limits, driving transformative advancements in metrology. Optical fiber quantum sensing, integrating optical fiber sensing with quantum technologies, enhances measurement precision and sensitivity from multiple perspectives, such as exploring high-sensitivity optical fiber sensing installations and generating high-quality optical fiber quantum states. Following decades of comprehensive investigations and remarkable advances in optical fiber quantum sensing technology, this review systematically examines research achievements in this field through two complementary perspectives: one is the basic principle of generating optical fiber quantum states and their applications in sensing and the other is optical fiber quantum interferometers and their applications in sensing. Finally, examine current opportunities and challenges as well as the future development of optical fiber quantum sensing. Full article
(This article belongs to the Special Issue Quantum High Precision Measurement)
Show Figures

Figure 1

17 pages, 7508 KiB  
Article
Supramolecular Graphene Quantum Dots/Porphyrin Complex as Fluorescence Probe for Metal Ion Sensing
by Mariachiara Sarà, Andrea Romeo, Gabriele Lando, Maria Angela Castriciano, Roberto Zagami, Giovanni Neri and Luigi Monsù Scolaro
Int. J. Mol. Sci. 2025, 26(15), 7295; https://doi.org/10.3390/ijms26157295 - 28 Jul 2025
Viewed by 171
Abstract
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a [...] Read more.
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a supramolecular adduct, GQDs@TPPS4, that exhibits a double fluorescence emission from both the GQDs and the TPPS4 fluorophores. These supramolecular aggregates have an overall negative charge that is responsible for the condensation of cations in the nearby aqueous layer, and a three-fold acceleration of the metalation rates of Cu2+ ions has been observed with respect to the parent porphyrin. Addition of various metal ions leads to some changes in the UV/Vis spectra and has a different impact on the fluorescence emission of GQDs and TPPS4. The quenching efficiency of the TPPS4 emission follows the order Cu2+ > Hg2+ > Cd2+ > Pb2+ ~ Zn2+ ~ Co2+ ~ Ni2+ > Mn2+ ~ Cr3+ >> Mg2+ ~ Ca2+ ~ Ba2+, and it has been related to literature data and to the sitting-atop mechanism that large transition metal ions (e.g., Hg2+ and Cd2+) exhibit in their interaction with the macrocyclic nitrogen atoms of the porphyrin, inducing distortion and accelerating the insertion of smaller metal ions, such as Zn2+. For the most relevant metal ions, emission quenching of the porphyrin evidences a linear behavior in the micromolar range, with the emission of the GQDs being moderately affected through a filter effect. Deliberate pollution of the samples with Zn2+ reveals the ability of the GQDs@TPPS4 adduct to detect sensitively Cu2+, Hg2+, and Cd2+ ions. Full article
Show Figures

Figure 1

37 pages, 3106 KiB  
Review
Quantum Dot-Enabled Biosensing for Prostate Cancer Diagnostics
by Hossein Omidian, Erma J. Gill and Luigi X. Cubeddu
Nanomaterials 2025, 15(15), 1162; https://doi.org/10.3390/nano15151162 - 28 Jul 2025
Viewed by 176
Abstract
Prostate cancer diagnostics are rapidly advancing through innovations in nanotechnology, biosensing strategies, and molecular recognition. This review analyzes studies focusing on quantum dot (QD)-based biosensors for detecting prostate cancer biomarkers with high sensitivity and specificity. It covers diverse sensing platforms and signal transduction [...] Read more.
Prostate cancer diagnostics are rapidly advancing through innovations in nanotechnology, biosensing strategies, and molecular recognition. This review analyzes studies focusing on quantum dot (QD)-based biosensors for detecting prostate cancer biomarkers with high sensitivity and specificity. It covers diverse sensing platforms and signal transduction mechanisms, emphasizing the influence of the QD composition, surface functionalization, and bio interface engineering on analytical performance. Key metrics such as detection limits, dynamic range, and compatibility with biological samples, including serum, urine, and tissue, are critically assessed. Recent advances in green-synthesized QDs and smartphone-integrated diagnostic platforms are highlighted, including lateral flow assays, paper-based devices, and pH-responsive hydrogels for real-time, low-cost, and decentralized cancer screening. These innovations enable multiplexed biomarker detection and tumor microenvironment monitoring in point-of-care settings. This review concludes by addressing the current limitations, scalability challenges, and future research directions for translating QD-enabled biosensors into clinically viable diagnostic tools. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

