Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = quantum espresso

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2479 KiB  
Article
Spectroscopic, Thermally Induced, and Theoretical Features of Neonicotinoids’ Competition for Adsorption Sites on Y Zeolite
by Bojana Nedić Vasiljević, Maja Milojević-Rakić, Maja Ranković, Anka Jevremović, Ljubiša Ignjatović, Nemanja Gavrilov, Snežana Uskoković-Marković, Aleksandra Janošević Ležaić, Hong Wang and Danica Bajuk-Bogdanović
Molecules 2025, 30(15), 3267; https://doi.org/10.3390/molecules30153267 (registering DOI) - 4 Aug 2025
Abstract
The competitive retention of pollutants in water tables determines their environmental fate and guides routes for their removal. To distinguish the fine differences in competitive binding at zeolite adsorption centers, a group of neonicotinoid pesticides is compared, relying on theoretical (energy of adsorption, [...] Read more.
The competitive retention of pollutants in water tables determines their environmental fate and guides routes for their removal. To distinguish the fine differences in competitive binding at zeolite adsorption centers, a group of neonicotinoid pesticides is compared, relying on theoretical (energy of adsorption, orientation, charge distribution) and experimental (spectroscopic and thermogravimetric) analyses for quick, inexpensive, and reliable screening. The MOPAC/QuantumEspresso platform was used for theoretical calculation, indicating close adsorption energy values for acetamiprid and imidacloprid (−2.2 eV), with thiamethoxam having a lower binding energy of −1.7 eV. FTIR analysis confirmed hydrogen bonding, among different dipole-dipole interactions, as the dominant adsorption mechanism. Due to their comparable binding energies, when the mixture of all three pesticides is examined, comparative adsorption capacities are evident at low concentrations, owing to the excellent adsorption performance of the FAU zeotype. At higher concentrations, competition for adsorption centers occurs, with the expected thiamethoxam binding being diminished due to the lower bonding energy. The catalytic impact of zeolite on the thermal degradation of pesticides is evidenced through TG analysis, confirming the adsorption capacities found by UV/VIS and HPLC/UV measurements. Detailed analysis of spectroscopic results in conjunction with theoretical calculation, thermal profiles, and UV detection offers a comprehensive understanding of neonicotinoids’ adsorption and can help with the design of future adsorbents. Full article
(This article belongs to the Special Issue Design, Synthesis, and Application of Zeolite Materials)
Show Figures

Graphical abstract

14 pages, 5810 KiB  
Article
CO2 Absorption on Cu-Doped Graphene, a DFT Study
by Juan Oseas López Fuentes, Roxana Mitzayé del Castillo Vázquez and Juan Manuel Ramirez-de-Arellano
Crystals 2025, 15(5), 460; https://doi.org/10.3390/cryst15050460 - 14 May 2025
Viewed by 1251
Abstract
We studied the interaction between a Cu-doped graphene layer and a CO2 molecule, using DFT, ab initio calculations, and the pseudopotential formalism. We used the Quantum ESPRESSO code package, with the PBE XC functional expression and the semiempirical Grimme’s DFT-D3 Van der [...] Read more.
We studied the interaction between a Cu-doped graphene layer and a CO2 molecule, using DFT, ab initio calculations, and the pseudopotential formalism. We used the Quantum ESPRESSO code package, with the PBE XC functional expression and the semiempirical Grimme’s DFT-D3 Van der Waals correction. We found that the Cu atom, being absorbed in a C vacancy on the graphene surface, has a catalytic effect on the absorption of CO2 in said surface. The Van der Waals correction calculations showed that the CO2 is physisorbed, with an adsorption energy of −0.1786 eV. Our results are congruent with previously published results. The Cu-doped graphene surface could be suitable for the development of a CO2 sensor. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

