Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (315)

Search Parameters:
Keywords = quantitative flow ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 16811 KiB  
Article
Force Element Analysis of Vortex-Induced Vibration Mechanism of Three Side-by-Side Cylinders at Low Reynolds Number
by Su-Xiang Guo, Meng-Tian Song, Jie-Chao Lei, Hai-Long Xu and Chien-Cheng Chang
J. Mar. Sci. Eng. 2025, 13(8), 1446; https://doi.org/10.3390/jmse13081446 - 29 Jul 2025
Viewed by 96
Abstract
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The [...] Read more.
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The lift and drag forces are decomposed into three physical components: volume vorticity force, surface vorticity force, and surface acceleration force. The present work systematically examines varying S/D and Ur effects on vibration amplitudes, frequencies, phase relationships, and transitions between distinct vortex-shedding patterns. By quantitative force decomposition, underlying physical mechanisms governing VIV in the triple-cylinder system are elucidated, including vortex dynamics, inter-cylinder interference, and flow structures. Results indicate that when S/D < 4, cylinders exhibit “multi-frequency” vibration responses. When S/D > 4, the “lock-in” region broadens, and the wake structure approaches the patterns of an isolated single cylinder; in addition, the trajectories of cylinders become more regularized. The forces acting on the central cylinder present characteristics of stochastic synchronization, significantly different from those observed in two-cylinder systems. The results can advance the understanding of complex interactions between hydrodynamic and structural dynamic forces under different geometric parameters that govern VIV response characteristics of marine structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 7048 KiB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 182
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

15 pages, 2952 KiB  
Article
Experimental Measurements on the Influence of Inlet Pipe Configuration on Hydrodynamics and Dissolved Oxygen Distribution in Circular Aquaculture Tank
by Yanfei Wu, Jianeng Chen, Fukun Gui, Hongfang Qi, Yang Wang, Ying Luo, Yanhong Wu, Dejun Feng and Qingjing Zhang
Water 2025, 17(15), 2172; https://doi.org/10.3390/w17152172 - 22 Jul 2025
Viewed by 252
Abstract
Optimizing hydrodynamic performance and dissolved oxygen (DO) distribution is essential for improving water quality management in industrial recirculating aquaculture systems. This study combines experimental measurements and data analysis to evaluate the effects of the inlet pipe flow rate (Q), [...] Read more.
Optimizing hydrodynamic performance and dissolved oxygen (DO) distribution is essential for improving water quality management in industrial recirculating aquaculture systems. This study combines experimental measurements and data analysis to evaluate the effects of the inlet pipe flow rate (Q), deployment distance ratio (d/r), deployment angle (θ), inlet pipe structure on hydrodynamics and the dissolved oxygen distribution across various tank layers. The flow field distribution in the tanks was measured using Acoustic Doppler Velocimetry (ADV), and the hydrodynamic characteristics, including average velocity (vavg) and the velocity uniformity coefficient (DU50), were quantitatively analyzed. The dissolved oxygen content at different tank layers was recorded using an Aquameter GPS portable multi-parameter water quality analyzer. The findings indicate that average velocity (vavg) and the velocity uniformity coefficient (DU50) are key determinants of the hydrodynamic characteristic of circular aquaculture tanks. Optimal hydrodynamic performance occurs for the vertical single-pipe porous configuration at Q = 9 L/s, d/r = 1/4, and θ = 45°,the average velocity reached 0.0669 m/s, and the uniformity coefficients attained a maximum value of 40.4282. In a vertical single-pipe porous structure, the tank exhibits higher dissolved oxygen levels compared to a horizontal single-pipe single-hole structure. Under identical water inflow rates and deployment distance ratios, dissolved oxygen levels in the surface layer of the circular aquaculture tank are significantly greater than that in the bottom layer. The results of this study provide valuable insights for optimizing the engineering design of industrial circular aquaculture tanks and addressing the dissolved oxygen distribution across different water layers. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