13 pages, 4956 KiB  
Article
The Influence of Crystal Anisotropy in Femtosecond Laser Processing of Single-Crystal Diamond
by Guolong Wang, Ji Wang, Kaijie Cheng, Kun Yang, Bojie Xu, Wenbo Wang and Wenwu Zhang
Nanomaterials 2025, 15(15), 1160; https://doi.org/10.3390/nano15151160 - 28 Jul 2025
Viewed by 232
Abstract
The single-crystal diamond (SCD), owing to its extreme physical and chemical properties, serves as an ideal substrate for quantum sensing and high-frequency devices. However, crystal anisotropy imposes significant challenges on fabricating high-quality micro-nano structures, directly impacting device performance. This work investigates the effects [...] Read more.
The single-crystal diamond (SCD), owing to its extreme physical and chemical properties, serves as an ideal substrate for quantum sensing and high-frequency devices. However, crystal anisotropy imposes significant challenges on fabricating high-quality micro-nano structures, directly impacting device performance. This work investigates the effects of femtosecond laser processing on the SCD under two distinct crystallographic orientations via single-pulse ablation. The results reveal that ablation craters along the <100> orientation exhibit an elliptical shape with the major axis parallel to the laser polarization, whereas those along the <110> orientation form near-circular craters with the major axis at a 45° angle to the polarization. The single-pulse ablation threshold of the SCD along <110> is 9.56 J/cm2, representing a 7.8% decrease compared to 10.32 J/cm2 for <100>. The graphitization threshold shows a more pronounced reduction, dropping from 4.79 J/cm2 to 3.31 J/cm2 (31% decrease), accompanied by enhanced sp2 carbon order evidenced by the significantly intensified G-band in the Raman spectra. In addition, a phase transition layer of amorphous carbon at the nanoscale in the surface layer (thickness of ~40 nm) and a narrow lattice spacing of 0.36 nm are observed under TEM, corresponding to the interlayer (002) plane of graphite. These observations are attributed to the orientation-dependent energy deposition efficiency. Based on these findings, an optimized crystallographic orientation selection strategy for femtosecond laser processing is proposed to improve the quality of functional micro-nano structures in the SCD. Full article
(This article belongs to the Special Issue Trends and Prospects in Laser Nanofabrication)
Show Figures

Figure 1

22 pages, 1066 KiB  
Article
GA-Synthesized Training Framework for Adaptive Neuro-Fuzzy PID Control in High-Precision SPAD Thermal Management
by Mingjun Kuang, Qingwen Hou, Jindong Wang, Jianping Guo and Zhengjun Wei
Machines 2025, 13(7), 624; https://doi.org/10.3390/machines13070624 - 21 Jul 2025
Viewed by 188
Abstract
This study presents a hybrid adaptive control strategy that integrates genetic algorithm (GA) optimization with an adaptive neuro-fuzzy inference system (ANFIS) for precise thermal regulation of single-photon avalanche diodes (SPADs). To address the nonlinear and disturbance-sensitive dynamics of SPAD systems, a performance-oriented dataset [...] Read more.
This study presents a hybrid adaptive control strategy that integrates genetic algorithm (GA) optimization with an adaptive neuro-fuzzy inference system (ANFIS) for precise thermal regulation of single-photon avalanche diodes (SPADs). To address the nonlinear and disturbance-sensitive dynamics of SPAD systems, a performance-oriented dataset is constructed through multi-scenario simulations using settling time, overshoot, and steady-state error as fitness metrics. The genetic algorithm (GA) facilitates broad exploration of the proportional–integral–derivative (PID) controller parameter space while ensuring control stability by discarding low-performing gain combinations. The resulting high-quality dataset is used to train the ANFIS model, enabling real-time, adaptive tuning of PID gains. Simulation results demonstrate that the proposed GA-ANFIS-PID controller significantly enhances dynamic response, robustness, and adaptability over both the conventional Ziegler–Nichols PID and GA-only PID schemes. The controller maintains stability under structural perturbations and abrupt thermal disturbances without the need for offline retuning, owing to the real-time inference capabilities of the ANFIS model. By combining global evolutionary optimization with intelligent online adaptation, this approach improves both accuracy and generalization, offering a practical and scalable solution for SPAD thermal management in demanding environments such as quantum communication, sensing, and single-photon detection platforms. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