29 pages, 7563 KiB  
Article
Influence of Fluorine Doping on Rutile TiO2 Nanostructures for Visible-Light-Driven Photocatalysis: A DFT + U Study
by Fikadu Takele Geldasa and Francis Birhanu Dejene
Nanomaterials 2025, 15(9), 694; https://doi.org/10.3390/nano15090694 - 5 May 2025
Cited by 2 | Viewed by 546
Abstract
In this work, a density functional theory (DFT) with Hubbard correction (U) approaches implemented through the Quantum ESPRESSO code is utilized to investigate the effects of fluorine (F) doping on the structural, electronic, and optical properties of rutile TiO2. Rutile TiO [...] Read more.
In this work, a density functional theory (DFT) with Hubbard correction (U) approaches implemented through the Quantum ESPRESSO code is utilized to investigate the effects of fluorine (F) doping on the structural, electronic, and optical properties of rutile TiO2. Rutile TiO2 is a promising material for renewable energy production and environmental remediation, but its wide bandgap limits its application to the UV spectrum, which is narrow and expensive. To extend the absorption edge of TiO2 into the visible light range, different concentrations of F were substituted at oxygen atom sites. The structural analysis reveals that the lattice constants and bond lengths of TiO2 increased with F concentrations. Ab initio molecular dynamics simulations (AIMD) at 1000 K confirm that both pristine and F-doped rutile TiO2 maintains structural integrity, indicating excellent thermal stability essential for high-temperature photocatalytic applications. Band structure calculations show that pure rutile TiO2 has a bandgap of 3.0 eV, which increases as the F concentration rises, with the 0.25 F-doped structures exhibiting an even larger bandgap, preventing it from responding to visible light. The absorption edge of doped TiO2 shifts towards the visible region, as shown by the imaginary part of the dielectric function. This research provides valuable insights for experimentalists, helping them understand how varying F concentrations influence the properties of rutile TiO2 for photocatalytic applications. Full article
Show Figures

Figure 1

10 pages, 2393 KiB  
Article
Density Functional Theory Simulations of Skaergaardite (CuPd) with a Self-Consistent Hubbard U-Correction
by Martino Napoli and Assimo Maris
Chemistry 2025, 7(2), 56; https://doi.org/10.3390/chemistry7020056 - 2 Apr 2025
Viewed by 629
Abstract
The electronic and phonon bands of Skaergaardite are investigated using density functional theory (DFT) as implemented in Quantum ESPRESSO. Skaergaardite is a copper palladium mineral (CuPd) found in the Skaergaard intrusion with a CsCl-type (B2) structure. Due to its porous structure, it presents [...] Read more.
The electronic and phonon bands of Skaergaardite are investigated using density functional theory (DFT) as implemented in Quantum ESPRESSO. Skaergaardite is a copper palladium mineral (CuPd) found in the Skaergaard intrusion with a CsCl-type (B2) structure. Due to its porous structure, it presents a large surface area available for interactions, which makes it a promising catalyst. The PBE-GGA functional with a Hubbard-like localized term (DFT+U) is combined with ultrasoft and norm-conserving pseudopotentials, and a conventional approach with a dense Monkhorst–Pack grid of k-points 12 × 12 × 12 is applied. The electronic valence bands are mainly constituted by 3d orbitals of Cu and 4d orbitals of Pd and a pseudo-gap can be recognized. With respect to DFT, DFT+U causes a general downward shift in the valence band. The acoustic and optical phonon branches are separated by a few cm−1 gap at about 150 cm−1 and show a density of state curve typical of ordered materials. These results highlight the reliability of DFT+U in studying bimetallic systems with scarce experimental benchmarks, offering insights into the behavior of Skaergaardite and its potential applications in material science such as reduction reactions and hydrogen storage. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Figure 1

15 pages, 2734 KiB  
Article
Engineering the Mechanics and Thermodynamics of Ti3AlC2, Hf3AlC2, Hf3GaC2, (ZrHf)3AlC2, and (ZrHf)4AlN3 MAX Phases via the Ab Initio Method
by Adel Bandar Alruqi
Crystals 2025, 15(1), 87; https://doi.org/10.3390/cryst15010087 - 17 Jan 2025
Cited by 1 | Viewed by 1181
Abstract
When combined with ceramics, ternary carbides, nitrides, and borides form a class of materials known as MAX phases. These materials exhibit a multilayer hexagonal structure and are very strong, damage tolerant, and thermally stable. Further, they have a low thermal expansion and exhibit [...] Read more.
When combined with ceramics, ternary carbides, nitrides, and borides form a class of materials known as MAX phases. These materials exhibit a multilayer hexagonal structure and are very strong, damage tolerant, and thermally stable. Further, they have a low thermal expansion and exhibit outstanding resistance to corrosion and oxidation. However, despite the numerous MAX phases that have been identified, the search for better MAX phases is ongoing, including the recently discovered Zr3InC2 and Hf3InC2. The properties of MAX phases are still being tailored in order to lower their ductility. This study investigated Ti3AlC2 alloyed with nitrogen, gallium, hafnium, and zirconium with the aim of achieving better mechanical and thermal performances. Density functional theory within Quantum Espresso module was used in the computations. The Perdew–Burke–Ernzerhof generalised gradient approximation functionals were utilised. (ZrHf)4AlN3 exhibited an enhanced bulk and Young’s moduli, entropy, specific heat, and melting temperature. The best thermal conductivity was observed in the case of (ZrHf)3AlC2. Further, Ti3AlC2 exhibited the highest shear modulus, Debye temperature, and electrical conductivity. These samples can thus form part of the group of MAX phases that are used in areas wherein the above properties are crucial. These include structural components in aerospace and automotive engineering applications, turbine blades, and heat exchanges. However, the samples need to be synthesised and their properties require verification. Full article
(This article belongs to the Special Issue Modern Technologies in the Manufacturing of Metal Matrix Composites)
Show Figures