12 pages, 1396 KiB  
Article
Lateral Flow Assay to Detect Carbonic Anhydrase IX in Seromas of Breast Implant-Associated Anaplastic Large Cell Lymphoma
by Peng Xu, Katerina Kourentzi, Richard Willson, Honghua Hu, Anand Deva, Christopher Campbell and Marshall Kadin
Cancers 2025, 17(14), 2405; https://doi.org/10.3390/cancers17142405 - 21 Jul 2025
Viewed by 339
Abstract
Background/Objective: Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) has affected more than 1700 women with textured breast implants. About 80% of patients present with fluid (seroma) around their implant. BIA-ALCL can be cured by surgery alone when confined to the seroma and lining [...] Read more.
Background/Objective: Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) has affected more than 1700 women with textured breast implants. About 80% of patients present with fluid (seroma) around their implant. BIA-ALCL can be cured by surgery alone when confined to the seroma and lining of the peri-implant capsule. To address the need for early detection, we developed a rapid point of care (POC) lateral flow assay (LFA) to identify lymphoma in seromas. Methods: We compared 28 malignant seromas to 23 benign seromas using both ELISA and LFA. LFA test lines (TL) and control lines (CL) were visualized and measured with imaging software and the TL/CL ratio for each sample was calculated. Results: By visual exam, the sensitivity for detection of CA9 was 93% and specificity 78%, while the positive predictive value was 84% and negative predictive value 90%. Quantitative image analysis increased the positive predictive value to 96% while the negative predictive value reduced to 79%. Conclusions: We conclude that CA9 is a sensitive biomarker for detection and screening of patients for BIA-ALCL in patients who present with seromas of unknown etiology. The CA9 LFA can potentially replace ELISA, flow cytometry and other tests requiring specialized equipment, highly trained personnel, larger amounts of fluid and delay in diagnosis of BIA-ALCL. Full article
(This article belongs to the Special Issue Pre-Clinical Studies of Personalized Medicine for Cancer Research)
Show Figures

Figure 1

23 pages, 5255 KiB  
Article
Modeling and Classification of Random Traffic Patterns for Fatigue Analysis of Highway Bridges
by Xianglong Zheng, Bin Chen, Zhicheng Zhang, He Zhang, Jing Liu and Jingyao Zhang
Infrastructures 2025, 10(7), 187; https://doi.org/10.3390/infrastructures10070187 - 17 Jul 2025
Viewed by 282
Abstract
With the increasing severity of traffic congestion, the impact of random traffic patterns has emerged as an indispensable factor in the fatigue design and assessment of highway bridges. In this study, an analytical approach has been proposed for modeling the effects of random [...] Read more.
With the increasing severity of traffic congestion, the impact of random traffic patterns has emerged as an indispensable factor in the fatigue design and assessment of highway bridges. In this study, an analytical approach has been proposed for modeling the effects of random traffic patterns on fatigue damage. A fatigue damage ratio, referred to as RPEF, is introduced to establish the correlation between damage and traffic characteristics. Two quantitative parameters representing two characteristics of traffic loads, namely the average loading occurrence number (scale parameter) and the vehicle headway COVs (shape parameter), have been found to be excellent indices for clustering the different dimensional randomness of RPEFs. Based on a comprehensive case study, the realization of using equivalent RPEFs to evaluate bridge fatigue damage under mixed traffic conditions was explored. The results indicate that the actual fatigue damage of bridges can be evaluated through the superposition of different traffic pattern effects, provided that the pattern classification number fits the fluctuations in traffic flow. It is necessary to ensure the rationality of traffic pattern classification for structures with spans greater than 50 m, as an overly simplistic traffic pattern classification may lead to an underestimation of fatigue damage. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