20 pages, 313 KiB  
Article
Energy-Based Practices and the Medicine of Movement—The Cases of 5Rhythms and Core Energetics
by Géraldine Mossière
Religions 2025, 16(7), 942; https://doi.org/10.3390/rel16070942 - 21 Jul 2025
Viewed by 345
Abstract
This paper discusses the role of energy and movement in facilitating experiences of well-being from an anthropological perspective that considers energy as a situated form of knowledge. Drawing on fieldwork among Core Energetics (CE) and 5Rhythms (5R) groups, I examine how the circulation [...] Read more.
This paper discusses the role of energy and movement in facilitating experiences of well-being from an anthropological perspective that considers energy as a situated form of knowledge. Drawing on fieldwork among Core Energetics (CE) and 5Rhythms (5R) groups, I examine how the circulation of energy is achieved through bodily movements and dances, attention to the senses, somatic self-cultivation, and deep experiences of consciousness. Focus is hold on the ritual elements, including a specific spacetime framework and intersubjective exercises that facilitate energetical experiences that renew the subjective and intersubjective relationship to the self in a restorative way. I argue that mind–body–energy groups conflate two Western sources: on the one hand, the legacy of early Western medical offshoots that have been marginalized by mainstream biomedicine, and on the other, discursive references to contemporary interpretations of quantum physics. Full article
13 pages, 617 KiB  
Project Report
European Partnership in Metrology Project: Photonic and Quantum Sensors for Practical Integrated Primary Thermometry (PhoQuS-T)
by Olga Kozlova, Rémy Braive, Tristan Briant, Stéphan Briaudeau, Paulina Castro Rodríguez, Guochun Du, Tufan Erdoğan, René Eisermann, Emile Ferreux, Dario Imbraguglio, Judith Elena Jordan, Stephan Krenek, Graham Machin, Igor P. Marko, Théo Martel, Maria Jose Martin, Richard A. Norte, Laurent Pitre, Sara Pourjamal, Marco Queisser, Israel Rebolledo-Salgado, Iago Sanchez, Daniel Schmid, Cliona Shakespeare, Fernando Sparasci, Peter G. Steeneken, Tatiana Steshchenko, Stephen J. Sweeney, Shahin Tabandeh, Georg Winzer, Anoma Yamsiri, Alethea Vanessa Zamora Gómez, Martin Zelan and Lars Zimmermannadd Show full author list remove Hide full author list
Metrology 2025, 5(3), 44; https://doi.org/10.3390/metrology5030044 - 19 Jul 2025
Viewed by 233
Abstract
Current temperature sensors require regular recalibration to maintain reliable temperature measurement. Photonic/quantum-based approaches have the potential to radically change the practice of thermometry through provision of in situ traceability, potentially through practical primary thermometry, without the need for sensor recalibration. This article gives [...] Read more.
Current temperature sensors require regular recalibration to maintain reliable temperature measurement. Photonic/quantum-based approaches have the potential to radically change the practice of thermometry through provision of in situ traceability, potentially through practical primary thermometry, without the need for sensor recalibration. This article gives an overview of the European Partnership in Metrology (EPM) project: Photonic and quantum sensors for practical integrated primary thermometry (PhoQuS-T), which aims to develop sensors based on photonic ring resonators and optomechanical resonators for robust, small-scale, integrated, and wide-range temperature measurement. The different phases of the project will be presented. The development of the integrated optical practical primary thermometer operating from 4 K to 500 K will be reached by a combination of different sensing techniques: with the optomechanical sensor, quantum thermometry below 10 K will provide a quantum reference for the optical noise thermometry (operating in the range 4 K to 300 K), whilst using the high-resolution photonic (ring resonator) sensor the temperature range to be extended from 80 K to 500 K. The important issues of robust fibre-to-chip coupling will be addressed, and application case studies of the developed sensors in ion-trap monitoring and quantum-based pressure standards will be discussed. Full article
Show Figures