Figure 1

11 pages, 1197 KiB  
Article
Ab Initio Investigation of the Mechanics and Thermodynamics of the Cubic EuAlO3 and GdAlO3 Perovskites for Optoelectronic Applications
by Adel Bandar Alruqi and Nicholas O. Ongwen
Crystals 2024, 14(12), 1084; https://doi.org/10.3390/cryst14121084 - 16 Dec 2024
Viewed by 986
Abstract
Perovskites are currently becoming common in the field of optoelectronics, owing to their promising properties such as electrical, optical, thermoelectric, and electronic. Although mechanical and thermal properties also play a crucial part in the functioning of the optoelectronic devices, they have scarcely been [...] Read more.
Perovskites are currently becoming common in the field of optoelectronics, owing to their promising properties such as electrical, optical, thermoelectric, and electronic. Although mechanical and thermal properties also play a crucial part in the functioning of the optoelectronic devices, they have scarcely been explored. The present work performed an ab initio study of the mechanical and thermal properties of the cubic EuAlO3 and GdAlO3 perovskites for the first time using density functional theory. Quantum Espresso and Themo_pw codes were utilized by employing the generalized gradient approximation. Although the results showed that both materials have good mechanical and thermal properties that are ideal for the above–mentioned applications, EuAlO3 possessed better structural and thermal stability, bulk modulus, Poisson ratio, thermal expansion coefficient, and thermal stress; while GdAlO3 possessed better Young’s modulus and shear modulus. Moreover, the mechanical properties of the two materials turned out to be much better than those of the common materials for optoelectronic applications, while their thermal properties were comparable to that of sapphire glass. Since this study was computational, an experimental verification of the computed properties of the two materials needs to be carried out before they can be commercialized. Full article
Show Figures

Figure 1

11 pages, 1694 KiB  
Article
Effect of Pressure on the Structural and Mechanical Properties of Cubic Silicon Carbide Reinforced with Aluminum and Magnesium
by Adel Bandar Alruqi and Nicholas O. Ongwen
Aerospace 2024, 11(12), 1026; https://doi.org/10.3390/aerospace11121026 - 16 Dec 2024
Cited by 1 | Viewed by 1154
Abstract
Ranging from the most demanding technical applications to soft, extremely ductile wrapping foil, aluminum is one of the most versatile and reasonably priced metallic materials. These are attributable to the unique blend of features that it provides, together with its alloys, owing to [...] Read more.
Ranging from the most demanding technical applications to soft, extremely ductile wrapping foil, aluminum is one of the most versatile and reasonably priced metallic materials. These are attributable to the unique blend of features that it provides, together with its alloys, owing to its lightweight, and some of its alloys have higher strengths than that of structural steel. However, it is expected that the demand for aluminum will quadruple within the next 10 years, and as a result, the aerospace industry is increasingly turning to recycled alloys to fulfill its high demand. This study uses the ab initio method, implemented in the quantum espresso code, to examine the influence of pressure on the structural and mechanical properties of cubic silicon carbide alloyed with aluminum (Al) and magnesium (Mg). The study is motivated by the aerospace industry’s growing need for sustainable materials. Some of the carbon atoms were swapped out for Al or Mg or both (co-doping) atoms in order to create the alloys. The results demonstrated that the application of pressure significantly influences both the structural and mechanical properties of the alloys, making them a promising option for the construction of environmentally friendly aircraft components. Full article
Show Figures