14 pages, 2100 KiB  
Article
Response of Han River Estuary Discharge to Hydrological Process Changes in the Tributary–Mainstem Confluence Zone
by Shuo Ouyang, Changjiang Xu, Weifeng Xu, Junhong Zhang, Weiya Huang, Cuiping Yang and Yao Yue
Sustainability 2025, 17(14), 6507; https://doi.org/10.3390/su17146507 - 16 Jul 2025
Viewed by 276
Abstract
This study investigates the dynamic response mechanisms of discharge capacity in the Han River Estuary to hydrological process changes at the Yangtze–Han River confluence. By constructing a one-dimensional hydrodynamic model for the 265 km Xinglong–Hankou reach, we quantitatively decouple the synergistic effects of [...] Read more.
This study investigates the dynamic response mechanisms of discharge capacity in the Han River Estuary to hydrological process changes at the Yangtze–Han River confluence. By constructing a one-dimensional hydrodynamic model for the 265 km Xinglong–Hankou reach, we quantitatively decouple the synergistic effects of riverbed scouring (mean annual incision rate: 0.12 m) and Three Gorges Dam (TGD) operation through four orthogonal scenarios. Key findings reveal: (1) Riverbed incision dominates discharge variation (annual mean contribution >84%), enhancing flood conveyance efficiency with a peak flow increase of 21.3 m3/s during July–September; (2) TGD regulation exhibits spatiotemporal intermittency, contributing 25–36% during impoundment periods (September–October) by reducing Yangtze backwater effects; (3) Nonlinear interactions between drivers reconfigure flow paths—antagonism occurs at low confluence ratios (R < 0.15, e.g., Cd increases to 45 under TGD but decreases to 8 under incision), while synergy at high ratios (R > 0.25) reduces Hanchuan Station flow by 13.84 m3/s; (4) The 180–265 km confluence-proximal zone is identified as a sensitive area, where coupled drivers amplify water surface gradients to −1.41 × 10−3 m/km (2.3× upstream) and velocity increments to 0.0027 m/s. The proposed “Natural/Anthropogenic Dual-Stressor Framework” elucidates estuary discharge mechanisms under intensive human interference, providing critical insights for flood control and trans-basin water resource management in tide-free estuaries globally. Full article
(This article belongs to the Special Issue Sediment Movement, Sustainable Water Conservancy and Water Transport)
Show Figures

Figure 1

12 pages, 1646 KiB  
Systematic Review
Quantitative Flow Ratio-Guided vs. Angiography-Guided Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis of One-Year Clinical Outcomes
by Viet Nghi Tran, Amreen Dhindsa, Kuchalambal Agadi, Hoang Nhat Pham, Hong Hieu Truong, Chau Doan Nguyen, Hanad Bashir, Huan Dat Pham, Thanh Vien Truong, Phillip Tran and Thach Nguyen
J. Clin. Med. 2025, 14(14), 5015; https://doi.org/10.3390/jcm14145015 - 15 Jul 2025
Viewed by 306
Abstract
Background: Quantitative Flow Ratio (QFR) is a novel, wire-free, and hyperemia-free physiological assessment for guiding Percutaneous Coronary Intervention (PCI), which may offer advantages over traditional angiography-guided PCI. This systematic review with meta-analysis compares clinical outcomes after one year in patients who underwent QFR-guided [...] Read more.
Background: Quantitative Flow Ratio (QFR) is a novel, wire-free, and hyperemia-free physiological assessment for guiding Percutaneous Coronary Intervention (PCI), which may offer advantages over traditional angiography-guided PCI. This systematic review with meta-analysis compares clinical outcomes after one year in patients who underwent QFR-guided versus angiography-guided PCI. Methods: This study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and was registered on 4 November 2024 in PROSPERO (ID: CRD42024609799). A systematic search was performed across multiple databases to identify clinical trials comparing QFR-guided and angiography-guided PCI. Random-effects models were used to assess one-year outcomes of major adverse cardiovascular events (MACEs), revascularization, and rehospitalization, with heterogeneity measured using I2, H2, and Cochran’s Q statistics. Study quality was evaluated using the Cochrane Risk of Bias 2 (RoB 2) tool. Results: Compared to traditional angiography-guided PCI, QFR-guided PCI was associated with numerically lower but statistically non-significant risks of MACEs (risk difference: −0.08, 95% CI: −0.20 to 0.04), revascularization (risk difference: −0.02, 95% CI: −0.08 to 0.03), and rehospitalization (risk difference: −0.02, 95% CI: −0.08 to 0.04) over one year. Substantial heterogeneity was observed for MACEs (I2 = 84.95%, H2 = 6.64) and revascularization (I2 = 94.18%, H2 = 17.18), whereas rehospitalization exhibited low heterogeneity (I2 = 17.17%, H2 = 1.21). The risk of bias was assessed by the RoB 2 tool, which revealed low to some concern risk of bias across key domains. Conclusions: Quantitative Flow Ratio (QFR) has demonstrated comparable one-year clinical outcomes to traditional angiography for PCI guidance, with a trend toward improved results. However, the high heterogeneity among studies and the risk of bias necessitate the need for larger, high-quality trials to validate these findings. Full article
(This article belongs to the Special Issue Interventional Cardiology—Challenges and Solutions)
Show Figures