Figure 1

15 pages, 2929 KiB  
Article
Graphene-Loaded LiNbO3 Directional Coupler: Characteristics and Potential Applications
by Yifan Liu, Fei Lu, Hui Hu, Haoyang Du, Yan Liu and Yao Wei
Nanomaterials 2025, 15(14), 1116; https://doi.org/10.3390/nano15141116 - 18 Jul 2025
Viewed by 283
Abstract
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode [...] Read more.
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode refractive index and enhances waveguide coupling, enabling precise control over light transmission and power distribution. The temperature-dependent behavior of graphene–LN structures demonstrates strong thermal sensitivity, with notable changes in output power ratios between cross and through ports under varying temperatures. These findings highlight the potential of graphene–LN hybrid devices for compact, high-performance photonic circuits and temperature sensing applications. This study provides valuable insights into the design of advanced integrated photonic systems, paving the way for innovations in optical communication, sensing, and quantum technologies. Full article
Show Figures

Figure 1

28 pages, 5787 KiB  
Review
Silicon-Based On-Chip Light Sources: A Review
by Yongqi Yang, Jiaqi Yang, Zhouyang Cheng, Shuyan Zhang, Zhen Yang, Shengchuang Bai and Rongping Wang
Photonics 2025, 12(7), 732; https://doi.org/10.3390/photonics12070732 - 18 Jul 2025
Viewed by 386
Abstract
Silicon-based on-chip light sources are important since they can provide a compact solution for various applications in the field of high-speed optical communications, high-precision sensing, quantum information processing, and so on. We review the progress of silicon-based on-chip light sources in various materials. [...] Read more.
Silicon-based on-chip light sources are important since they can provide a compact solution for various applications in the field of high-speed optical communications, high-precision sensing, quantum information processing, and so on. We review the progress of silicon-based on-chip light sources in various materials. We provide some key parameters like pump thresholds, output powers, and pump schemes of on-chip lasers based on various materials. Finally, we point out the existing issues in the current investigations and possible solutions in the future. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Figure 1

3 pages, 133 KiB  
Editorial
Advancing the Frontiers of Urban Mobile Sources for Air Pollution Prediction and Monitoring: Integrating Deep Learning, Quantum Computing, and Enhanced Sensing
by Zhenyi Xu
Atmosphere 2025, 16(7), 853; https://doi.org/10.3390/atmos16070853 - 13 Jul 2025
Viewed by 235
Abstract
The relentless challenge of air pollution, driven by industrialization and urbanization, demands increasingly sophisticated tools for accurate prediction, source attribution, and comprehensive monitoring [...] Full article
46 pages, 7993 KiB  
Review
Quantum Dot-Based Luminescent Sensors: Review from Analytical Perspective
by Alissa Loskutova, Ansar Seitkali, Dinmukhamed Aliyev and Rostislav Bukasov
Int. J. Mol. Sci. 2025, 26(14), 6674; https://doi.org/10.3390/ijms26146674 - 11 Jul 2025
Viewed by 732
Abstract
Quantum Dots (QDs) are small semiconductor nanoparticles (<10 nm) with strong, relatively stable, and tunable luminescent properties, which are increasingly applied in the sensing and detection of various analytes, including metal ions, biomarkers, explosives, proteins, RNA/DNA fragments, pesticides, drugs, and pollutants. In this [...] Read more.
Quantum Dots (QDs) are small semiconductor nanoparticles (<10 nm) with strong, relatively stable, and tunable luminescent properties, which are increasingly applied in the sensing and detection of various analytes, including metal ions, biomarkers, explosives, proteins, RNA/DNA fragments, pesticides, drugs, and pollutants. In this review, we critically assess recent developments and advancements in luminescent QD-based sensors from an analytical perspective. We collected, tabulated, and analyzed relevant data reported in 124 peer-reviewed articles. The key analytical figures of merit, including the limit of detection (LOD), excitation and emission wavelengths, and size of the particles were extracted, tabulated, and analyzed with graphical representations. We calculated the geometric mean and median LODs from those tabulated publications. We found the following geometric mean LODs: 38 nM for QD-fluorescent-based sensors, 26 nM for QD-phosphorescent-based sensors, and an impressively low 0.109 pM for QD-chemiluminescent-based sensors, which demonstrate by far the best sensitivity in QD-based detection. Moreover, AI-based sensing methods, including the ATTBeadNet model, optimized principal component analysis(OPCA) model, and Support Vector Machine (SVM)-based system, were reviewed as they enhance the analytical performance of the detection. Despite these advances, there are still challenges that include improvements in recovery values, biocompatibility, stability, and overall performance. This review highlights trends to guide the future design of robust, high-performance, QD-based luminescent sensors. Full article
Show Figures

Figure 1

Back to TopTop