Figure 1

8 pages, 1844 KiB  
Proceeding Paper
Analysis of the Pyrolysis of Methane Reaction over Molten Metals for CO2-Free Hydrogen Production: An Application of DFT and Machine Learning
by Lord Ugwu, Yasser Morgan and Hussameldin Ibrahim
Eng. Proc. 2024, 76(1), 97; https://doi.org/10.3390/engproc2024076097 - 3 Dec 2024
Viewed by 1139
Abstract
The co-production of CO2 continues to remain the bane of several hydrogen production technologies, including the steam reforming of methane and the dry reforming of methane processes. Efficient utilization of abundant greenhouse gas in the form of methane provides opportunities for the [...] Read more.
The co-production of CO2 continues to remain the bane of several hydrogen production technologies, including the steam reforming of methane and the dry reforming of methane processes. Efficient utilization of abundant greenhouse gas in the form of methane provides opportunities for the design of an innovative system that will maximize the use of such a raw material in the most environmentally friendly manner. The study of the mechanism of the pyrolysis of methane reactions over molten metals provides promise for improved hydrogen yield and methane conversion with a greater turnover frequency. Catalyst electronic properties computed via Density Functional Theory using the Quantum Espresso code provided data that were built into a database. Using Bismuth as the base metal, active transition metals including Ni, Cu, Pd, Pt, Ag, and Au of different concentrations of 5, 10, 15, and 25% were placed on 96 atoms of the base metal and relaxed to obtain the optimized geometric structures for the catalytic reaction studies. The kinetics of the individual elementary steps of the pyrolysis reaction at preset temperatures over the bi-metals were calculated using the Car-Parinello (CP) method and Nudge Elastic Band (NEB) computations. The collated data of the various pyrolysis of methane reactions over the different bi-metals was used to train machine learning models for the prediction of reaction outcome, catalytic performance, and efficient operating conditions for the pyrolysis of methane over molten metals. The turnover frequency, which is determined using the transition state energies of the fundamental reaction cycles, will be used to simulate the stability of the catalyst. Full article
Show Figures

Figure 1

11 pages, 2141 KiB  
Article
Effect of Substitutional Metallic Impurities on the Optical Absorption Properties of TiO2
by Eduardo Cisternas, Rodrigo Aguilera-del-Toro, Faustino Aguilera-Granja and Eugenio E. Vogel
Nanomaterials 2024, 14(14), 1224; https://doi.org/10.3390/nano14141224 - 19 Jul 2024
Cited by 4 | Viewed by 1167
Abstract
(TiO2) is both a natural and artificial compound that is transparent under visible and near-infrared light. However, it could be prepared with other metals, substituting for Ti, thus changing its properties. In this article, we present density functional theory calculations for [...] Read more.
(TiO2) is both a natural and artificial compound that is transparent under visible and near-infrared light. However, it could be prepared with other metals, substituting for Ti, thus changing its properties. In this article, we present density functional theory calculations for Ti(1−x)AxO2, where A stands for any of the eight following neutral substitutional impurities, Fe, Ni, Co, Pd, Pt, Cu, Ag and Au, based on the rutile structure of pristine TiO2. We use a fully unconstrained version of the density functional method with generalized gradient approximation plus the U exchange and correlation, as implemented in the Quantum Espresso free distribution. Within the limitations of a finite-size cell approximation, we report the band structure, energy gaps and absorption spectrum for all these cases. Rather than stressing precise values, we report on two general features: the location of the impurity levels and the general trends of the optical properties in the eight different systems. Our results show that all these substitutional atoms lead to the presence of electronic levels within the pristine gap, and that all of them produce absorptions in the visible and near-infrared ranges of electromagnetic radiation. Such results make these systems interesting for the fabrication of solar cells. Considering the variety of results, Ni and Ag are apparently the most promising substitutional impurities with which to achieve better performance in capturing the solar radiation on the planet’s surface. Full article
Show Figures