Figure 1

31 pages, 5716 KiB  
Article
Quantitative Assessment of Flood Risk Through Multi Parameter Morphometric Analysis and GeoAI: A GIS-Based Study of Wadi Ranuna Basin in Saudi Arabia
by Maram Hamed AlRifai, Abdulla Al Kafy and Hamad Ahmed Altuwaijri
Water 2025, 17(14), 2108; https://doi.org/10.3390/w17142108 - 15 Jul 2025
Viewed by 439
Abstract
The integration of traditional geomorphological approaches with advanced artificial intelligence techniques represents a promising frontier in flood risk assessment for arid regions. This study presents a comprehensive analysis of the Wadi Ranuna basin in Medina, Saudi Arabia, combining detailed morphometric parameters with advanced [...] Read more.
The integration of traditional geomorphological approaches with advanced artificial intelligence techniques represents a promising frontier in flood risk assessment for arid regions. This study presents a comprehensive analysis of the Wadi Ranuna basin in Medina, Saudi Arabia, combining detailed morphometric parameters with advanced Geospatial Artificial Intelligence (GeoAI) algorithms to enhance flood susceptibility modeling. Using digital elevation models (DEMs) and geographic information systems (GISs), we extracted 23 morphometric parameters across 67 sub-basins and applied XGBoost, Random Forest, and Gradient Boosting (GB) models to predict both continuous flood susceptibility indices and binary flood occurrences. The machine learning models utilize morphometric parameters as input features to capture complex non-linear interactions, including threshold-dependent relationships where the stream frequency impact intensifies above 3.0 streams/km2, and the compound effects between the drainage density and relief ratio. The analysis revealed that the basin covers an area of 188.18 km2 with a perimeter of 101.71 km and contains 610 streams across six orders. The basin exhibits an elongated shape with a form factor of 0.17 and circularity ratio of 0.23, indicating natural flood-moderating characteristics. GB emerged as the best-performing model, achieving an RMSE of 6.50 and an R2 value of 0.9212. Model validation through multi-source approaches, including field verification at 35 locations, achieved 78% spatial correspondence with documented flood events and 94% accuracy for very high susceptibility areas. SHAP analysis identified the stream frequency, overland flow length, and drainage texture as the most influential predictors of flood susceptibility. K-Means clustering uncovered three morphometrically distinct zones, with Cluster 1 exhibiting the highest flood risk potential. Spatial analysis revealed 67% of existing infrastructure was located within high-risk zones, with 23 km of major roads and eight critical facilities positioned in flood-prone areas. The spatial distribution of GBM-predicted flood susceptibility identified high-risk zones predominantly in the central and southern parts of the basin, covering 12.3% (23.1 km2) of the total area. This integrated approach provides quantitative evidence for informed watershed management decisions and demonstrates the effectiveness of combining traditional morphometric analysis with advanced machine learning techniques for enhanced flood risk assessment in arid regions. Full article
Show Figures

Figure 1

27 pages, 11396 KiB  
Article
Investigating Basin-Scale Water Dynamics During a Flood in the Upper Tenryu River Basin
by Shun Kudo, Atsuhiro Yorozuya and Koji Yamada
Water 2025, 17(14), 2086; https://doi.org/10.3390/w17142086 - 12 Jul 2025
Viewed by 297
Abstract
Rainfall–runoff processes and flood propagation were quantified to clarify floodwater dynamics in the upper Tenryu River basin. The basin is characterized by contrasting runoff behaviors between its left- and right-bank subbasins and large upstream river storage created by gorge topography. Radar rainfall and [...] Read more.
Rainfall–runoff processes and flood propagation were quantified to clarify floodwater dynamics in the upper Tenryu River basin. The basin is characterized by contrasting runoff behaviors between its left- and right-bank subbasins and large upstream river storage created by gorge topography. Radar rainfall and dam inflow data were analyzed to determine the runoff characteristics, on which the rainfall–runoff simulation was based. A higher storage capacity was observed in the left-bank subbasins, while an exceptionally large specific discharge was observed in one of the right-bank subbasins after several hours of intense rainfall. Based on these findings, the basin-scale storage was quantitatively evaluated. Water level peaks in the main channel appeared earlier at downstream locations, indicating that tributary inflows strongly affect the flood peak timing. A two-dimensional unsteady model successfully reproduced this behavior and captured the delay in the flood wave speed due to the complex morphology of the Tenryu River. The average α value, representing the ratio of flood wave speed to flow velocity, was 1.38 over the 70 km study reach. This analysis enabled quantification of river channel storage and clarified its relative relationship to basin storage, showing that river channel storage is approximately 12% of basin storage. Full article
Show Figures

Figure 1

19 pages, 8170 KiB  
Article
Study on Solid and Pore Structures of Borehole Municipal Solid Waste Samples by X-Ray CT Scanning
by Xiaobing Xu, Zhiyu Zhang, Jie Hu, Han Ke, Lei Lang and Changjie Chen
Processes 2025, 13(7), 2176; https://doi.org/10.3390/pr13072176 - 8 Jul 2025
Viewed by 300
Abstract
The microscale solid and pore structures of waste is crucial for the bio-hydro-mechanical behaviors of landfilled municipal solid waste (MSW). The quantitative analysis of the structural characteristics of MSW is still limited. In this study, borehole MSW samples at different depths (i.e., 0 [...] Read more.
The microscale solid and pore structures of waste is crucial for the bio-hydro-mechanical behaviors of landfilled municipal solid waste (MSW). The quantitative analysis of the structural characteristics of MSW is still limited. In this study, borehole MSW samples at different depths (i.e., 0 m, 2.5 m, 5 m, 7.5 m, 10 m, and 12.5 m) were drilled from a landfill. The waste composition and basic physical properties of these samples were tested in laboratory. Solid and pore structural characteristics were studied through computed tomography (CT) analysis. The results indicate that the ratio of cellulose content to lignin content (i.e., C/L) decreased from 0.85 to 0.47 with increasing depth. For solid particles, two-dimensional (2D) particles constituted the greatest fraction (60.22~72.16%), which showed a decrease with increasing depth. The deeper sample tended to have more fine particles. For pores, the void ratio decreased from 1.68 to 1.10 with increasing depth, with more small pore channels. Meanwhile, the average pore diameter coefficient (λ) decreased from 0.209 to 0.190, the pore angle (θe) decreased from 29.6° to 17.8°, the tortuosity (τ) increased from 1.129 to 1.184, and the connectivity (ce) decreased from 12.0 to 4.1. These quantitative findings can further the understanding of fluid flow behaviors in landfilled waste. Full article
(This article belongs to the Special Issue Emerging Technologies in Solid Waste Recycling and Reuse)
Show Figures