Figure 1

2 pages, 140 KiB  
Abstract
First-Principles Prediction of Enhanced Photocatalytic Activity in Cu-Doped ZnTiO3 by Replacing Zinc and Titanium
by Sujeet Kumar Pandey and Amit Ranjan
Proceedings 2024, 105(1), 71; https://doi.org/10.3390/proceedings2024105071 - 28 May 2024
Viewed by 442
Abstract
The most abundant, clean, renewable, and environmentally friendly energy source is sunlight [...] Full article
10 pages, 1854 KiB  
Article
Structural and Mechanical Properties of NbN Alloyed with Hf, In, and Zr for Orthopedic Applications: A First-Principles Study
by Adel Bandar Alruqi and Nicholas O. Ongwen
Inorganics 2024, 12(2), 43; https://doi.org/10.3390/inorganics12020043 - 27 Jan 2024
Cited by 2 | Viewed by 2201
Abstract
The search for biocompatible, non-toxic, and wear-resistant materials for orthopedic implant applications is on the rise. Different materials have been investigated for this purpose, some of which have proved successful. However, one challenge that has proven difficult to overcome is the balance between [...] Read more.
The search for biocompatible, non-toxic, and wear-resistant materials for orthopedic implant applications is on the rise. Different materials have been investigated for this purpose, some of which have proved successful. However, one challenge that has proven difficult to overcome is the balance between ductility and hardness of these materials. This study employed ab initio calculations to investigate the structural and mechanical properties of niobium nitride (NbN) alloyed with hafnium, indium, and zirconium, with the aim of improving its hardness. The calculations made use of density function theory within the quantum espresso package’s generalized gradient approximation, with Perdew–Burke–Ernzerhof ultrasoft pseudopotentials in all the calculations. It was found that addition of the three metals led to an improvement in both the shear and Young’s moduli of the alloys compared to those of the NbN. However, both the bulk moduli and the Poisson’s ratios reduced with the introduction of the metals. The Young’s moduli of all the samples were found to be higher than that of bone. The Vickers hardness of the alloys were found to be significantly higher than that of NbN, with that of indium being the highest. The alloys are therefore good for wear-resistant artificial bone implants in ceramic acetabulum, and also in prosthetic heads. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

14 pages, 2592 KiB  
Article
A Comparative Thermodynamic Study of AlF3, ScF3, Al0.5Sc0.5F3, and In0.5Sc0.5F3 for Optical Coatings: A Computational Study
by Adel Bandar Alruqi and Nicholas O. Ongwen
Coatings 2023, 13(11), 1840; https://doi.org/10.3390/coatings13111840 - 27 Oct 2023
Cited by 1 | Viewed by 1819
Abstract
Optical coatings are thin layers of materials applied to optical components in order to modify the transmission, reflection, or polarization properties of light. The common materials used for optical coatings include magnesium fluoride (MgF2), scandium trifluoride ( [...] Read more.
Optical coatings are thin layers of materials applied to optical components in order to modify the transmission, reflection, or polarization properties of light. The common materials used for optical coatings include magnesium fluoride (MgF2), scandium trifluoride (ScF3), and aluminum trifluoride (AlF3), owing to their desirable optical properties, spectral range, and compatibility with substrates. However, each of these materials has its own drawbacks. For instance, AlF3 has been found to exhibit limited resistance to attack by chemicals, as well as poor thermal stability, while MgF2 has low durability, as well as being hygroscopic. In this study, we undertook ab initio calculations in order to compare the thermal properties of AlF3, ScF3, Al0.5Sc0.5F3, and In0.5Sc0.5F3 in order to obtain the best material for optical coatings. MgF2 was also included in the study as a reference. The calculations used PBE pseudopotentials and the extended generalized gradient approximation within the quantum espresso algorithm. The study demonstrated that the computed results agree with the information found in the literature. ScF3 exhibited a negative coefficient of thermal expansion, unlike the other four. Moreover, AlF3 was found to be the best candidate for optical coatings that are used in high-power laser systems with high thermal dissipation, due to its superior thermal expansion coefficient as well as its better response to thermal stress. The large variation between the cp and cv of ScF3 is not desirable. Moreover, due to its negative thermal expansion coefficient, ScF3 is not thermally stable. The highest thermal stability was exhibited by In0.5Sc0.5F3. Since Al0.5Sc0.5F3 and In0.5Sc0.5F3 have been modeled in this study for the first time, experimental determination of their crystal structures needs to be investigated. Full article
Show Figures