Figure 1

18 pages, 1316 KiB  
Article
Economy-Wide Material Flow Accounting: Application in the Italian Glass Industry
by Salik Ahmed, Marco Ciro Liscio, Andrea Pelaggi, Paolo Sospiro, Irene Voukkali and Antonis A. Zorpas
Sustainability 2025, 17(13), 6180; https://doi.org/10.3390/su17136180 - 5 Jul 2025
Viewed by 498
Abstract
Italy supplies about one-seventh of the European Union’s total glass production, and the sector’s sizeable resource demands make it a linchpin of national industrial strategy. With growing environmental regulations and the push for resource efficiency, Material Flow Accounting has become essential for companies [...] Read more.
Italy supplies about one-seventh of the European Union’s total glass production, and the sector’s sizeable resource demands make it a linchpin of national industrial strategy. With growing environmental regulations and the push for resource efficiency, Material Flow Accounting has become essential for companies to stay compliant and advance sustainability. The investigation concentrates on Italy’s glass industry to clarify its material requirements, ecological footprint, and overall sustainability performance. STAN software v2, combined with an Economy-Wide Material Flow Accounting (EW-MFA) framework, models the national economy as a single integrated input–output system. By tracking each material stream from initial extraction to end-of-life, the analysis delivers a cradle-to-grave picture of the sector’s environmental impacts. During the 2021 production year, Italy’s glass makers drew on a total of 10.5 million tonnes (Mt) of material inputs, supplied 76% (7.9 Mt) from domestic quarries, and 24% (2.6 Mt) via imports. Outbound trade in finished glass removed 1.0 Mt, leaving 9.5 Mt recorded as Domestic Material Consumption (DMC). Within that balance, 6.6 Mt (63%) was locked into long-lived stock, whereas 2.9 Mt (28%) left the system as waste streams and airborne releases, including roughly 2.1 Mt of CO2. At present, the post-consumer cult substitutes only one-third of the furnace batch, signalling considerable scope for improved circularity. When benchmarked against EU-27 aggregates for 2021, Italy registers a NAS/DMI ratio of 0.63 (EU median 0.55) and a DPO/DMI ratio of 0.28 (EU 0.31), indicating a higher share of material retained in stock and slightly lower waste generated per ton of input. A detailed analysis of glass production identifies critical stages, environmental challenges, and areas for improvement. Quantitative data on material use, waste generation, and recycling rates reveal the industry’s environmental footprint. The findings emphasise Economy-Wide Material Flow Accounting’s value in evaluating and improving sustainability efforts, offering insights for policymakers and industry leaders to drive resource efficiency and sustainable resource management. Results help scholars and policymakers in the analysis of the Italian glass industry context, supporting in the data gathering, while also in the use of this methodology for other sectors. Full article
(This article belongs to the Collection Waste Management towards a Circular Economy Transition)
Show Figures

Figure 1

31 pages, 10887 KiB  
Article
Impact of Reservoir Properties on Micro-Fracturing Stimulation Efficiency and Operational Design Optimization
by Shaohao Wang, Yuxiang Wang, Wenkai Li, Junlong Cheng, Jianqi Zhao, Chang Zheng, Yuxiang Zhang, Ruowei Wang, Dengke Li and Yanfang Gao
Processes 2025, 13(7), 2137; https://doi.org/10.3390/pr13072137 - 4 Jul 2025
Viewed by 286
Abstract
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay [...] Read more.
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay content, and heavy oil viscosity on micro-fracturing stimulation effectiveness, based on the oil sands reservoir in Block Zhong-18 of the Fengcheng Oilfield. By establishing an extended Drucker–Prager constitutive model, Kozeny–Poiseuille permeability model, and hydro-mechanical coupling numerical simulation, this study quantitatively reveals the controlling effects of reservoir properties on key rock parameters (e.g., elastic modulus, Poisson’s ratio, and permeability), integrating experimental data with literature review. The results demonstrate that increasing clay content significantly reduces reservoir permeability and stimulated volume, whereas elevated asphaltene content inhibits stimulation efficiency by weakening rock strength. Additionally, the thermal sensitivity of heavy oil viscosity indirectly affects geomechanical responses, with low-viscosity fluids under high-temperature conditions being more conducive to effective stimulation. Based on the quantitative relationship between cumulative injection volume and stimulation parameters, a classification-based optimization model for oil sands reservoir operations was developed, predicting over 70% reduction in preheating duration. This study provides both theoretical foundations and practical guidelines for micro-fracturing parameter design in complex oil sands reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 1976 KiB  
Article
Feasibility, Added Value, and Radiation Dose of Combined Coronary CT Angiography and Stress Dynamic CT Myocardial Perfusion Imaging in Moderate Coronary Artery Disease: A Real-World Study
by Marco Fogante, Enrico Paolini, Fatjon Cela, Paolo Esposto Pirani, Liliana Balardi, Gian Piero Perna and Nicolò Schicchi
J. Cardiovasc. Dev. Dis. 2025, 12(7), 241; https://doi.org/10.3390/jcdd12070241 - 24 Jun 2025
Viewed by 370
Abstract
Objective: We aimed to evaluate the feasibility, added value, and radiation dose of coronary computed tomography angiography (CCTA) and stress dynamic CT myocardial perfusion imaging (MPI) in patients with coronary artery disease (CAD) in a real-world setting. Materials and Methods: This retrospective study [...] Read more.
Objective: We aimed to evaluate the feasibility, added value, and radiation dose of coronary computed tomography angiography (CCTA) and stress dynamic CT myocardial perfusion imaging (MPI) in patients with coronary artery disease (CAD) in a real-world setting. Materials and Methods: This retrospective study included 65 patients (mean age: 51.2 ± 11.5 years; 21 female) with moderate CAD, selected from the Radiological Database of our hospital between May 2022 and December 2024. All patients underwent CCTA and stress dynamic CT-MPI using a third-generation dual-source CT scanner. The shuttle-mode acquisition technique was used for CT-MPI with 60 mL of contrast (iopamidol, 370 mg iodine/mL) administered at a flow rate of 6 mL/s. The mean myocardial blood flow (MBF) and other quantitative parameters were measured for both CAD and reference segments (RSs). A 17-segment-based analysis was employed (excluding the apex). The MBF ratio, defined as the mean MBF value of CAD segments divided by that of RS, was used with a cut-off value of 0.85 to distinguish hypoperfused from non-hypoperfused segments within CAD territories. Non-parametric statistical tests were applied. Results: A total of 1040 segments were evaluated. In 62 segments, the mean MBF of CAD territories was found to have decreased. The mean MBF and myocardial blood volume (MBV) in hypoperfused CAD segments were 65.1 ± 19.8 mL/100 mL/min and 14.5 ± 2.7 mL/100 mL, respectively, both significantly lower compared to non-hypoperfused CAD segments and RSs (p < 0.001). The mean effective dose of the protocol was 6.3 ± 1.4 mSv, corresponding to an estimated individual lifetime cancer risk of approximately 0.06% per test, based on BEIR VII Phase 2 modeling. This risk is cumulative, with repeat testing over a 10-year period potentially increasing lifetime cancer risk in proportion to total radiation exposure. The mean total examination time was 26 ± 4 min. Conclusion: The combined CCTA and dynamic CT-MPI protocol is feasible in real-world clinical practice and offers a comprehensive morphological and functional assessment of moderate CAD, with a manageable radiation dose and examination time. Full article
(This article belongs to the Section Imaging)
Show Figures