Figure 1

20 pages, 2807 KiB  
Article
Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO2 Surfaces
by Dušica Jovanović, Johann Christian Schön, Dejan Zagorac, Aleksandra Zarubica, Branko Matović and Jelena Zagorac
Nanomaterials 2023, 13(19), 2688; https://doi.org/10.3390/nano13192688 - 30 Sep 2023
Cited by 1 | Viewed by 2160
Abstract
Studying the interaction of inorganic systems with organic ones is a highly important avenue for finding new drugs and treatment methods. Tumor cells show an increased demand for amino acids due to their rapid proliferation; thus, targeting their metabolism is becoming a potential [...] Read more.
Studying the interaction of inorganic systems with organic ones is a highly important avenue for finding new drugs and treatment methods. Tumor cells show an increased demand for amino acids due to their rapid proliferation; thus, targeting their metabolism is becoming a potential oncological therapeutic strategy. One of the inorganic materials that show antitumor properties is titanium dioxide, while its doping was found to enhance interactions with biological systems. Thus, in this study, we investigated the energy landscape of glutamine (L), an amino acid, on pristine and doped TiO2 surfaces. We first locally optimized 2D-slab structures of pristine and Au/Ag/Cu-doped anatase (001 and 101 surfaces) and similarly optimized a single molecule of glutamine in vacuum. Next, we placed the pre-optimized glutamine molecule in various orientations and on a variety of locations onto the relaxed substrate surfaces (in vacuum) and performed ab initio relaxations of the molecule on the substrate slabs. We employed the DFT method with a GGA-PBE functional implemented in the Quantum Espresso code. Comparisons of the optimized conformations and electronic structures of the amino acid in vacuum and on the surfaces yield useful insights into various biological processes. Full article
Show Figures

Figure 1

14 pages, 4132 KiB  
Article
Mechanical Properties of Al–Mg–Si Alloys (6xxx Series): A DFT-Based Study
by Kipkorir Kirui Pius, Nicholas O. Ongwen, Maxwell Mageto, Victor Odari and Francis Magiri Gaitho
Alloys 2023, 2(3), 213-226; https://doi.org/10.3390/alloys2030015 - 13 Sep 2023
Cited by 14 | Viewed by 5406
Abstract
Al–Mg–Si alloys are used in aircraft, train, and car manufacturing industries due to their advantages, which include non-corrosivity, low density, relatively low cost, high thermal and electrical conductivity, formability, and weldability. This study investigates the bulk mechanical properties of Al–Mg–Si alloys and the [...] Read more.
Al–Mg–Si alloys are used in aircraft, train, and car manufacturing industries due to their advantages, which include non-corrosivity, low density, relatively low cost, high thermal and electrical conductivity, formability, and weldability. This study investigates the bulk mechanical properties of Al–Mg–Si alloys and the influence of the Si/Mg ratio on these properties. The Al cell was used as the starting structure, and then nine structures were modeled with varying percentages of aluminium, magnesium, and silicon. Elastic constant calculations were conducted using the stress–strain method as implemented in the quantum espresso code. This study found that the optimum properties obtained were a density of 2.762 g/cm3, a bulk modulus of 83.3 GPa, a shear modulus of 34.4 GPa, a Vickers hardness of 2.79 GPa, a Poisson’s ratio of 0.413, a Pugh’s ratio of 5.42, and a yield strength of 8.38 GPa. The optimum Si/Mg ratio was found to be 4.5 for most of the mechanical properties. The study successfully established that the Si/Mg ratio is a critical factor when dealing with the mechanical properties of the Al–Mg–Si alloys. The alloys with the optimum Si/Mg ratio can be used for industrial applications such as plane skins and mining equipment where these properties are required. Full article
Show Figures

Figure 1

13 pages, 1572 KiB  
Article
First Principle Study on the Effect of Strain on the Electronic Structure and Carrier Mobility of the Janus MoSTe and WSTe Monolayers
by Jawad El Hamdaoui, Laura M. Pérez, Miguel Ojeda-Martínez, Nassima El Ouarie, Pablo Díaz, David Laroze and El Mustapha Feddi
Nanomaterials 2023, 13(18), 2535; https://doi.org/10.3390/nano13182535 - 11 Sep 2023
Cited by 7 | Viewed by 2245
Abstract
Using first-principle calculations, we investigate the impact of strain on the electronic structures and effective masses of Janus WSTe and MoSTe monolayers. The calculations were performed using the QUANTUM-ESPRESSO package, employing the PBE and HSE06 functionals. Our results demonstrate that strain fundamentally changes [...] Read more.
Using first-principle calculations, we investigate the impact of strain on the electronic structures and effective masses of Janus WSTe and MoSTe monolayers. The calculations were performed using the QUANTUM-ESPRESSO package, employing the PBE and HSE06 functionals. Our results demonstrate that strain fundamentally changes the electronic structures of the Janus WSTe and MoSTe monolayers. We observe that deformation causes a shift in the maxima and minima of the valence and conduction bands, respectively. We find that the effective electrons and hole masses of MoSTe and WSTe can be changed by deformation. In addition, the strain’s effect on carrier mobility is also investigated in this work via the deformation potential theory. Full article
(This article belongs to the Special Issue Research on Nano-Lattice)
Show Figures

Figure 1

Back to TopTop