Figure 1

31 pages, 6448 KiB  
Review
Review of Research on Supercritical Carbon Dioxide Axial Flow Compressors
by Yong Tian, Dexi Chen, Yuming Zhu, Peng Jiang, Bo Wang, Xiang Xu and Xiaodi Tang
Energies 2025, 18(12), 3081; https://doi.org/10.3390/en18123081 - 11 Jun 2025
Viewed by 523
Abstract
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow [...] Read more.
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow sCO2 compressors are increasingly being investigated as power systems advance toward high power scaling. This paper reviews global research progress in this field. As for performance characteristics, currently, sCO2 axial-flow compressors are mostly designed with large mass flow rates (>100 kg/s), near-critical inlet conditions, multistage configurations with relatively low stage pressure ratios (1.1–1.2), and high isentropic efficiencies (87–93%). As for internal flow characteristics, although similarity laws remain applicable to sCO2 turbomachinery, the flow dynamics are strongly influenced by abrupt variations in thermophysical properties (e.g., viscosities, sound speeds, and isentropic exponents). High Reynolds numbers reduce frictional losses and enhance flow stability against separation but increase sensitivity to wall roughness. The locally reduced sound speed may induce shock waves and choke, while drastic variation in the isentropic exponent makes the multistage matching difficult and disperses normalized performance curves. Additionally, the quantitative impact of a near-critical phase change remains insufficiently understood. As for the experimental investigation, so far, it has been publicly shown that only the University of Notre Dame has conducted an axial-flow compressor experimental test, for the first stage of a 10 MW sCO2 multistage axial-flow compressor. Although the measured efficiency is higher than that of all known sCO2 centrifugal compressors, the inlet conditions evidently deviate from the critical point, limiting the applicability of the results to sCO2 power cycles. As for design and optimization, conventional design methodologies for axial-flow compressors require adaptations to incorporate real-gas property correction models, re-evaluations of maximum diffusion (e.g., the DF parameter) for sCO2 applications, and the intensification of structural constraints due to the high pressure and density of sCO2. In conclusion, further research should focus on two aspects. The first is to carry out more fundamental cascade experiments and numerical simulations to reveal the complex mechanisms for the near-critical, transonic, and two-phase flow within the sCO2 axial-flow compressor. The second is to develop loss models and design a space suitable for sCO2 multistage axial-flow compressors, thus improving the design tools for high-efficiency and wide-margin sCO2 axial-flow compressors. Full article
Show Figures

Figure 1

13 pages, 1949 KiB  
Article
Population Viability Analysis Revealed the Vulnerability of Yangtze Finless Porpoise (Neophocaena asiaeorientalis) in Poyang Lake
by Bin Wu, Weiping Wang, Yuehua Wang and Zhihong Zhang
Diversity 2025, 17(6), 410; https://doi.org/10.3390/d17060410 - 10 Jun 2025
Viewed by 626
Abstract
Poyang Lake in China is the most critical habitat and final refuge for the Yangtze finless porpoise (Neophocaena asiaeorientalis), YFP. In 2022, its population reached approximately 492 individuals, an increase of 35 from the 457 individuals recorded in 2017, showing a [...] Read more.
Poyang Lake in China is the most critical habitat and final refuge for the Yangtze finless porpoise (Neophocaena asiaeorientalis), YFP. In 2022, its population reached approximately 492 individuals, an increase of 35 from the 457 individuals recorded in 2017, showing a steady upward trend. The infrequent movement of YFPs between Poyang Lake and the Yangtze River represents a considerable threat to the long-term viability of this population. Additionally, serious water shortages in the lake during the dry season have led the government to consider the establishment of a hydraulic project. Therefore, a reliable risk assessment and quantitative analysis of conservation scenarios are urgently needed for this population. Population viability analysis of the YFP population in Poyang Lake was conducted using the VORTEX software. The baseline model predicted a probability of extinction of 0.241 over the next 100 years, with no probability of extinction in the first 30 years; the genetic diversity would be on a continuous downward trend and decline by 91.5%. The comprehensive protection model predicted a probability of extinction of 0.0028 and that the genetic diversity would be maintained at about 0.996 in 100 years. Breeding rate, sex ratio at birth, mortality rate, and gene flow were the factors that were sensitive to maintaining population viability. The results showed that the population of YFPs in Poyang Lake was at a high risk of extinction due to the decline in genetic diversity and the higher mortality and lower birth rate caused by habitat degradation. A total ban on productive fishing and the rescue and interchange of YFPs are conducive to enhancing the viability of the YFP population in Poyang Lake. Full article
(This article belongs to the Special Issue Wetland Biodiversity and Ecosystem Conservation)
Show Figures

Figure 1

Back to TopTop